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Hubbard model for disordered systems: Application to the specific heat
of the phosphorus-doped silicon
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A self-consistent many-body theory of disordered systems, described by the Hubbard Hamiltonian with random
transfer integrals, is developed. The random nature of the system is taken into account by the Matsubara-Toyozawa
theory of impurities in semiconductors. By considering the hydrogenlike impurity states, the electronic specific heat
of uncompensated phosphorus-doped silicon is calculated and compared with experimental results. It is found that it
agrees well with experiment in the entire semiconductor-to-dilute-metallic region.

I. INTRODUCTION

Recently, considerable attention has been given
to the study of doped'semiconductors because they
provide a good model system where both disorder
and electxon corxelations play a xole. ' Theremo-
dynamic and electxical properties of these systems
show that the degree of interplay of electxon cor-
relations and disoxder varies with the concentra-
tion of the impurities. However, the relative im-
portance of these effects is still not fully under-
stood.

At present, experimental results are reasonably
well undex'stood only for impurity concentrations
very much smaller or very much larger than the
cx'itical concentration N~ where a semiconductor-
to-metal (SM) transition occurs. For example, in
the concentration region very much smaller than

N~, quantitative interpretation is possible in terms
of electrons localized at the randomly distributed
donox' impurities ~ Hex'e electx'on cox'x'elRtioD plRys
the essential role. It is believed that it produces
an antiferromagnetic exchange to make the system
a prototype of an amorphous antiferromagnet.
However, no evidence of antiferromagnetic order-
ing has been found. 2 Qn the other hand, at con-
centrations much larger than N~, the properties
of the metallic sample can be understood in terms
of the rigid-band model, 'which assumes that the
electrons occupy R slightly modified conduction
band of the host. ~ However, in the case of both
amorphous antiferromagnetic and metallic sam-
ples, the above-mentioned models become unsat-
isfactory as the concentration approaches N~.

At intermediate concentrations, Mott' describes
the SM transition as follows. For concentrations
very much smallex' than N~, there are two sepa-
rated Hubbard bands': a lower band, consisting of
D' states (related to singly occupied impurities),
and an upper band, consisting of D states (doubly
occupied impurities). The energy gap between the

two bands corresponds to the intra-atomic Coulomb
interaction of two electrons at the same impurity
site, and the system behaves as a semiconductox'.
As the concentration increases, the Hubbard bands
are broadened and eventually start overlapping.
If the disorder due to random distribution of im-
purities is not sufficient to produce localized
states at the bottom of the uppex Hubbard band, an
SM transition takes place at the concentxation at
which the two bands just start overlapping. On
the other hand, for sufficiently strong disorder
which produces localized states in the bottom of
the uppex' Hubbard band up to a mobility edge F~,
the SM tx'ansition takes place when the Fermi en-
exgy enters the xegion of extended states above E~.
With further incxease of concentration, the Fermi
level enters the conduction band of the host and
the properties of the system can be described by
assuming that the electrons move in the slightly
modified host conduction band. According to this
picture one should expect a Friedrnan anomaly in
the Hall coefficient, p-type thermopower on the
semiconductor side of the transition, activation
energy and N~ sensitive to the compensation, and
very strong enhancement of the specific heat.
So far, the first three effects have not been ob-
served and the enhancement of specific heRt is
observed to be quite weak. To avoid these dif-
ficulties, Mott' suggested that the transition is
purely Anderson type' due to the localization of
electronic states caused by disorder at the Fermi
energy as N~ is approached from above. However,
Economou and Antoniou' found that random off-dia-
gonal disorder cannot produce localization in the
middle of the band and thus raised doubts about a
completely disorder-dominated transition. Thus,
at least for uncompensated samples, the electron
correlation and not the disorder plays a major
role near the SM transition; for any theory of
doped semiconductors to be valid in the whole
xange of concentration of impurities, both dis-
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order and electron correlation should be taken in-
to account.

%'e, in this paper, present such a, theory by con-
sidering that the disordered systems are described
by the Hubbard Hamiltonian' with random transfer
integral. In the past, ' this Hamiltonian has been
studied to calculate densities of states and the
critical concentration using Hubbard's approxi-
mation' which, as shown by Edwards and Hewson, s

suffers from the difficulty that no sharp Fermi
surface exists in the metallic region ef a transla-
tionally invariant system.

Fedro and Wilson' developed a self-consistent
many-body theory for the single-particle Green's
function. Here we use the generalization proposed
by Kishore'0 for the many-parbele Green's func-
tion to obtain the equation of motion for the single-
particle Green's function. Also, we use an ap-
proximation which, in the case of translationally
invariant systems, is equivalent to that of Ikeda
et a$."and is free from the defects of Hubbard's
approximation. ' The configuration average of
these equations is performed according to the
method of Matsubara and Toyozawa. " By con-
sidering the hydrogenlike impurities, we calculate
the specific heat of the uncompensated phosphorus-
doped silicon and compare it with the experimental
results of Sasaki and eo-workers'3 and Marko ef
aL.' and the theoretical eal.culations based on the
highly correlated electron-gas (HCEG) model' »

and the alternant-molecular-orbital method in the
Matsubara- Toyozawa scheme (AMO-MT).

In Sec. II, we describe the Hubbard Hamiltonian
for the disordered systems. After giving a brief
outline of the self-eonsistent many-body theory,
equations of motion of the single-particle Green's
functions are obtained and then Matsubara- Yoyo-
zawa theory is used to obtain the configurationally
averaged Green's function. In Sec. HI, the energy
of the system and, from that, the low-temperature
electronic specific heat is calculated. In see. IV,
we discuss our numerical results for the specific
heat of phosphorus-doped silicon and give conclud-
ing remarks.

II. GREEN'S-FUNCTION FORMUI. ATION

We consider a disordered system described by
the Hubbard Hamiltonian'

to site i and syin a. We shall apply the above Ham-
iltonian to an n-type doped semiconductor with
randomly distributed donor imyurities. In this
case, the summation over sites in (1) should be
considered as a summation over the impurity
sites. Also, we sha11 restrict ourselves to un-
compensated samples in which V,-, can be con-
sidered a constant independent of the site i." We
shall define the energy sca,le such that V« = 0. The
transfer integral V,, and intra-atomic interaction
U will be calculated from hydrogen 1s wave func-
tions.

The single-particle Green's function is calcula-
ted by using the self-consistent many-body theory
developed by pedro and Wilson' and Kishore. '0

A brief outline of the theory is given as follows.
An equation of motion for the Green's function'

for any two sets of Heisenberg operators A, and

B, , obeying the condition

is given as

where for the Hamiltonian P and any operator X,
the Liouville operator J. is defined as

LX=- [II,X]

and the angular brackets ( ) denote the grand can-
onical ensemble average Now, th. e operator a, (t).
is broken into two parts:

The projection operator P is chosen such that

(6)

By substituting identity (6) in Eq. (4) and using the
relation &IX, I.F]~) = -&[LX, F]„&, obtained from the
cyclic invariance of the trace implied in the en-
semble average, we get

0 = ~ V;~a)~a~ + ~ U ~n] n)
49~ ga

where at, and a, are the creation and the anni-
hilation operators of an electron of spin o at site
i, V„- is the random transfer integral associated
with sites i and j, U represents the intra. -atomic
Coulomb interaction (or correlation) energy, and

n, = a, a& is the number operator corresponding
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From the solution of the equation of motion of the
operator (1 -P}e(t)B,(t), it can be shown that'"

(1 -P)e(t}a,(t) = g dt e"&' "~'(1 -P)r,

&&([~ ] &G)~(t -&). (11)

The substitution of Eq. (11) in Eq. (9) gives a
closed equation for the Green's function,

-t,—,G„(t)= ([W„a,]„)6„6(t)+g n„a„(t)

( )
te(7 -)([IA„s"' ~'~(1 P)L,a-~] )

( )

Equation (12) can be easily solved by introducing
the Fourier transfoxm

6 cp

w
fy

We are interested in the Fourier transform
G,.&,(~) of the single-particle Green's function

G, t,(t) =ie(t)([a„,aJ,]), (22)

which is the sum of the Green's functions a', ~,(t)
and G, t,(t) Th. e Green's function G„,(&o) =G', t, (&o)

+G,~,(ap) can be calculated from the solution of
the equations of motion (16). In case of a trans-
lationally invariant system, (16) can be solved
by taking the Fourier transform in momentum
space. This case has been considered by Kishore
et al." In disordered systems, Eq. (16) should
be averaged for all the random configurations
before taking the Fourier transform in momentum
space. For configurational averaging, me shall
use the method of Matsubara and Toyozawa. "
Before applying their method of configurational
averaging, we shall assume that y',.„(~)=0.
Wlthln this approxxIQatlon ) by substltutlng

where F represents either G or y. We now take
the Fourier transform of (12) to find

~a, (~) = ([w„a,]„)6,+. g n, ,a„(~)

+ y], (dQ, ~OP

which is the starting point of our present stork.
By Choos&ng Ag = C) AS) f1~ %here fE] ~

=- 'Sg ~ and

n, , =- I -n, „8,-=at„andy = +, Eq. (15) be-
comes

~af~ya(~} = ~-060 + 2 tltloat 90(~}+ 2'Yfl (~)alta(~} i

(16)

where, for simplicity, n', -=(n,' g is assumed to
be independent of the site index in spite of the ran-
domness of the system. The functions G,'~, (~) and

y,'.&~((o) are the Fourier transforms of

G,',.(t) = te(t) ([a,.s,' ., a,.],) (17)

-te(t) {[I,a„n,' „e'"' ' (1-P',)L,at„],)
(18)

Q, g, =V), +2U(1+1)5)) (23)

obtained from Eq. (19) for the Hubbard Hamiito
nian (1) in Eq, (16), we get

((g s')Gf-), (~) =n' 6o = QV, )af),((g),

where c'=U and e =0. In the case of transla-
tionaiiy invariant systems Eq. (24) gives the
result of Ikeda et uE. ,

"which is exact in, both
atomic and band limits, and which for small U/&
(where 4 is the bandwidth) differs from Hartree-
Pock theory orily by an exponentially small
quantity. Also it has a sharp Fermi surface in
the metallic region (U/&g 1) and thus removes
the difficulties of the Hubbard approximation. "8
For U/&& 1, it gives two separated Hubbard bands
rvith local moment formation. The effects of
y, ~,(&u) have been considered by Kishore et al."
It was found that for U/n, & 1, yf&, (up) gives spin-
dependent shifting and narrowing of the bands.
These effects make the ferromagnetic state more
stable compared to the paramagnetic state. We
hope that for our paramagnetic system these
effects mill not alter the results very much.

Now we expand the Green's function G', &,(~) in
Eq. (24} in powers of I/(&o -&) by making use of
an iteration procedure and get

ZV i';

and the pro~ection opexators p'. are defined a,s The configurationally averaged Green's function
(G', &,(&g))„can be obtained by just taking the
configurational average of the right-hand side of
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FIG. 1. Electronic specific-heat coefficient y for Si:P as a function of the impurity concentx ation ¹ Curve 1 is the

present calculation. Curve 2 (Ref. 15) is the AMO-MT calculation. Curves 3 and 4 (Ref. 14) are the results from the
highly correlated electxon-gas model, The dots vrith error bars are the experimental data measured by Sasaki and
co-vrorkers (Ref. 13). N~ indicates the impurity critical concentration.
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FIG. 2. Electronic specific heat of Si:P in units of p J/K mole as a function of texnperature for various impurity

concentx'ation indicated by the numbers. Solid curves refer to the px'esent calculation. Open triangles, solid triangles,
and solid circles are the experimental data of O'. Sasaki and co-vrorkers (Ref. 13).
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(~»».(~))„=;.&(~ -&'), (26)

where

(26) over the random distribution of the transfer
integral. For this, we use the diagramatic sum-
mation method of Matsubara and Toyozawa" and
obtain the configurationally averaged diagonal
Green s functions (here, ( )„denotes configura-
tional average)

Equation (30) is obtained from the hydrogenlike
1s wave functions. Here, V, is equal to twice
the ionization energy of the 1s state and u ' the
radius of the 1s orbit. The Matsubara-Toyozawa
method" can also be applied to calculate the
configurational average of the off-diagonal ele-
ments of the Green's functions. However, for
our purpose, we shall require only the diagonal
element.

III. SPECIFIC HEAT

&0 ((d ) V'(k )dk
8»» (u2 l [Nf-((())/»()'j V(k )

'

N is the number of the impurity sites per unit
volume and

)(») f)'(H=)e"'"dR

is the Fourier transform of

(27)

(28)

(29)

The calculation of the specific heat requires
the energy of the system, which can be expressed
in terms of the single-particle Green's function
for the system described by the Hubbard Hamil-
tonian (l). The energy of the system is given as"

& = (H) = -—lim Q jl ((6d»»+ V»)»
1

277 g~ 0+ f gy «Qo

x frm[G» „((g+k )])f((o)d(o

(3l)

where f((L)) is the Fermi distribution function

V„=-V.(l +)cR(» -R, j)e «»"» "»» =V()fi» -R, ().
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FIG. 3. Electronic specific heat of Si:P in units of

J/K mole as a function of temperature for impurity
concentration 1.8 x10 cm . Dashed line refers to
the present calculation. Solid line refers to the inhomo-
geneity model by Marko et al. (Ref. 2). Solid circles
correspond to the experimental data by Marko et al.
(Ref. 2).
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FIG. 4. Electronic specific heat of Si:P as a function
of temperature for impurity concentration 2.4 x10
cm" . Dashed line is the present calculation. Solid line
is the inhomogeneity model and solid circles are ex-
perimental data from Marko et al. (Ref. 2).
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ez denotes the Fermi energy, and P =I/kT.
Equation (31}can be expressed solely in terms
of the diagonal Green's function by using Eq. (24),
which gives

OO

Z =-—lim Q ((u 2—e )[Im(Gf„((o+ic))„]f((o)&(u,
7l g~ p+ ply 4 oo

(35)

(cu c')-Im[G;„(au+is)7 =Q V,~lm[G~„(~+i&)7. (33)
where P = +. Equation (35) can be rewritten in

terms of the density of states defined as

By substituting Eq. (33) in Eq. (31), we get

z=-—(im QJ (2(a —a')(rm[(:;„(ra+(a)))f((a)da)
2X gay Q+ gy 40

&(~) = Q()'((a), (36)

Since we are dealing with a disordered system,
Eq. (34) must be averaged over all the random
configurations. The configurationa1 average of
(34) gives us

(34) D~(~) = ——lim Q Im (Gf„((o+ai)}„,
8~0+ 0

(37)

and D+(~) and D (&u) correspond to the density of
states of the upper and the lower Hubbard bands,
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FIG. 5. Density of states of impurity Hubbard bands for various values of the normalized impurity, concentration
P=32~Na 0. N is the true impurity concentration and g 0 (n ) is the Bohr radius of the impurity. The position of the

Fermi energy is indicated by dashed lines and the bottom of the host conduction band by a dotted line.
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respectively. From Egs. (36) and (3V), Eg. (35)
becomes

E = ] t.»(&o) —2UD (~)]f(sp)Cku.

Because of the Fermi distribution function f(u)
in (38), the energy of the system E is a temper-
ature-dependent quantity. At low temperatures,
we can express it in powers of temperature.
This is done by using the low-temperature ex-
pansion, for any arbitrary function E(&o),2O

where n=g~, n, is the total number of electrons
per impurity. In the next section we shall discuss
the results of numerical calculation of specific
heat of uncompensated phosphorus-doped silicon
using Eq. (42) together with Eqs. (43), (3V), (36),
and (26)-(30).

IV. RESULTS AND DISCUSSIONS

~ oo f' Cy

&(~)f(~)d~ =J~ F(~)d~
4 00

+~(vI &)'I F'(») F(»,)-DE . E D»
+ ~ ~ ~ (39)

Here, e~ is the Fermi energy at 1' =0, and

In Fig. I we have plotted our numerical result
for y, curve I, as a function of donor impurity
concentration N for uncompensated phosphorus-

2

E/+

F,( )
dF(~)

Q) g
(40)

, ( )
dD((gp)

de

By taking E(&g) =»(co) —2UD'(&g), Eg. (39) gives

l.»(~) - 'UD'(~)]&~-

+'(wkT)' D(» ) -'U D'(» )

(41)

which on differentiating with respect to T gives
the low-temperature specific heat

(42)

'Y-s&»~ -r»~ —
D( )

)--'U D( )- (") '(' )I
'

(43)

Thus, the calculation of the specific heat requires
the total and the upper Hubbard band densities
of states and their derivatives at the Fermi energy

a~, which can be calculated from the formula

FIG. 6. Top and bottom edges of the impurity Hubbard
band as a function of the impurity concentration P. Cj3
is the bottom of the conduction band at F/V 0= 0.5. UlVO
is the intra-atomic'correlation energy equal to 0.625.
The arrow indicates the concentration where the bands
start overlapping.



doped silicon. The experimental cx'ltlcRl con-
centration Nz, Rt 'which SM tx'Rnsltlon occux's, ls
also shown. The experimental results of Sasaki
and co-workers'~ are shown as dots with error
bars. We see very good agreement between our
calculation and experiment over the enti. re semi-
conductor-to-dilute-metallic region (Ng 5 && 10"
cm~). We have also shown the results of calcu-
lation based on the HCEG model of Berggren and
Bernelius" as curves 3 and 4 Rnd the AMO-MY
method of ChRo and Fex'x'elrR da SllvR Rs curve
2. Although the HCEG model, based on the
electron-hole dx oplet model" with immobile
impurity ions playing the role of the mobile holes,
gives good agx'cement with experiment in the
metRllic x'egioD N& +, lt fRlls completely in tI16
semiconductor region NgN, . On the othex hand,
the AMO-MT method, w'hich takes into agcount
the correlation effects ln Matsubax'a Toyozawa
theory, gives only rough agreement in the inter-
mediate region (N- N,). In Figs. 2-4 we have
plotted the specific heat C„as a function of tem-
perature for various concentrations of donor
i.mpurity along with the experimental results of
Basaki Rnd co-workers" and Marko et el.' and
calculations based on the inhomogeneous model. 2

It should be noted that our results agree fairly
mell with expei iment and are better than those of
inhomogeneous model. '

The shape of the density of stRtes RDd the
position of the Fermi level are shown in Fig. 5
for various conceDtrRtloQS of donox' lmpux'ltles.
In Fig. 6 the behavior of the top and the bottom
edges of the Hubbard bands is shown. These
figures show that the Hubbard bands start over-

lapping at a concentration much less than the
critical concentxation N, . This shows that the
electronic states near the bottom of the uppex
Hubbard band should be localized so that the SM
transition can occur w'hen the Fermi level crosses
the mobility edge separating tI16 x'egloDs of
localized and extended states. The localization
of the electronic states near the bottom of the
upper Hubbard band has been shown by Aoki and
Kamimura. ' Thus, our theory supports Mott's
descripti. on of SM transition in doped semicon-
ductors as described in Sec. I. It shouM be noted
that the density of states in both Hubbard bande
ls tRlled on the low'-energy side. It hRS been
show'Q by Aoki. and Kamimura' that the considera-
tion of resonance broadening (dynamical motion
of the electrons with spin), neglected by us, can
give tailing in both low- and high-energy sides
of the Hubbard bands. Recently, Ferreira da
Silva et c/. ' have shown that impurity-impurity
cox"x'61RtloDs cRQ Rlso pl'oduce this high-energy
tRillng.

In oux' theory we have Dot tRkeD into account
the presence of the host conduction band which,
we think, is necessary to get agreement vrith
experiment in the metallic region (N& 5 x 10
cm '). Nonorthogonality corrections, resulting
from the nonorthogonal nature of the j.s wave
functions, should also be incorporated in the
theory. At present, me are studying these effects.
To give further support to oux theory, we shaB
also calculate the conductivity and the suscepti-
bility. The present theory can be improved by
considering also r esonance-broadening corrections
and impurity-impurity correlation.
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