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We have investigated the dependence of the calculated energy eigenvalues for gap states, introduced by ideal
vacancies and surfaces, on the choice of localized basis functions in the tight-binding method. In this method the
Hamiltonian describing the system with an ideal vacancy is defined by removing all the Hamiltonian matrix
elements between orbitals localized about the central atom with all basis states describing the system; the remaining
atoms are assumed to have their positions unaltered, the atomiclike orbitals are retained on these atoms, and their
Hamiltonian matrix elements are assumed unaltered. We find, using a Green’s-function analysis, that if Wannier
functions are employed as a basis there are no ideal vacancy-gap states. In addition, if the atomic orbitals of the
isolated atoms are taken as the basis set, no ideal vacancy-gap states exist in the limit as the number of orbitals on
the atom to be removed approaches infinity although spurious solutions for gap states can exist in a finite band
model. Since the Green’s-function analysis is exactly equivalent to finding the solutions of the Schrédinger equation
with the Hamiltonian described above, these results obtain for all other techniques of solving the eigenvalue equation
when the tight-binding Hamiltonian for an ideal vacancy in a crystal is employed. We find the reason for these
surprising results is the fact that the tight-binding method is not equivalent to removing the potential of the removed
atom. We demonstrate this by solving a two-atom problem by both the tight-binding method and by the Koster-
Slater method, with only the latter method yielding the exact result. Moreover, we show that if the size of the basis
set is allowed to increase without limit, the tight-binding method yields the same eigenvalues for the isolated atom as
it does for the two-atom Hamiltonian. This result is generalized to the many-atom case and explains why no gap
states are found if a complete basis is employed. This result is independent of the method used to solve the
eigenvalue equation. The analysis is extended to surface-state calculations where it is shown that no gap states exist
in the tight-binding method when Wannier functions are used as the basis set. Finally, using a Green’s-function
technique, we show how ideal vacancy-gap states may be calculated if the change in the potential, and consequently

15 APRIL 1981

in the tight-binding matrix elements, is incorporated.

I. INTRODUCTION AND CONCLUSIONS

In the last few years there has been considerable
interest in calculating the electronic states intro-
duced in the band gaps of semiconductor crystals
by vacancies and surfaces. Excellent reviews of
the various methods have been published by
Pantelides® for vacancy-state calculations and by
Pollmann? for surface-state calculations. In this
paper we critically examine the tight-binding
method as applied to both problems.>* The appli-
cation of this method, employing a Green’s-func-
tion analysis, has been generalized and extended
to the study of the electrical properties of inter-
faces® and more recently to superlattices® and has
become an important technique in semiconductor
calculations.

The basis for the method is the early work of
Koster and Slater,” who showed that the electronic
energy levels introduced in the band gaps by a
localized perturbation could be calculated from a
knowledge of the Green’s function for the perfect
crystal and the matrix elements of the potential,
both calculated in the Wannier representation.
Moreover, the rank of the determinant required
for the calculation of the energy eigenvalues was
shown to be equal to the rank of the nonzero ele-
ments of the perturbing potential matrix in this
representation.

Further amplification of this method has been
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given by Callaway® and calculations of the elec-
tronic states in the band gap have been performed
for the vacancy® and divacancy'® of Si in the
Wannier representation. The calculations turned
out to be difficult because of the complexity in-
herent in calculating the Wannier functions and
few subsequent calculations have been performed
in this representation.!

However, Lannoo and Lenglart'? observed that
the Green’s-function method is not limited to em-
ploying Wannier functions as a basis, but can be
applied using some other localized basis set. They
used a set of s and p orbitals on each atom and
performed a linear combination of atomic orbitals
(LCAO) band-structure calculation for Si assuming
nearest-neighbor interactions only. The Hamilto-
nian matrix elements were treated as parameters
and fitted to known energy bands. The ideal va-
cancy in the tight-binding method is then defined
by removing all the Hamiltonian matrix elements
between orbitals localized about the central atom
with all basis states describing the system; the
remaining atoms are assumed to have their posi-
tions unaltered (no lattice relaxation), the atomic-
like orbitals are retained on these atoms, and
their Hamiltonian matrix elements are assumed
unaltered. We shall refer to this procedure as
the orbital-removal method since the resulting
Hamiltonian matrix from which the eigenvalues
and eigenvectors of the vacancy state are derived
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is identical to the Hamiltonian matrix that would
be obtained if the orbitals on the central atom
were removed from the basis set and no other
changes were made in the Hamiltonian matrix.
This method has been extended by Bernholc and
Pantelides,® who showed using the same model of
an ideal vacancy that in an arbitrary localized
representation the gap states introduced by the
vacancy are given by the zeros of the determinant
of G9,. where G?is the perfect-crystal Green’s
function and a,a’ are the atomiclike orbitals on
the atom to be removed. Using symmetry con-
siderations they find that if s,p orbitals are em-
ployed, states of A, symmetry are given by the
zeros of GJ, and states of T, symmetry are given
by the zeros of Gj,. For Si, they find a bound
state of T, symmetry 0.27 eV above the valence-
band edge using the tight-binding parametrization
of the best energy bands obtained by Pandey and
Phillips.!® Earlier calculations of this quantity by
Callaway and Hughes® using the Koster-Slater
method in the Wannier representation yielded no
gap states unless the vacancy potential was made
stronger than the negative of the atomic potential
that was removed. Kauffer et al.,’* employing an
identical definition of the ideal vacancy as given
in Ref. 3 but using a different parametrization of
the energy bands, find a bound state 0.12 eV above
the valence-band edge.

Calculations of the Si vacancy states directly
employing the vacancy potential have also been
performed. Louie et al.,' employing a period-
ically spaced vacancy in a pseudopotential calcu-
lation which involved the self-consistently deter-
mined potential near the defect, find a bound state
at approximately 0.5 eV above the valence-band
edge. More recently, other calculations directly
employing the vacancy potential have been per-
formed by Bernholc, Lipari, and Pantelides'® and
by Baraff and Schluter,'” who find the unrelaxed
vacancy state 0.76 and 0.7 eV above the valence
band, respectively, When self-consistency is
included the eigenvalue is lowered by about
0.1 eV.'® In comparing the results of Refs.

3 and 16, Bernholc et al'® speculate that the
level obtained in the tight-binding method is

too low because the conduction bands are not
adequately represented by the tight-binding param-
eters. Support for this argument has been given
by Papaconstantopoulos and Economou,*® who used
20 adjustable parameters in an sp® basis which
include first-, second-, and third-neighbor inter-
actions to fit a band structure obtained from a
pseudopotential calculation. Performing the same
calculation given in Ref. 3 they find a bound state
of T, symmetry 0.75 eV above the top of the va-
lence band.

In applying the orbital-removal method, certain
questions naturally arise which have not previously
been systematically studied. One such question is
whether the calculated binding energy of a vacancy
state‘(or a surface state) depends on the choice of
localized basis states used to parametrize the
Hamiltonian matrix, i.e., we could employ s, p,
etc., atomiclike orbitals, or Wannier functions
or the true atomic orbitals. In each case the
matrix elements appearing in the Hamiltonian
will be different but can correspond to the same
energy-band eigenvalues. Recent work by Das
Sarma and Madhukar!® has shown that for three
different choices of tight-binding parameters such
that the fitting of the energy bands appears “equal-
ly good”, the A, vacancy energy levels for GaAs
calculated by this method are significantly differ-
ent, essentially covering the entire band gap, but
scaled with the ionicity of the material implied by
the particular set of tight-binding orbitals em-
ployed. Similar variations are found for the other
vacancy states as well. A second question in-
volves the convergence of the solutions for gap
states as the number of orbitals and hence the
number of bands is increased, i.e., can spurious
solutions exist for gap states in a finite-band ap-
proximation which will disappear (merge into the
bands) as the number of bands is increased.

Our analysis is based on the Green’s-function
technique developed by Bernholc and Pantelides.?
This technique is exactly equivalent to finding the
eigenvalues and eigenfunctions of the vacancy
states in the orbital-removal method as defined
above. Moreover, the Green’s-function method
provides a useful analytic technique for studying
the implications of the definition of the vacancy in
the tight-binding method. We wish to stress that
our analysis is therefore not a critique of the
Green’s-function method but rather of the tight-
binding method and is equally applicable to what-
ever technique is employed to solve the Schro-
dinger equation when the tight-binding definition
of the vacancy is employed.

In Sec. II we employ Wannier functions as our
basis set in the orbital-removal method for va-
cancy states. Since the orbital-removal method
does not require the calculations of the matrix
elements of the perturbing potential, the problems
encountered by Callaway and Hughes® are elimi-
nated and the perfect-crystal Green’s function is
easily evaluated.? We find no vacancy-gap states
in this model independent of the number of bands
included in the calculation.

In Sec. III we examine the solutions employing
the true atomic orbitals (which are not orthogonal
between different atoms) as a basis set. There
too we find that as the number of orbitals on the
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atomic species to be removed increases without
limit, there are no vacancy-gap states.

Section IV is devoted to the study of a two-band
model, and the matrix elements of the Green’s
function on the vacancy cell are explicitly given in
terms of matrix elements of the Hamiltonian and
the energy-band functions. When the Green’s
function is evaluated with Wannier functions chosen
as a basis, the eigenvalue equation reduces to that
given in Sec. II and there are no bound states in
the gap. However, if the basis functions are
changed to other localized functions so the Bloch
sums are the usual basis functions used in kK+p
perturbation theory, we find that spurious solu-
tions for gap states may be found.

Section V is devoted to explaining these sur-
prising results. It is argued that the orbital-re-
moval method cannot entirely represent the effect
of removing an atom from the crystal. As anil-
lustration we show that if we start with only two
atoms (the Green’s-function method is still valid
once some minor notational changes are made) the
orbital-removal method does not yield the correct
energy eigenvalues when one atom is removed,
i.e., the average value of the potential of the re-
moved atom still appears in the eigenenergy of the
remaining isolated atom. Furthermore, we show
that if we assume a continually larger set of orbi-
tals on each atom and remove the matrix elements
involving orbitals localized about the atom to be
removed, as required by the definition of the va-
cancy in the tight-binding method, the eigenvalues
of the resulting Hamiltonian matrix approach the
eigenvalues of the two-atom problem and not those
of the isolated atom. This result follows from the
fact that in the orbital-removal method the Hamil -
tonian matrix elements between orbitals not on the
removed atom are retained unchanged as if the re-
moved atom were still present. We generalize
our arguments to the multiatom case and conclude
that as the number of orbitals on each atom is al-
lowed to become continually larger, the eigen-
values obtained in the tight-binding (orbital-re-
moval) method for the vacancy approach those of
the unperturbed system. This conclusion is inde-
pendent of any Green’s-function analysis and is
applicable to all methods of solving the Schré-
dinger equation when the tight-binding definition
of the vacancy is employed, i.e., when the Hamil-
tonian matrix elements between orbitals not on the
removed atom are retained unchanged. In parti-
cular, it explains the results of Secs. II and III
when the Green’s-function technique was employed
as well as the results of Sec. IV, since the eigen-
values of the tight-binding Hamiltonian with or
without the vacancy can be different if a finite
basis set is employed. However, if the negative
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of the potential of the removed atom is treated as
the perturbation and the Koster-Slater equation is
solved, we recover the exact ground-state energy
for the isolated atom in the two-atom problem.

In Sec. VI we study the implications of these
results for surface state calculations in the layer-
orbital-removal method.* We show explicitly,
employing Wannier functions as the localized basis
set, that for one atom per unit cell this method
yields no gap states for both nearest- and also
next-nearest-neighbor interactions. In addition,
we show that in the limit of removing many layers,
no gap states exist. We are thus led to the con-
clusion that the orbital-removal method cannot
yield reliable and unambiguous results for the
electronic energy levels for vacancies or surfaces
and that the potential of the removed atom or
atoms must be included if accurate results are to
be obtained,®: 7,20

Finally, in Sec. VII, using a Green’s-function
technique we show how ideal vacancy states may
be calculated using the orbital-removal method if
the change in the potential, and consequently the
change in the tight binding matrix elements with
orbitals on other atoms, is incorporated.

II. ORBITAL-REMOVAL METHOD IN THE WANNIER
REPRESENTATION FOR VACANCY STATES

The bound-state energy eigenvalues for ideal
vacancy states in the band gaps of the perfect
crystal are given by the solutions of

detGY,.(E)=0, (1

where {¢,} denote the orthonormal set of orbitals
associated with the atom to be removed creating
the vacancy.® Here

(alnk)(nKkla')
G?ZG'ZZ E —Eoi ’ (z)
n,k n

where the matrix elements of the perfect-crystal
Green’s function G° are given in terms of the
Bloch states of the perfect crystal, |#K), and the
corresponding energy bands ES; and the {¢,} are
the set of orbitals which are localized about the
site of the atom to be removed.

A. Case of one atom per unit cell

Suppose the ¢, are Wannier functions, A (¥ - ﬁ,),
where

Ary =i 2 D), ®

SO
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1 - -
Aoy 19 =755 € 900m, @)
Then removing an atom at R; yields

- > A,,"
(G}J’) o =Z <An'f ‘nk)(ﬂkl j)
n,k

E-EY%
1 1
-_-7\]'6"1"'1 Zm (5)

Thus in this representation (Gj,),, is diagonal, so
1
0
detGy,(5)=I15 Z E° , ©

and the solutions of Eq. (1) are the solutions of
1 1
N Fm 5O @

for some ». But if E is in a band gap, for a given
n, E - E% always has the same sign for all k.
Therefore there are no solutions of Eq. (7) in the
band gaps. The discussion above is also valid for
removing an entire cell of a crystal with more
than one atom per unit cell and therefore leads to
the result that there are no gap states for the di-
vacancy of Si or Ge, etc., predicted by this calcu-
lation.

We observe, however, that in the Kronig-Penney
model, the removal of one “atom, ” i.e., one delta
function, can be treated exactly. It is well known
that in such a model one gap state is introduced
between every two successive bands* which is a
counter example to the result given by Eq. (7).

We also note that in the empirical tight-binding
method, it is not necessary to know the functional
forms of the Wannier functions. In this method the
matrix elements of the Hamiltonian between local-
ized atomiclike orbitals are adjusted to reproduce
the band structure obtained from other methods.

If the Wannier functions are taken as this set of
localized orbitals then the matrix elements of the
unperturbed Hamiltonian are given by (A".,.]H°|A"j)
=€, ;-510, ., Where

2 € (k)e‘ik Rj

Thus for any given band structure € (k) we can
make the eigenvalues of the empirical Hamiltonian
approximate € (K) as closely as we desire with the
resulting Bloch states satisfying Eq. (4) exactly,
from which Eq. (7) immediately follows.

B. Case of p atoms per unit cell

an

For p atoms in a unit cell of the crystal and S,
orbitals on atom ¢=1,...,p we have @ = Z) S,
bands. Correspondmg to each band there is a
Wannier function A, (f-1), n=1,2,...,Q.

We note that because the Bloch waves are deter-
mined only up to an overall phase factor ¢‘®» where
©, can be chosen to be a function of k, the Wannier
functions for a given band defined by Eq. (3) are
not unique.?* We can make use of this nonunique-
ness to shift the Wannier functions in space so
they are each centered about the separate atoms of
the cell, i.e., in the trivial case where we are
dealing with free electrons we could take ¥; =(T)
=elf ‘”'”’, where b.is arbitrary corresponding to
O(k)=k-b. Then the Wannier function in the ji=0
cell is centered at ¥=b. The precise choice of the
phase ©,(k) will also determine the form of the
decay of the Wannier functions.?* In the following
discussion we assume that the ©, (k) have been
appropriately chosen so each Wannier function in
each cell is centered about a particular atom. In
the spirit of the tight-binding approximation, that
atom could be chosen as the one having the orbital
which has the greatest overlap integral with the
Bloch functions belonging to a given band, i.e., has
the maximum value for 2 [(nk|®,) |2, where ¢, is
the atomic orbital. (For a solid having two iden-
tical atoms per unit cell, this procedure would
require modification.)

Denoting the Wannier functions related in this
way to the jth atom as A,;(F) we have for a vacan-
cy of atom j in the 1 =0 cell

Z(a § 1k Ynk | a’,j) @®)
Ciiaw= ; E - E%, .
o

But since

- 1 {k i

-7 Zr: A (F - ©
with

(A A =8,,.8,, (10)

we again have
1 1

where n’,n’’ are composite subscripts for a,j with
@ varying from 1 to S; and j denotes the atom re-
moved in the cell. Thus

detG°= H Z E°’ (12)

so there are no solutions in the energy band gaps
with this set of localized states.

We have thus shown that a set of localized states
exists which can be associated with the atoms in a
cell such that when used as a basis to construct
the Hamiltonian matrix, result in no band gap
states when the orbital-removal method is em-
ployed to calculate the energy spectrum of vacancy
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states.

It can, of course, be argued that such localized
states are not the true atomic orbitals that should
be removed but rather a combination of many or-
bitals not only from the atom to be removed, but
from other atoms as well. However, the same
argument can be made as well in the cases in
which this method has been employed. In such
cases the orthonormal set of atomiclike functions
that are removed are constructed, using Lowdin’s
method,® by taking linear combinations of the
atomic orbitals from different atoms in different
cells. This is necessary because the actual atom-
ic orbitals on two atoms will not in general be
orthogonal to each other. When this orthogonaliz-
ation process is completely carried out the result-
ing atomiclike orbitals include contributions from
essentially all atomic orbitals in the system. It
thus appears that if unambiguous results are to be
obtained, the orbitals that should be removed are
the true atomic orbitals related to the removed
atom rather than some set which has been obtained
by taking linear combinations of orbitals which
include contributions from other atoms.

III. ORBITAL-REMOVAL METHOD USING ATOMIC
ORBITALS

We consider the basis functions {d),,,} to be the
true atomic orbitals where j denotes the jth atom
in the crystal. Then since orbitals on the same
atomic site are eigenfunctions of the same atomic
Hamiltonian we can take

(Daj | Pari) =0aar (13)
but
<¢aj '¢a’j'> *O ’ j¢jl . (14)

Employing the same arguments as Bernholc and
Pantelides (see the Appendix) it can be shown that
in the orbital-removal method the energy levels
in the band gaps introduced by the ideal vacancy
are given by the solutions of

detG?, =0, (15)
where
Go=8"1G°s (16)

and S is the overlap matrix, i.e.,

Saj,a'j'=<%j l ¢a’j'> . (17)
1t follows from Eq. (13) that
5= [ ! 512] : (18)
821 822

It is convenient to take linear combinations of the
{®q;} to form a set {¢,} such that
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¢Z¥O = ¢ao
and (19)
<¢ao ' ¢)t,x'j’> =044 6]‘]”1

where j =0 denotes the atom to be removed. Thus
the orbitals on the atom to be removed are still
the atomic orbitals and in this representation S has
the form

0
S= [1 ] . (20)
0 S,
Then
§‘*=[’ 0 ] (21)
0 s3
and it follows from Eqs. (16) and (21) that
é?1=G(1]1 (22)

with matrix elements

E (alnk)(nkla/)

=GY = o E° ,

aa"

) (23)

n,k
where @, o’ are orthonormal atomic orbitals on
the j=0 atom. In a finite-band approximation
there will be 7 orbitals a=1,...,7. We can make
a unitary transformation to another set of » ortho-
normal functions A’ without changing the value of
the determinant, i.e.,

detG” =detUGUT =detUU" detG® = detG®. (24)

We choose the A/, as follows. Let A] be that
linear combination of the ¢ ,, which gives the max-
imum overlap with the Wannier function A, belong-
ing to the lowest energy band and centered in the
cell of the atom j=0. Similarly, let A} be that
linear combination of the ¢,, which is orthogonal
to A{ and gives the maximum overlap with the
Wannier function A, belonging to the next highest
energy band, etc. For any finite set of » atomic
orbitals these functions cannot, in general, be
made identical to the Wannier functions. However,
as 7 increases the fit can be made better until in
the limit as » -« A’~A for n <7 because the
{¢ 4of then span a complete orthonormal set for any
square integrable function since they are the eigen-
functions of an atomic Hamiltonian.

Thus in the limit of large 7

- - 1
(A,’,|nk)-—(Am|nk)=7ﬁ Oqns MSTV. (25)

For one atom per cell there are only » bands if
there are 7 orbitals taken as the basis on each
atom. For more than one atom per cell the num-
ber of bands equals 7 plus the number of orbitals
on the other atoms in a cell. We keep the number
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of these orbitals on other atoms in the unit cell
fixed and finite throughout the calculation. Then
the contribution from these higher-lying bands to
GY, is

GO0 (E) = E (a Ink)(nl§ la’) ‘ (26)

E-E};

However, as v -, E -~ for n>7 and since
there are a finite number of such bands and the
matrix elements appearing in G3%? are nonsingular
we have that for any finite energy E,

Go%)~0 as ¥y~ 27)

Substituting the results of Egs. (23)-(27) into Eq.
(15) yields a diagonal matrix with the resulting

eigenvalue equation
1 1
N T O (28)

which has no solution for £ in an energy gap.
Equation (28) results only in the limit ¥~ «. This
result also obtains if any complete set of basis
functions is employed and is not limited to the use
of the true atomic orbitals. In a finite-band model
solutions for E can exist in the energy gaps (as
shown in Sec. IV) depending on the choice of basis
functions, but Eq. (28) implies that these solutions
will disappear (the energy level will move into a
band) when a complete set of basis functions is
employed.

IV. VACANCY STATES IN A FINITE BAND MODEL

The sensitivity of the calculated energy eigenvalues to the choice of basis functions can be most easily
seen in a two-band model. If we take two orthonormal orbitals per unit cell ¢, and ¢,, the eigenvalue-
eigenvector equation for the energy bands and Bloch functions can be written

Zj:AuCi =EC,,
where
A”(E) =(X,- lHOIXj> ’

i=2 O (R, R),
t

and x; is the Bloch sum arising from the ¢, orbital.

Taking only two orbitals per unit cell results in Eq. (29) being a 2 X 2 matrix equation which can be
solved analytically for the energy bands and the Bloch functions. Employing these results we find

1 1 A,
Z (E- E )(E ES) N Z (E-ES)NE-ES

@c°lep=1| A, 1
"JV};:(E- B - E%) Z(E

If we take ¢, =4, , the Wannier function belonging
to the nth band for =1, 2, then

X =0 =750 5 10, F) (33)

and
A"":-'-'E?,‘i 5""1. (34)

Substituting Eqs. (33) and (34) into Eq. (32) yields

1 1
NZEE‘E?E 0

CALE LIRS ‘ ,
o Ly 1

(35)

which is just a special case of the result obtained

(29)
(30)
(31)
E-A, (2)
E k)(E E )
r
in Sec. II yielding no vacancy states in the gap.
However, if instead of Eq. (33) we take
Xag =g e ST (), n=1,2 (36)
corresponding to atomiclike orbitals
- =1 ~ET
¢7ll =¢"(r-—1)= NZ e ik 1X"E
k
1 £ @7
=W”no(§); giE- @D 37)

then, as with the case of Wannier functions, the
functions ¢, (f - 1) are localized? about the cell 1

and satisfy

<¢nzl¢n'r>=6nn'5u'- (38)

Then
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Am=€n+—§i—z, n=1, 2 (39)
where

Hou, =€, (40)
and

A"",=—ZE-§M,, n#n’ (41)
where

D= ot | B 2170 - (42)

Substituting Eqs. (38)~(41) into Eq. (32) we see
immediately that the off-diagonal terms in G° are
zero because A,, is odd in k and E; and E; are
both even and

E - ¢, - i*k?/2m
G =L (5 RN B = £0) 43
u ;(E-E;’i)w-ng)’ (43)
E - €, - i%k%/2m
Go = e SN Setbbd 44)
2 o EoEDE-EY)’ (
with
E:= ﬁzkz#(€1+€2);t[(el._ €,)?+41k - 51212]1/2‘ (45)
2 2m P)

If the two orbitals refer to two different atoms
in the unit cell, then the eigenvalues for states in
the gap are given by G}, =0 if atom 1 is removed
or G),=0 if atom 2 is removed. In either case
(E~E;)(E-E,;)<0 for E in the gap. Then for any
E in the gap E ~ (€, +#%k*/2m) = 0 because (E,),,,
=€, S0 G3,#0 for such E. However, the term
E - (€,+7%*/2m) can change sign for E in the gap,
so removing atom 1 (i.e., the one associated with
the conduction band) can lead to gap states. A
more careful analysis shows that for sufficiently
large P, the energy of this vacancy state can be
made as close to the top of the valence band as
desired, and as p,, is decreased the energy of this
state can be made to rise to the bottom of the con-
duction band. In addition, if the two orbitals refer
to the same atom (there is thus one atom per unit
cell) then the condition for a gap state is

detG°=0= G%,GY,

so the above analysis still obtains, i.e., depending
on the magnitude of p,, there can be a gap state
corresponding to G, =0. Thus the results depend
on the choice of localized orbitals describing the
atomiclike states to be removed, i.e., if Wannier
functions are employed there will be no gap states,
but with another similar, but not identical, choice
of a localized basis set we can obtain gap states in
a finite-band model even though the energy bands
in both cases are the same.
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V. DISCUSSION OF ASSUMPTIONS IN IDEAL
VACANCY CALCULATIONS

The results of Sec. II lead to the conclusion that
either there are no gap states introduced in a
crystal by an ideal vacancy, i.e., that some relax-
ation must be assumed if any gap states are to
exist, or there is some fundamental problem with
the orbital-removal method. We examine the lat-
ter possibility.

There are two fundamental assumptions from
which Eq. (1) directly follows. The first asserts
that when an atom is removed from a perfect
crystal all the other atoms retain their original
positions. This essentially defines the ideal va-
cancy and, although it may not be true in practice,
yields a well defined problem that can fruitfully be
used as a starting point for vacancy calculations.

The second assumption is the atomiclike orbitals
are retained on all other atoms and their interac-
tions are assumed unaltered. However, the matrix
elements of the full Hamiltonian between any two
orbitals (in the single-particle approximation) de-
pend in principle on the potential throughout the
solid and not merely on the contribution of these
two atoms to the crystal potential. Thus this as-
sumption is not equivalent to asserting that each
atom continues to make the same contribution to
the crystal potential as it did originally (except of
course for the vacancy atom) but rather is equiva-
lent to assuming that the crystal potential has not
changed at all anywhere in the solid. For exam-
ple, the second assumption requires that the ma-
trix elements of the potential between orbitals
from atoms adjacent to, but on opposite sides of,
the vacancy be unchanged. This clearly cannot be
true except when all interactions except those
from nearest neighbors are heglected. Even in the
case of nearest-neighbor interactions only, the
matrix elements of the potential between states on
a single atom adjacent to the vacancy will change
because these states will partially overlap the va-
cancy site.

This point is most simply illustrated by the fol-
lowing model calculation. We first observe that
the orbital-removal method is not restricted to a
crystal but can be applied to any multiatom system
provided that the Bloch states in the Green’s func-
tion are replaced by the complete set of quantum
states ¢, with energy E_, of the unperturbed sys-
tem. Here q denotes all the quantum numbers as-
sociated with a given state. Equation (1) then is
valid for states not degenerate with any E, with

G‘;a,=;<—°‘[—g>—_f%‘3"->. (46)

Consider two identical atoms separated by a
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finite distance. For simplicity we take one orbital
on each atom ¢, and ¢,, each of which is an eigen-
function of the Hamiltonian of the isolated atom
and assume they are orthonormal for the given
separation distance. It is then trivial to calculate
the Green’s function given by Eq. (46). The re-
sulting eigenvalue when atom 1 is removed is then
obtained from G{,(E)=0 which results in

E=c4(p,]V,|9) @n)

with wave function $=¢,, where € is the eigen-
value for the isolated atom and V, is the potential
due to the presence of atom 1. We thus see that
even though atom 1 has been removed, its contri-
bution through the potential, V,, remains and
leads to an incorrect energy eigenvalue for an
electron in the presence of the remaining atom 2.

An even simpler way of seeing that this must
happen is to first recognize that the eigenvalues
obtained from setting the determinant of the ap-
propriate block of the Green’s function equal to
zero are identical to the eigenvalues obtained
from the Hamiltonian matrix when all rows and
columns involving matrix elements with the re-
moved orbitals are set equal to zero, and E,
(which is allowed to approach infinity) is placed on
the diagonal of this part of the matrix. In our two-
atom, one orbital per atom model the initial
Hamiltonian matrix is only 2 X 2 and setting the
matrix elements involving ¢, equal to zero im-
mediately yields

E=Hy,=(¢,|H°|¢,) =(,|[(P2/2m + V,)+ V]| ,)
=€+<¢2|V1|¢2> (48)

as obtained from the Green’s-function calculation.
Moreover, it is clear that if we assume a contin~
ually larger set of orbitals on each atom and set
the matrix elements involving orbitals from atom
1 equal to zero, the resulting Hamiltonian matrix
is composed of matrix elements of the full Hamil-
tonian H®=P2/2m + V, + V, between all the states of
the isolated atom 2. Then since the atomic orbit-
als on isolated atom 2 span a complete set, as the
number of these orbitals increases without limit,
the eigenvalues of the Hamiltonian matrix approach
the eigenvalues of H°=P?/2m +V,+V,, of which
Eq. (48) is the first approximation, and not the
eigenvalues of H=P*/2m +V,.

This is also what happens in the case of the
ideal vacancy in an otherwise perfect crystal.
The orbital-removal method yields the same ei-
genvalues as obtained from setting to zero the ma
trix elements involving the orbitals from the atom
to be removed but not modifying the other matrix
elements. Thus the other elements of the Hamil-
tonian matrix involve matrix elements of the full

Hamiltonian including the potential of the atom that
was removed. Then, as the number of orbitals is
allowed to approach infinity and the set becomes
complete, the resulting eigenvalues become those
of the perfect crystal with no vacancy present.
This is the reason why in Sec. III we found no gap
states when we allowed the number of orbitals to
approach infinity and assumed completeness of the
set of orbitals.

Thus, although the orbital-removal method is
very appealing, it cannot be correct because it
does not actually change the potential from that of
the perfect crystal. At best it will result in spur-
ious results for a finite-band model as indicated by
Eq. (48) for the two-atom problem and these solu-
tions must ultimately converge to the band ener-
gies of the perfect crystal when the method is
made fully convergent. Since the cluster calcula-
tion® employing the orbital- removal method is an
approximation to treating the vacancy in an infinite
crystal, it too suffers from the same defect as
well as do other non-Green’s-function techniques
employing the tight-binding (orbital removal) def-
inition of the vacancy.?®

Nothing stated above, however, should be con-
strued as implying that the original Koster-Slater
method is incorrect. When this latter method is
employed in the case of a vacancy, orbitals are
not removed but rather the crystal Hamiltonian is
perturbed by adding a term that represents the
change in the potential due to the removal of the
atom.

In terms of the Green’s-function approach this
yields”

(I-G°v)y=0, (49)
where U is the pertubation potential, G° is the
Green’s function for the unperturbed Hamiltonian,
and Y is the wave function for the electron state.
If Eq. (49) is written in terms of its matrix ele-
ments with respect to a complete orthonormal
basis {¢,} then

z (Bgqr- GZBUBM)C =0, (50
al’, B
where
P= Z Cota (51)
and the energy eigenvalues are given by
det(/ - G°U)=0. (62)

In the two-atom model discussed above U= —- V,
for the removal of atom 1. We have exactly solved
Egs. (50) and (52) assuming only one atomic orbit-
al on each atom where each orbital is the true
atomic state in the absence of the other atom. We
find for the ground state

E=¢
and
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=0,

exactly. Thus, unlike the orbital-removal method,
the original Koster-Slater method yields the exact
result both for the energy and the wave function
when the perturbation created by the vacancy is
treated correctly.

V1. IMPLICATIONS FOR SURFACE-STATE
CALCULATIONS

The orbital-removal method has been extended
to the problem of surface-state calculations.* In
this case a whole plane of atoms is removed if
only nearest-neighbor interactions are included,
two planes if next-nearest-neighbor interactions
are included, etc. Since this method is equivalent
to creating a “planar vacancy” or a “multiplanar
vacancy” by the orbital-removal method without
taking into consideration any change in the matrix
elements of the Hamiltonian between orbitals on
atoms that are not removed, it must suffer from
the same difficulties as the orbital-removal meth-
od in the vacancy calculation.

We can show this directly by demonstrating that
as in the case of the vacancy calculation there are
no surface-state energy eigenvalues in the band
gaps when Wannier functions are employed as the
localized atomiclike orbitals. For simplicity we
consider the case of one atom per unit surface
cell. Then the energy eigenvalues for surface
states in the energy band gaps are given by the
solutions of*

detllG2.(E, P =0, (53)

where G}, is the Green’s function in the layer-or-
bital representation, i.e.,

GL(E, @) =(og [G°| 5™, (54)

where I is a composite subscript for the orbital «
on the atomic plane m, and [, I’ in Eq. (53) run only
over those layers to be removed creating the two-
noninteracting surfaces. Here the layer orbitals
¢g™ are defined by*

¢;~*""=711<r~" 2 e (-5, (55)

where B;" are the two-dimensional lattice vectors
connecting sites occupied by the atoms with orbi-
tal type & on the mth lattice plane and q is a vector
in the two-dimensional Brillouin zone defined by a
surface cell. Let

o (T~ p7) = A, (F - B7)

Then the layer orbitals can be written

1 o e e =
Asm: Nz ;e‘“ ”}"Aa(r- p;n)

IDEAL VACANCY... 4071
and
1 o -
75 JZ; e A (- b (56)
S0

vy VN,
<lan'A‘% m ) =72N_e im k;.aﬁna Gi,k,,
where we have used p7*=p,+ma and K, is the pro-
jection of k on the surface, and k, is the projection
of Kona. Then

(Ag'™ nR)(nk | AF™)
Z E-E;

etkla(m-m)
= , 57
z:E E-E,(@,k) Oar s 67

GO

which is diagonal in band index so Eq. (563) becomes
I1, detGo%=0 where G%% are the elements of G°
belonging to band «.

In the case where only one layer is to be re-
moved (i.e., nearest-neighbor interactions only)
m=m'=1 so G¥*is a 1X 1 matrix and the eigen-
value condition is

1
—— =0 58
;E"Ea@’kl) ’ (58)

which yields no gap solutions.

If we must remove two layers (i.e., next-near-
est-neighbor interactions), then G%%is a 2X 2
matrix, and the eigenvalue condition is

Z 1 E eik_La
~E-E (k) &' E-E,@k)

N, 2
detGo%e= (’1\?)

Z g itia E 1
klE'_Ea(q’kl) kL E_Ea(q!kl)
=0 (59)

2 2

1 -0,

ky E - Ea(q: k;)

Z eikla
T4 E-E,@,k)

ky

But for F in an energy band gap E - £, always has
the same sign for a given « so the first term is
always larger than the second. Thus for the case
of next-nearest-neighbor interactions there are no
gap states.

In general, if we have a Hamiltonian with n
nearest-neighbor interactions we can remove n
layers to decouple the two solids to create two
noninteracting ideal surfaces. Since G‘,’,(E,a) is
diagonal in band index in the Wannier representa-
tion, the ideal surface-state energy spectrum is
obtainable from the zeros of detG%%%=0 where,
for a given a, G%%¢has rank #n. For n>2 it is
difficult to proceed as above to show no solutions
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exist in the gap by direct evaluation of the deter-
minant.

Consider the case where we take an infinite
solid in all directions and take the limit

N a f
N; 2 dky -
L
Then

a : -t}
G = [ Faledetem

where
P E—
- —_——T T .
T E-Ey(q, k)

For interactions between n nearest neighbors we
can decouple the two solids to create two nonin-
teracting surfaces by removing any number of
layers greater than or equal ton. If we let the
number of layers removed become increasingly
large, i.e., m,m’=M> n, then G3%% looks the
same as the Hamiltonian matrix in the Wannier
representation of a one-dimensional problem with
energy-band function f (%), i.e., if f 4(%,) is the
energy-band function of some Hamiltonian %, then
in terms of the Wannier functions 4,,,

<‘Zio:m , h 'Aam’>=fad', m'-m?

where

a it am
Faiion=g [ Fualedemomdh, .

In the limit of large M, the matrix representation
of # in the Wannier representation can be diagon-
alized by a unitary transformation to a Bloch
representation

detGoa= det (% = IiI Goze,

where GJ%is the ith eigenvalue of G but since
G222 is the Hamiltonian matrix of # with eigen-
values f, (k,), we have

AO00L —
GO e 5,

E - Ea(cb kJ.) e

so detGY%e can never be equal to zero for E in the
gap.

Despite the results above for vacancy states and
surface states, the orbital-removal method may
be applicable to problems involving overlayers,
heterojunctions, and superlattices. This is due
to the fact that in these cases not only is a plane
or planes of atoms removed, but they are re-
placed by another set of atoms having interactions
with the other atoms in the crystal and thus the
potential is actually changed. The analysis of Sec.
V, however, suggests that if accurate quantitative

results are to be obtained, the matrix elements of
the Hamiltonian between states that are near the
removed layers must be adjusted to take account
of the change in potential due to the existence of
the interface.

VII. ATOM REMOVAL EMPLOYING ORBITAL-
REMOVAL TECHNIQUE

In Sec. V we showed that the reason why the or-
bital- removal method leads to no gap states when
a complete set of basis states is employed is be-
cause the matrix elements of the Hamiltonian be-
tween orbitals not on the removed atom have not
been modified to take into account the changes in
the potential resulting from the atom removal.

However, it is easy to see by comparing the
Hamiltonian matrix with and without the removed
atom that the perturbation representing the atom
removal (assuming no changes in the potential
from redistribution of charge on the other atoms)
can be written®

V- [EOI 0 ] ’ (60)
0 -V,

where [ has the rank of the number of orbitals on
the atom to be removed and ¥V, represents the ma-
trix elements of the potential of the atom to be re-
moved with all other orbitals in the system and
E,—~.

If V,is assumed to be appreciable for only some
finite set of orbitals then we can write

Vo
00
so the eigenvalue condition is

0=det|[- G°V| =det| -GS,V |, (61)

where G , denotes only the matrix elements of G°
with those orbitals which have nonzero matrix ele-
ments with V.

Equation (60) can be written

V=UU,, (62)
where
Ulz[l 0 ] . U,- [EOI 0]
0 -V, 0 1
and substituting Eq. (62) into Eq. (61) yields
0=det|I- G U,U,| =det|U;* - GS U, | . (63)
Writing

GO GO
G?M= [ 11 12] ,
Ga G
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where G, has the same rank as E,J and Gy, has

the same rank as V, and letting E,—~ we obtain
from Eq. (63)

Gh GV,

G I+GY,V,

det|U;' -GS U, | = =0 (64)

as the eigenvalue equation. It is trivial to show
that in the two-atom case the solution of Eq. (64)
gives the exact energy € for the isolated atom 2
when atom 1 is removed.

Equation (64) gives a partial explanation of the
results of Ref. 19 where it was found that the ener-
gy of the vacancy. gap states depended on the choice
of tight-binding parameters. Different choices of
such parameters are equivalent to different choices
of basis states which will affect the values of the
elements of the Green’s function as well as the
elements of V,. This will lead to different values
of the energy eigenvalues when Eq. (1) is employed,
but should lead to consistent results if Eq. (64)
is employed until convergence is reached, i.e.,
if the matrix V, is made progressively larger
until the eigenvalue calculated is no longer chang-
ing.

We note that as in the case of the orbital-re-
moval method, the atom-removal method as dis-
cussed here succeeds in removing from the prob-
lem the large matrix elements of the potential
associated with the orbitals on the atom to be re-
moved which are required in the usual Koster-
Slater treatment of the problem.® This in turn
leads to the result that the gap states’ energies
as calculated employing the atom removal should
not be as sensitive to the strength of the atomic
potential as in the Koster-Slater treatment. Never-
theless, although the matrix elements of V, are
much smaller than the on-site matrix elements of
the atomic potential, their inclusion can change the
calculated energy of the vacancy states of a semi-
conductor by a significant fraction of the band gap
even if the magnitudes of these matrix elements
are only tenths of an electron volt because these
contributions to the binding energy can add co-
herently. This can easily be seen by solving a
linear triatomic problem for the vacancy state
produced by the removal of the middle atom. If a
basis containing only one orbital per atom is
chosen the problem can be solved both exactly and
in the approximation that the off-diagonal ele-
ments of the potential of the removed atom be
neglected.

The calculation of the energy eigenvalue for the
vacancy state may be further simplified by noting
that in Sec. V we found for the two-atom case that
if the perturbation matrix ¥V, was neglected, the
derived unperturbed wave function was still exact.
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The exact energy could then be obtained by cal-
culating the expectation value of the perturbation,
-V, with the unperturbed wave function.

If one assumes that for a finite-band model the
wave function calculated by initially neglecting V
is a good approximation to the vacancy-state wave
function, then the approximate energy eigenvalue
can be calculated using first-order perturbation
theory. It has previously been shown® that if a
basis {¢, ;} is employed that ensures that the ma-
trix G3,;,. is diagonal (e.g., an sp® basis on each
atom foran Si vacancy) then

P(E)= 22 Ciy (65)
by
where A=(l,j) is a composite index and
-1/2
cﬁca’o(Ev)(Z | 02012\) (66)
A
and

C,=0, 1=0 for allj

with the value of j’ corresponding to A’ =0 in Eq.
(66) given by the orbital that makes Gj,,.(E,) =0.

The perturbed energy corresponding to including
the matrix elements of V_is then given in first-
order perturbation theory as

R 21 CATANTE S o
v=Ey T IIGO |2 3
Zl) 20

the primed sum indicating all orbitals with /=0 are
excluded. It should be noted, however, that
whether Eq. (64) or Eq. (67) is employed to cal-
culate the eigenenergy, the matrix elements of
V, are required and these are not given directly
from a tight-binding fit to the band structure since
such a fit is generally equivalent to parametrizing
the matrix elements of the full Hamiltonian and not
those of the atomic potentials separately.
Similarly, the inclusion of the matrix elements
of the potential of removed atomic planes may be
used in the surface-state calculation. This would
make the orbital-removal method equivalent to the
effect of removing the atoms.
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APPENDIX: GREEN’S-FUNCTION METHOD
WITH A NONORTHOGONAL BASIS

Let {¢,} be a complete set of functions with over-
lap matrix

saa’ =<¢a | ¢a’>

The Schrodinger equation for the energy and eigen-
function of a state in a band gap can be written

[1-cE)Y]=0, (A1)

where V is the perturbation potential on the un-
perturbed Hamiltonian H° and G°®=(E - H®)™.

Since the set {¢,} is complete we may expand ¢ in
terms of its elements:

‘P’"'E ca'¢a" (Az)
o
Substituting Eq. (A2) into Eq. (Al), multiplying
both sides of the resultant equation by ¢%*, and
integrating yields
E [ oo’ ™ (G V)aoz] a'=0 . (A3)
po

If the {¢,} were a complete orthonormal set, then
Z ‘a")(a”] =1
a” -
from which it immediately follows that
(Gov)cux’ 22 G?xa”Va"m' M
&
In general, for a nonorthonormal set {¢,},
1232 9,X65] (5),5. (a9)
s 7

Equation (A4) follows from noting that since {¢,}
is complete,

2 =;fal¢,,> .

Therefore,

<¢)B ‘f> =qusﬁa ’
o
and multiplying by S;; and summing over g gives
ZS <¢B!f> Zfot SBm':EfotaYa:fr'
o
Therefore

) —Zf,l¢> Zs EBICAGE

from which Eq. (A4) immediately follows.
Using Eq. (A4) we obtain

(GOV)aa' ZG B(S-l)ﬁr ro’ (A5)

and substituting (A5) into Eq. (A3) and multiplying
both sides of Eq. (A3) by (S™!),, and summing over
a yields

2 (5612

which has nontrivial solutions if and only if

2 SLGS: m,)ca,=o

a, B,y

det (6,0 =2 GO ouVyner|[=0, (A6)
Cos
where
Gaa = Gg)Syan - (A7)

8,7

We may now proceed in exactly the same manner
as given in Ref. 3, i.e., we write for a potential
having only a finite number of nonzero matrix
elements with the basis states {¢,},

Z=[V OJ,
00

and partition G° so that it is written

@o,_ [ G?l éll)z] .
Go G

It then follows that
det|| 7- G°V || =det|| 1- G, V]| . (A8)

Again using the arguments of Ref. 3, the eigen-
values of the Hamiltonian for which all matrix ele-
ments with orbitals in the atom to be removed are
set equal to zero are the same as those obtained
by V=E,I and letting E,~ «. We obtain from Egs.
(A6) and (A8)

det||G?, ]| =0. (A9)
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