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Order in the orientations of bond angles in bulk smectic liquid crystals is investigated. A sim-

ple model which couples in-plane bond orientations to a tilt degree of freedom is solved in the
mean-field approximation. In addition to the usual smectic-A and smectic-C phases, there is an
untilted hexatic phase, with long-range order in the bond angles. Modifications of the mean-
field theory due to fluctuations are determined, with the aid of results from the e =4 —d expan-
sion. Induced sixfold bond-angle order in smectic-C liquid crystals vanishes rapidly near the

smectic-C to smectic-A transition temperature, as ~ T —T, ~

s, where ps = 3.59. A form for the
coupling of bond orientational order to density fluctuations is proposed.

I. INTRODUCTION

A recent theory of two-dimensional melting' sug-
gests the possibility of a new phase of matter, inter-
mediate between a solid and a liquid. Building on
ideas due to Kosterlitz and Thouless, ' it was found
that triangular lattices melt via a dislocation unbind-,

ing transition into a hexatic liquid-crystal phase, with

persistant order in the orientations of bond angles. A

second, disclination unbinding transition is required
to produce an isotropic liquid.

Birgeneau and Litster' have argued that the hexatic
phase might have analogs in bulk liquid crystals.
They proposed, in particular, that single-domain x-
ray-diffraction experiments on smectic-8 liquid crys-
tals could be interpreted in terms of long-range bond
orientational order in the smectic planes. In-plane
translational order would be short range, however.
These experiments show a hexagonal x-ray-diffrac-
tion pattern of six fuzzy spots in reciprocal space.
Unfortunately, more precise scattering measure-
ments' indicate that smectic-8 liquid crystals are, in

fact, simply three-dimensional crystals with a large
diffuse scattering. Nevertheless, a phase of the kind
proposed by Birgeneau and Litster remains a possibil-
ity in bulk liquid crystals. This hypothetical phase
would be intermediate between smectic-A and
smectic-8 liquid crystals, and will be referred to here
as the stacked-hexatic phase. The discovery of such
a bulk liquid-crystal phase would represent a power-
ful, although indirect, confirmation of the two-
dimensional melting theory proposed in Ref. 1. Hex-
atic orientational order is much harder to observe in

two dimensions, where fluctuations prevent a true
broken orientational symmetry. '

Recently, attention has focused on smectic-F liquid
crystals. '8 These have tilted nematogens, but are
more ordered than smectic-C liquid crystals. One
might guess that the smectic-F phase is a candidate

for a tilted version of the hexatic phase, intermediate
between an anisotropic solid (smectic G) and a smec-
tic C. Possible tilted liquid-crystal phases in a few,
isolated, smectic layers have recently been studied in
some detail. Although the emphasis was on coupled
tilt and orientation degrees of freedom in two dimen-
sions, it was observed that tilted smectics in bulk
would have induced long-range order in bond orien-
tations. Thus, there can be no fundamental distinc-
tion between smectics-C and a tilted hexatic phase.
There remains, however, the possibility of a first-
order transition between a smectic C with very weak
induced bond-angle order, and a phase with much
stronger bond orientational order.

Here, we study this and related questions by solv-
ing a simple model of coupled tilt and bond orienta-
tions, using mean-field theory corrected for fluctua-
tions. The bond-angle and tilt-orientation fields are
defined in Fig. 1. The model was introduced and
studied using different techniques for d.=2 in Ref. 9.
Fluctuations are much less important in bulk materi-
als than in two dimensions, and one expects mean-
field theory to be qualitatively correct. The mean-
field phase diagram is shown schematically in Fig. 2.
Different phases are shown, as a function of inverse
dimensionless stiffness constants K6 ' and K~ '.
Here, K6 measures the coupling between neighboring
bond orientations, while Ki characterizes the interac-
tion between nearby tilt angles. A factor 1/ks T has
been absorbed into the definitions of these quantities.
Experiments in which only temperature is varied
might trace a path from the lower left to the upper
right of the figure.

Both smectic-A and stacked-hexatic phase are
shown, together with a single tilted hexatic, or
smectic-C phase. Although bond orientational order
changes very rapidly in the vicinity of the dashed
line, there. is no sharp phase transition. In particular,
the model does not display a first-order transition

23 402 C'1981 The American Physical Society



23 BOND ORIENTATIONAL ORDER IN SMECTIC LIQUID CRYSTALS 403 .

-'I

K)

(a)

~ !J'
/

/

/
/

STACKED
HEXATIC

Y
I

I

SMECTIC-A
(ISOTROP I C )

FIG. 1. Degrees of freedom necessary to describe tilted
smectic liquid crystals with bond orientational order. If the
molecules are tilted by an angle y within each smectic plane,
then the relevant degree of freedom is the orientation angle
qh made by the projection of the molecule, as shown in. (a).
(b) shows dashed lines ("bond angles" ) joining the center
of a molecule to its six nearest neighbors within the smectic
plane. Each such line defines a bond-orientation angle 8
with some in-plane reference axis. Ordinarily, such a field
would have an internal sixfold symmetry. Microscopically,
one could imagine placing the bond-angle field at the mid-

points of the bonds. The field P( r ) is a coarsed-grained
average of e '~, where 8 is the microscopic quantity indicat-
ed in the figure.

separating two distinct tilted hexatic phases. All
three phases meet in a peculiar kind of multicritical
point, marking the terminus of three XY-like lines of
second-order phase transitions.

Table I reviews the in-plane bond orientational, tilt
orientational, and translational order proposed for a
variety of smectic phases. In this paper, we do not
address ourselves to crystallization of the in-plane
fluid phases shown in Fig. 2. The renormalized stiff-
ness E6 would be infinite in the smectic-8 and
smectic-6 crystalline phases.

Fluctuation corrections to mean-field theory can be
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I
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determined by an expansion in powers of ~ =4 —d. '

Making use of e-expansion results, we can find the
behavior of the bond- and tilt-angle order parameters
near phase boundaries, and the topology of the phase
diagram near the multicritical point in Fig. 2. Fluc-
tuations produce only singular curvature corrections
to the XY-like transition lines"; they behave qualita-
tively as shown in Fig. 2. Perhaps the most useful

FIG. 2. Phase diagram of a coupled system of bond- and
tilt-orientation angles in the mean-field approximation. The
stacked-hexatic phase has in-plane long-range orientational

, or "hexatic" order. The smectic-A phase is like an isotropic
liquid within each plane. The smectic-C, or tilted hexatic
phase, has long-range bond orientational order, and induced
sixfold order in'the bond orientations. The orientational or-
der parameter varies rapidly from a large value on the left to
a much smaller value on the right across the dashed line.
Three XY-like lines of critical points separate these phases,
and meet at the multicritical point P, The parameter z is the
coordination number in our lattice model.

TABLE I. In-plane bond orientational, tilt orientational, and translational order for various bulk
smectic phases. Many smectic-8 and smectic-G liquid crystals are now believed to be simply aniso-
tropic solids. This paper addresses itself only to transitions between the bottom three phases. (Un-
til recently, the smectic-G phase has often been called a smectic-H phase, ) LRO means long-range

.order; SRO, short-range order.

In-plane
bond orientations

In-plane
tilt orientations

In-plane
translations

Smectic 8
(Solid)
Smectic G
(Anisotropic solid)
Smectic A

Smectic C
Stacked hexactic

LRO

LRO

SRO
LRO
LRO

SRO

LRO

SRO
LRO
SRO

LRO

LRO

SRO
SRO
SRO'
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result concerns the rate at which induced bond orien-
tational order disappears near the smectic-3 to -C
transition. Sixfold bond orientational order is con-
veniently measured by the thermal average of'

xIr ( r ) e6i()( r )

In Sec. II, we define the model and present its
mean-field solution. The effect of fluctuations is dis-
cussed in Sec. III. The influence of bond orientation-
al order on density fluctuations is described in Sec. IV.

where the bond-angle field 8( r ) is defined in Fig.
1(b). Induced orientational order in the C phase
disappears quite rapidly near the C-to-A transition,

(1.2)

where we find P6 = 3.59.
As discussed in Ref. 3, one would expect bond

orientational order to show up in single-crystal x-ray-
diffraction patterns. These provide a measure of
fluctuations in the squared average of p-, , the
Fourier component of the density at the in-plane re-
ciprocal vector q. A simple model of the coupling
between the density and bond orientational order,
discussed in Sec. IV, predicts that, well below any
transition temperatures

II. PHASE DIAGRAM IN MEAN-FIELD THEORY

A. Order parameters and model Hamiltonian

In two dimensions the hexatic and tilted hexatic
phases are dominated by fluctuations. These fluctua-
tions give rise to power-law decay at large r of the an-
gular correlation function'

( r ) —(e6i 9( r )rr 6i()( p ) )-

%hen layers of hexatic or tilted hexatic are coupled,
as in bulk smectics, one expects that fluctuations will
be suppressed, except close to a phase transition. If
the hexatic phase survives in bulk form, then C6( r )
should exhibit genuine long-range order

lim C6( r ) = const & 0
f ~OO

(2.2)

1

A, +B,(cos[68( r ) —68;])
(1.3)

Here, 8- is the angle q makes with, say, the x axis,
and Aq and Bq depend only on the magnitude of q.
The average on the right-hahd side of Eq. (1.3) is
over different configurations of bond and tilt angles;
density fluctuations have been integrated out. %'e

expect that Aq always exceeds Bq, and has a
minimum at q = qp, corresponding to the maximum
in the powder average of S(q). Equation (1.3) im-
plies six maxima in S(q) for Iq I =qp. A more
speculative formula for the behavior of S(q) near a
phase transition (see Sec. IV) indicates that the
difference between S(qp, 8- ) at the maximum and

qp

minimum values of 8- vanishes like the bond orien-
qo

tational order parameter,

S( 8max) S(q 8min) (e6(e( r ))01 q 0& (1.4)

The limitations of the analysis presented here
should also be emphasized. %'e cannot, of course,
predict whether a given smectic liquid crystal will ac-
tually display the novel "stacked hexatic" phase. If
in-plane translation degrees of freedom were included
in the model, we would expect three-dimensional
(30) crystalline phases at low temperatures (large Ki
and K6). Possible crystalline phases were discussed
in Ref. 9. Crystalline in-plane translational order
locks the bond orientations, and the renorrnalized
stiffness K6 is formally infinite. It is possible that
30 crystallization, i.e. , a transformation directly from
a smectic-A to a solid, could preempt the stacked
hexatic phase entirely in many systems.

( r ) —
( ei $( r )e ir(r( 0 ))- (2.3)

Although fluctuations prevent long-range tilt-angle
order in fluid phases for d =2, in three dimensions
one can have

iim Ci( r ) =const' 0
I' ~ao

Ordered phases may be described by the order
parameters

(2.4)

(e6i()( r)) ~ e p

(eir6( r ) )
—(I) e ~P

(2.5a)

(2.Sb)

The quantities Qp, 8p, q)p, and Qp are real amplitudes
and phases characterizing the broken symmetries.

In this section, we solve a simple model of in-
teracting bond- and tilt-orientation angles in the
mean-field approximation, Possible phases corr-e-
spond to smectic-A liquid crystals, with pp = 40 = 0
(stacked-hexatic) liquid crystals, with (]rp W 0 and
@0=0, and smectic-C liquid crystals, with both $0
and Cp nonzero. As we shall demonstrate explicitly,
phases with C)p A 0 but ([rp=0 are not possible.

The hexatic to isotropic transition can be described
qualitatively by a classical XY model with spin angles
8; defined modulo 377,

1

SC6= J6 X cos[6(8, -8&)]
&;x)

(2.6)

There is also induced long-range order of this kind in
smectic phases with long-range order in the tilt angle
defined by Fig. 1(a). A convenient measure of order
in the tilt-orientation angles is
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where the summation goes over nearest-neighbor
pairs of, say, a cubic lattice. The angle 8; gives the
angle between a nearest-neighbor bond in the fluid
and some fixed axis. Similarly, the transition
-between smectic A and C can again be described by
an XY model

~, =J, Xcos(@, y,—) .
&N&

(2.7)

The Hamiltonians X6 and X ~ can be viewed as
'lattice-gas models of the bond- and tilt-angle degrees
of freedom within each smectic layer. Strictly speak-
ing, there should be different intralayer and interlayer
couplings between molecules. We describe these in-
teractions with isotropic couplings J6 and JI for sim-
plicity, since we do not expect spatial anisotropy to
change our results qualitatively.

The lattice of sites in Eq. (2.6) is merely a con-
venient way of imposing an ultraviolet cutoff. It has
absolutely no relation to the in-plane crystalline lat-
tice present in bulk smectic-8 and smectic-G liquid
crystals. This artificial lattice is decoupled from the
bond tilt orientational degrees of freedom studied
here.

In Ref. 9, it was argued that there should be six-
fold periodic coupling between the angles 8; and p;,

Our final model Hamiltonian is then

3C 6 +Xi +DC

= —J6 X cos(68; —68&)-J~ X cos(P& —Qi)
&v&

' '
& J&

—h Xcos(68; —6P;) (2.9)

B. Mean-field approximation

p =exp( —pX)/[Tr exp( —ps') ] (2.10)

where P = 1/ks T.
The mean-field approximation" assumes that p

factors,

p=tIp; .
l

where p; is a single-spin-density matrix for site i, and
should be independent of i for a translationally in-
variant system (p; = po).

The resulting free energy I'

F = TrpH +—Tr(p lnp)
1

(2.11)

(2.12)

The density matrix associated with the Hamiltonian
(2.9) is

sc;„,= —h Xcos(68; —6qh;) (2.8)
is to be minimized with respect to pp under the con-
dition that Trpp= l.

The free energy f per spin becomes

f—=—=—
l Joz [ [Tr(po cos68) ] + [Tr(po slfl68) ] ) —

&
J&z ( [Tr(po cosp) ] + [Tr(po sing) ]l ]

—h Tr[pocos6(8 —P)] (2.13)

where z is the number of nearest neighbors. Functionally minimizing f with respect to po(8, P) gives

po- e ~/Tr(e +) (2.14)

~here

sCo = —zJo[cos68(Trpo cos68) + sin68(Trpo sin68) ]—zJ, [cos@(Trpo cosy) + sing(Trpo sin&) 1.—h cos6(8 —4 )
(2.15)

But the traces in Eq. (2.15) can be evaluated using
Eq: (2.14), giving rise to four self-consistency equa-
tions for these avearges.

If we first set h —=0, the self-consistency equations
decouple into pairs of 2. Upon defining a vector or-
der parameter

(@ocos@o,@oslnfo) =- (Tr(po cosp), Tr(po sin@))

(2.16)

where J~ =J,z/ksT and 1„(—x) is a modified Bessel
function of order n. Expanding I] and Ip for small
arguments one finds the expected second-order phase
transition at J~ —= 2.

The self-'consistency equation (2.17) could have
been derived by minimization of the Gibbs free ener-
gy, where

6 I
1+2&

AT
J~@o ln exp(J~@ocosf) . (2.18)

the phase angle Po drops out, and the two self-
consistency equations reduce to one for 4p,

te2%'

J cos$ exp(J~@o cosP) 1,(J~+o)

exp(J 4 cos$) 1o(Ji@o)
Jp

(2.17)
1eep

Joe —= Tr pcoso86+iTrposin68 (2.19)

When the coupling h between $ and 8 is nonzero,

An identical situation holds for 8 with the appropriate
order parameter
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the invariance under simultaneous shifts of H and $ implies three self-consistency equations for 4p, Qp, and

Hp
—$o. These can be derived from minimization of G/ks T, where

G/ksT =
) Ji@o+

q Jodo —lnZ (2.20)

and
I 2m I 2e/6

Z =„dP„dHexp[Jjkpcos(@ $p)+ Jolgpcos6(H —Hp)+A cos6(H —$)] (2.2 I a)

and where

h = h/ksT (2.21b)

The formula for Z can be simplified to
142m

Z = —„dgexp(J(Cocos')lo([Jo go+ h +2hJ6gocos6[$ —(Qo —Ho)] }' ') (2.22)

It is easy to see that BG/BHp =0 if Hp
—Pp = , n vr, —

where n is an integer, while numerical integration of
Eq. (2.22) shows that (for h & 0) even n corresponds
to minima and odd n to maxima. Henceforth, we al-

low Hp $p t—o assume one of the minimum values.
Equation (2.22) can then be integrated for a number
of limiting cases:

1. J~ ~ oo, Jg remains finite

Using the method of steepest descents we find

Z= pe lo(Jodo+A)+0(e ' /Ji) (2.23)

Minimizing G, we obtain

A numerical solution of this equation shows a con-
ventional second-order phase transition. The phase
transition point J, can be found by expanding about
Co=0 in Eq. (2.26).

te2%'

d@ cos'$ exp(h cos6@)
J, '=

dgexp(h cos6$)Jo

(2.27)1

2

Contrary to case (I), we see that ordering in yp does
not induce ordering in 40.

respect to 40 is then
I+2%

dQ cos$ exp(J Cocos' + A cos6@)
+0= . (2.26)

dgexp(J~@pcosp+A cos6$)
~Jo

40=1

0 =1&(Jodo+ h )/lo(Jodo+ h )

(2.24a)

(2.24b) 4. J~ =2 and J6 —2

This is the mean-field equation for an XY model in

an external magnetic field h, so no phase transition
occurs for any J6.

This is a Ginzburg-Landau regime where both or-
der parameters are small or zero. Expanding Z in

both 40 and %0, we obtain for G,

2. J6~0, J~ remains finite

Expanding Eq. (2.22) in powers of J6@p/h and per-

forming the integrals one finds

1&(h) le(Jingo)

Ip(h) Ip(Ji@p)
(2.25)

J6 , Jg remains finite

This shows how ordering in 4p induces ordering in Pp

even for small J6.

G =TJo(1,Jo) ko~+TJi(1, Ji)@o~
1 1 p 1 1

+
o4 (Jo 4t+ Ji 4o4)+ n(J 4o+ Ji~@o)

li(h )
2'r 7

Jodo(Jid'o)'+ . (2.28)

where o. is a small positive number. Minimizing G,
we again see that Qp W 0 if 4p W 0 but not the other
way around, The bond-angle field undergoes a

second-order phase transition at J6=2. Bond orien-
tational order develops via a second-order phase tran-

sition at J ~
= 2 if J6 ( 2. There is merely a rapid

change in 40 near J~ =2 if J6 & 2.
%e can now give the complete phase diagram for

our model as a function of
In this limit, Z can be directly evaluated from Eq.

(2.22). The equation obtained by minimizing G with K, ' —= zJ), —=zJ6, (2.29)
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I &e &I

to the lattice spacing, but still microscopic:

y( r ) —(esist r ))

tp ( r ) -=(e'~' ' )

(3.1a)

(3.1b)

0.50 0.51
( K )-&

FIG. 3. Variation of the bond-angle order parameter
l (esis) l as a function of (zK&) ' = Js ' for various vaiues

of J~ '. The curve labeled I applies for J~
' larger than 0.5,

II for Ji =0.45, III for Ji =0.42, and IV J, ' =0.38. If
J ' is larger than 0.5 then there ~ill be always bond-angle
order for any value of (rK6) ', although this is undetect-
able on the scale of the figure. The coupling h =80.

for fixed h (see Fig. 2). The most important effect
of h is induced hexatic order in the presence of tilt
order. The "unlocked tilted hexatic" phase of Ref. 9
has disappeared. The variation of the bond-angle or-
der parameter for various values of J~ with h =80 is
shown as a function of J6 in Fig. 3. This phase di-
agram agrees with the various limiting cases dis-
cussed above, and was checked by numerical minimi-
zation of the Gibbs free energy (2.20).

One might consider adding to the Hamiltopian
(2.9) a more complicated coupling, of a kind con-
sidered in Ref. 9,

sc„=g X sin(68; —68&) sin(iti; —gj)
(&J)

(2.30)

In Ref. 9, it was found that this term could be gen-
erated by a renormalization-group transformation
even if initially absent. %e have studied the effect of
such a term for small g (g (QJt Js), and find that
the phase diagram in Fig. 2 is qualitatively unchanged.

III. CRITICAL BEHAVIOR

Fluctuations, which are neglected in the mean-field
approximation, become important near continuous
phase transitions. They can often be accounted for
rather accurately in three dimensions by an expansion
in powers of ~=4 —d. ' Here, we refine the mean-
field treatment of Sec. II in this way.

The starting point for our analysis is a coarse-
grained free-energy functional of tlt( r ) and dt( r ). '

These complex quantitites are spatial averages of the
microscopic order parameters e6' ' ' and e'&~+ de-
fined in Sec. II A, taken over regions large compared

The hydrodynamic "cells" which are averaged over
are centered at r. The free-energy functional ap-
propriate near the multicritical point labeled P in Fig.
2 is then

=)3d'r l ,
' fO—yf'+-,'r, ftlif'+u, ftlif'

B

+ —,
' lV'c l'+ —,

'
r, fc l'+ u,

foal'

+ —,'a[a'y" +(e')'pl+ w fyf'fc l'j .

(3.2)

The probability of a given configuration of t'ai( r ) and
-F/k~ T

dt(r ) is proportional to e s . A functional of this
form without the gradient terms is suggested by the
expansion (2.28) of the mean-field Gibbs free energy
near the multicritical point. Although there is no
coupling like the one proportional to tti in Eq. (3.2),
such a term could be present in more complicated
models. Other interactions which would be permitted
by symmetry in Eq. (3.2) turn out to be irrelevant, in
the sense used by Wilson. ' As we shall see, ~ and h
are formally "irrelevant variables" near P as well.

From Eq. (2.28), we expect that rs will vanish near
the locus of mean-field smectic-A —to—stacked-
hexatic transition temperatures. Far above the line
of smectic-A —to—smectic-C transition temperatures
(r t » 0), tp( r ) does not fluctuate strongly, and
may be integrated out of the problem in perturbation
theory. One is left with a free-energy functional of
tlat( r ) only, with slightly altered parameters rs and us,

l

d"r(
2
leal'+ 2rslyl +usfyl + )

(3.3)

The critical properties at the smectic-A to smectic-A'
transition are then just those of the three-dimen-
sional XY model. In particular the orientational order
parameter (tfi(r )) vanishes with the XY critical ex-
ponent" P =0.34,

(3.4)

as T~T, The mean-fiel. d value would be P= 2.
%here r~ is small, but r6 large and positive, we are

near the locus of smectic-A —to—smectic-C phase
transitions. This transition is well-known to be XY-
like, '4 so

(3.5)

as T, is approached from below. This conclusion can
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be checked by integrating the noncritical P( r ) field
out of Eq. (3.2), and observing that an effective free
energy of the form (3.2) in 4( r ) remains. Of some-
what more interest is the induced orientational order
present when &4( r )) is nonzero. As can be seen
from Eq. (3.2), a nonzero &4( r ) ) acts like an order-
ing field on P( r ).

The way in which I &p( r ) ) I vanishes near T, can
be determined by a simple scaling argument. Consid-
er the quantity &P(r )) for large positive r6, and T
just below T, . Fluctuations in P( r ) can be eliminat-
ed by minimizing Eq. (3.2) with respect to 4'( r ),
with the field 4( r ) held fixed. For small p(r), the
minimum occurs for

P( r ) — [@'(r ) l'
f6

(3.6)

and one has
I

&y(r)) ~ &[@'(r)1 )

The average in Eq. (3.7) is given by an effective
free-energy functional F~ of 4( r ) only,

I

AT 4
d" I (—' I&C I'+ —'ril@l'+uilC I'+

(3.7)

+ —'h, [C '+ (q ')'] ), (3.8)

8(S,/ksT)—
8(h6/ksT) h6-0

(3.10)

Under a renormalization-group transformation, we

expect that 5~ will transform as a function of
t = (T —T, )/T, and h6, like'0

st(t, h6) =e ~'S(e 't, e h )
Xl

(3.11)

where A. , is the reciprocal of the XY correlation length
exponent, h, , = I/v, and X6 is the renormalization-
group eigenvalue of h6. This eigenvalue has been
calculated by Wegner and Houghton' in an &=4 —d
expansion,

k6 =—2 —e+ —e2+ 0 (e3)87

50
(3.12)

The series appears to oscillate with large coefficients,
and a more accurate estimate is probably provided for
d =3 by a Fade approximant'

—2 —4.8e
1+1 74&

(3.13)

Thus we expect that A, 6 =—2.36 for e = 1. Making

with h6 set to zero. If the thermodynamic free ener-
gy S~ associated with Eq. (3.8)

exp( s t/ktt T ) =
J
—u 4 exp( —Ft/ks T), (3.9)

is known, one can determine &(4')6),

use of Eq. (3.10), we find from Eq. (3.11) that

1&y(r) ) I

—
I &(@')')

I

—lt I' .
where

P, = (d —)t, )v

= 3.59

(3.14)

(3.15)

(3.16)

1 1

g~ =1 ——d ——q+)E6 (3.18)

where q is the XY critical exponent and A.6 is given
Eq. (3.13). In three dimensions g =0.02 and
A, &

= —2.36, so h is in fact strongly irrelevant near the
decoupled fixed point as well! Our conclusion is that
the critical behavior near P, at least when approached
from the smectic-A phase, should be that of two
decoupled XY models'. As discussed by Fishman and
Aharony, " in a different context, one expects only
singular curvature corrections to the straight lines of
critical points terminating at P.

If bond- and tilt-orientation angles were truly
decoupled, one would expect four lines of critical
points coming from P, including one separating a tilt-
ed hexatic phase from a tilted phase without bond
orientational o'rder. We have seen, however, that
bond orientational order is always induced when &4)
is nonzero. This coupling washes out this extra criti-
cal line, even though it is formally irrelevant at P. In
this sense, h is a "dangerous irrelevant variable. "'
If h is sufficiently small, the behavior across the
dashed line near P in Fig. 2 could mimic many
features of a real phase transition,

We have used Eq. (3.13) and the value v =0.67 for
the XY critical exponent v. Mean-field theory gives
/36=3

According to Eq. (3.2), nonzero average &P(r) )
does not induce order in 4(r ). At the locus of
stacked-hexatic —to —smectic-C transitions, I &4( r )) I

rises from zero as in Eq. (3.5). The average

I &Q(r ) ) I is already finite on this line, however.
To determine the behavior near the special point P

in Fig. 2, we study the full free-energy Eq. (3.2).
When h = w = 0, the behavior at P is that of two
decoupled but critical XY models. The importance of
the couplings h and w can be determined by a trick
first used by Kadanoff and Wegner. " The idea is to
look at autocorrelations of the couplings which in-

terest us, in the ensemble where h = e =0. The
renormalization-group eigenvalue of h or w about the
decoupled fixed point can then easily be read off."
For example, the eigenvalue of w is easily seen to be

Z =n/v . (3.17)

Since the XY specific-heat exponent n is slightly neg-
ative in three dimensions, the cross coupling propor-
tional to w in Eq. (3.2) is irrelevant. The renormal-
ized coupling w (I) will decay slowly to zero under a
renormalization transformation. An analogous com-
putation gives the eigenvalue of h in d dimensions
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IV. COUPLING OF ORIENTATIONAL ORDER
TO DENSITY FLUCTUATIONS

Order in the tilt orientations of smectic-C liquid
crystals is readily observed, by looking for in-plane
anisotropies in quantities such as the dielectric tensor.
Because of its iritrinsic sixfold rotational symmetry,
bond orientational order is more difficult to observe.
As pointed out by Birgeneau and Litster, long-range
bond orientational order would in fact be detectable
as a sixfold pattern of spots in the in-plane mono-
domain x-ray structure factor,

s(q) = (Ip(q) I'& (4.1)

Here, p(q) is the Fourier component of the density
at wavevector g= (q, q~). In this section we propose
a simple model of the coupling of orientational order
to density fluctuations. The model is valid when
density fluctuations become decorrelated over dis-
tances much shorter than the scale on which Q(r)
varies appreciably. Kith this limitation, the model al-
lows us to translate results for (P( r )) contained in
Secs. II and III into observable predictions for S(q).

The model we propose is a modification of the
phenomenological Landau-Ginzburg expression for
F/ks T, given in Eq. (3.2). The modified free-energy
functional F~ which, includes density fluctuations is,

+ —,
'
) d'q IA, lp(q) I'+8, [z ', Io-+(zP'4o] Ip(q) I'l .

(4.2)

z~q = g~ + /qy (4.3)

Density fluctuations in the annulus are coupled to pp,
the q =0 Fourier component of p( r ). The coupling
term proportional to Bq is invariant under simultane-
ous sixfold rotations of the axis in Fourier space and

Qp, as it should be. One could probably couple densi-

ty fluctuations to a spatially varying bond orientation-
al order parameter f( r ) in a similar way, provided
the variations were on a scale much longer than Ao'.
The present model is certainly reasonable well below

any bond orientational phase transition.
The model (4.2) has virtue that, if we integrate

over density fluctuations, we recover a free energy of
the form already treated in Sec. III. Upon defining

exp( F/ks T)—ff J dp(q) exp( Fd/ksT)—
AO&q &Al

t

(4.4)

6i 80
we find, with Po =

I po I e

Only density fluctuations in an annulus of Fourier
space Ap & I q I & A~ have been considered. We take
this annulus to include the interesting region sur-
rounding the first maximum of the liquidlike in-plane
structure factor of the smectic-A phase. The quanti-
ties A~ and Bo in Eq. (4.2) are functions only of
q =-

I q I, while the direction dependence is contained
in

where 8- is the angle q makes with, say, the x axis.
The dependence on 80 drops out upon doing the in-
tegration over different directions of q. . The second
term of Eq. (4.5) can be expanded in powers of I/pl'
which simply renormalize the q =0 parts of various
terms in Eq. (3.2).

Integrating over density fluctuations in Eq. (4.1),
we can find an expression for S ( q ),

S(a)=(
A, +8, [z', yp+ (z', )'yp]

(4.6)

The primed average is now over an ensemble weight-
ed by exp( F/ks T). At very—low temperatures we
can approximate Eq. (4.6) by

S(q)=, , „.(47)
A, +8, [z'„(y)'+ (z ", )'(y) ]

S(q) =
&o(T)+Br(T)[z-p"( r ) +(z" )op( r )]

(4.8)

Assuming that Aq has a minimum in the range
Ap & q & A~ (corresponding to the maximum in the
structure factor when (Q) =0), so that IBol is rough-

ly constant and less than Aq in this range, we find the
pattern of six spots in S(q) one expects when orien-
tational order is present. Both Aq and Bq can vary
smoothly with temperature.

More generally, we expect a result for S ( q ) of the
form

+ X fn[~o+B,q'I%pl
AD& q & A)

&& cos(68o 68p) ]

(4.5)

provided fluctuations in p( r ) on scales less than Ap
'

have been filtered out. We can evaluate Eq. (4.8) for
simplicity in an ensemble specified by the lattice
model (2.9), with P(r) =eo'P' ' '. Expanding Eq.
(4.6) in a Fourier series near a phase transition, we
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obtain a result of the form

S(q) = X c„(q,T) cos(6n8-)(exp[6in8( r )]) . (4.9)
n 0

The behavior of the averages (exp[6in 8(r) ]) can be
determined by the methods of Sec. III, where the
case n = 1 is discussed explicitly. The coefficients
c„(q,T) should be finite at any critical temperatures,
but may exhibit ~T —T, ~

singularities as the
srnectic-A —to—stacked-hexatic transition temperature
is approached. Equation (4.9) leads immediately to
the prediction (1.4) discussed in the Introduction.

Note added in proof. After the completion of this
work, we received a paper by D. E. Moncton and R.
Pindak [Proceedings of the International Conference
on Ordering in Two Dimensions, Geneva, Wisconsin,

May 1980 (unpublished)]. These authors report ob-
servation of a smectic phase with a sixfold modula-
tion of the in-plane x-ray structure factor, but with a
finite in-plane translational correlation length. These
properties are consistent with those of the stacked
hexatic phase discussed here.
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