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Uniaxial strain-dependent shallow donor polarixabilities. II.
A. new many-valley theoretical formulation
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A new many-valley theoretical formulation of the strain-dependent shallow donor polarizability is developed which

should yield better agreement with experiment for the case when the ls-A, -ls-E, valley-orbit splitting 6d (0) is

much larger than the strain-induced splitting of the valleys. The ground-state wave function |tfo,(Pp), x the reduced

valley strain, is tiken as po,(f~) = y(x )p„, (f,a„(x)} + p(x )gs (f as (x )) where y (x ) and p(x ) are determined by the

valley-repopulation model. a„(x)and a~{x)are strain-dependent Bohr radii, which differ by 16%%ua for the P donor in

Si for x = 0 and this difference grows with x. Unlike the previous approach each valley wave function component

consists of two parts with different strain-dependent Bohr radii. PG,(f~) is employed, using the Hasse method, to
calculate the strain-dependent donor polarizability for P and Sb donors in Si. The results are compared to the

experimental data for P and Sb donors in Si. For the isocoric P donor the new calculated results are in better

agreement with the experimental results. However, one must still incorporate a strain-dependent valley-orbit

splitting parameter I (x) to fit the experimental data. The results of the force-fit 8 (x) case show a„(x) increasing

with x and the ground-state energy Eos{x)decreasing with x—both results are the opposite of those expected for the

case cl(x) =d(0}= constant. The donor piezohyperfme data of Wilson and Peher are reanalyzed utilizing

independently measured values of 6d (0) and the shear deformation potential =„.The results show that a„(x) must

slowly increase with x, which is in qualitative agreement with the a„(x) increase inferred from the polarizability

results.

I. INTRODUCTION

In the previous paper, ' hereaftex' designated I,
the uniaxial strain dependence of the shallow do-
nor polarizability no(z), calculated employing the
valley-repopulation models s (VHM) and different
strain-dependent Bohr radii for the stress-raised
and stress-lowered valleys, ~ is not in good agree-
ment with the expex'imental data obtained from
plezocapacitance measurements. ~ Although the
calculated . expression for a o(x) can be force-fit
to the data utilizing strain-dependent valley-val-
ley coupling matrix elements„ this approach is
arbitrary and leads to large coefficients of the
power series expansion of &(x) [n, (x) is the adja-
cent vaHey coupling]. Furthermore, the slope of
an(x)/ao(0) versus the reduced-valley strain x,
as x- 0, is only two-thirds of the experimental
value for the P donox" in Si despite the reasonable
expectation that the 7'HM, with strain-dependent
Bohr radii, would giv'e good agreement with the
data for verry small strains. We shall formulate
the theory differently, employing a bona fide
many-valley approach with strain-dependent Bohr
radii associated with the strain-coupled eigen-
states rather than with the strain-shifted conduc-
tion-band valleys. This approach is preferable
to the older approach given in I when the splitting
of the strain-coupled eigenstates (ls -A, and ls
—E,) is large compared to the strain-induced
splitting of the originally degenerate conduction-
band minima. This is certainl. y the case for the

substitutional donors P, As, Sb, and Bi in Si for
the reduced-valley stra. in I

gI' &1. On the other
hand, the interstitial Li donor in Si has very
small valley-valley coupling parameters' and
might be expected to behave as expected by the
conventional approach.

One of the difficulties confronted in comparing
the experimental results for eo(x) for the strain-
dp detgo d-t t d o
the calcul. ated expressions x esults from the many
effects, some of them interrelated, which occur
when a crystal is subjected to uniaxial stress (or
hydrostatic pressure). Even for the pure semi-
conductor there are small changes in the conduc-
tion-band-minima mass tensor and in the host
semiconductor dielectric constant" which slightly
alter the conduction-band Bloch functions. These
effects are proportional to the actual strain and
the fractional. changes (&m/m and de„/e„) are of
order of the strain or smaller. However, the
VHM effects and strain-induced changes in the
donox' envelope-function Bohr x'adll ale much
larger. In addition, as discussed qualitatively by
Fritzsche, ~ changes in the individual valley envel. -
ope-function Bohr radii result in changes in the
valley-valley coupling matrix elements. The
complexity of the central-cell correction potential
and the nonexponentlal decay of the donox' envelope
function associated with the 1s-A, state make lt
very difficult to reliably calculate the strai. n de-
pendence of valley-val. ley coupling matrix ele-
ments. In this work we consider more carefull. y
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how the Bohr radii and valley-valley coupling ma-
trix elements change with strain in a self-consis-
tent manner. The accumulation of a large body
of data on a vaxiety of uniaxial strain-dependent
effects9 i.n Si has led to a more x eliable determin-
ation of the sheax' deformatxon potential "„. Thj.s
in turn has permitted us to reanalyze the %'Hson-
Fehere donor piezohyperfine data and estimate
how the Bohr radius of the Is -A~ state changes
under uniaxial compression. This change is
shown to be qualitatively consistent with the
changes in the 3.8-A, state Bohr radius in-
ferred from the piezocapacitance data dis-
cussed in I and the new theory presented herein.
This agreement of the new theox'etieal approach
with different types of experimental data lends
support to the new approach and suggests we can
obtain quantitative information on the strain de-
pendence of the valley-valley coupling matrix ele-
ments

The approach developed below uses a many-val-
ley ground-state wave function as the starting
point for a variational calculation Rnd thereby
avoids the use of the single-valley parallel and
perpendicular polarizability tensor components
calculated by Dexter and utilized in I as the basis
for the theoretical expressions for eII(r). Al-
though some approximations will be made in the
calculation of matrix elements, this new approach
represents a partially self-consistent many-valley
calculation of the strain-dependent donor polariz-
ability.

The outline of the paper is as foHows. In the
next section the many-valley treatment of the
strain-dependent donor polarizabibty is developed.
An expxession for the donor piezohyperfine Fermi
contact interaction is also developed to compare
with the Wilson-Fehers xesults. In Sec. HI the
experimental results wHl be compared with the
new theoretical results. In Sec. IV we discuss
the major conclusions and summarize the status
of strain-dependent donor-polarizabilities. Sever-
al appendices give the details of the matrix ele-
ments required for the calculation and a more
general fox mulation of the valley-orbit matrix.

K MANY-VALLEY TREA'HAUNT OF STRAIN-
DKPENDENT DONOR POLAMZABILIES

A. Strain4ependent donor wave functions

Within the framework of the valley-1 epopulation
model, the strain-dependent donor wave function
for the eth eigenstate is generally written as

p =g C Ib+(r)8'*I'&, (r, ~), (1)

where C, (d is a strain-dependent amplitude coef-
f1ciellt f01' the fth conduction-band VRHey, ~8

is the Bloch function at the ith valley minimum,
and E .(r, I/) is the strain-dependent envelope
function associated with the zth valley. The redu-
ced-valley strain &, using the well known defor-
Ination potential approach, "is given by

XI00 =
8 (0) (S11—S11}O~~

~g
+»0 6~(0}(S» Slm)os

for the stress o, (o, positive for a tensil. e stress)
applied along the [100]and [110]axes, respective-
ly. "„is the shear deformation, 8» and 8~ ax'e

elastic coInplIRllce coIls'tRllts and 64(0) ls the
zero-strain energy splitting of the 1s -A~ and Is
-E, donor states. At zero strain the coefficients
C, (0) are given by C „,= (1/6)'/'(1, 1,1,1,1,1)
and C„=(1/12)'!'(-2,-2, 1,1,1,1) for the is
-A, and the 1s -E states. These states are
coupled by a [100]axis stress and lead to strain-
dependent ground-state coefficients C~;(r) for
the +train-dependent ground state of the form
C„,.( )=(C,, C;,C„,C„,C„,C,), w~ere C„( )
and C8(x') are given by EIls. (4a) and (4b) of 1
with x=x», replaced by -x'=-xI~. For a [110]
axIs stress~ Cos.,(x) takes the form (C&,C„,C&,
C&, C8, C8}, with C„{/f) and C8(r) given by EIls.
(4a) and (4b) of 1.

%e shall use the standard anisotropic envelope
function for a s-axis valley of the form

Q+ yS sR 1/2"

led&b

f p$81/'I ) I/1 2 1/2
8 Hx +y +&8 I

where k is proportional to a reciprocal Bohr ra-
dius and wiH have different strain-dependent val-
ues k„Q) and ksg) for the 18 -A, and is-E,
states of the strain-coupled pajr of 1s states.
The Iluantity s=n*/b~=f(m, /m, ) (8=3.0278 for
Si for m, /m, =4.8084) 'will be considered a con-
stant and independent of uniaxial strain along cu-
bic or [110]axes. The use of a single Bohr rad-
ius for the 1s -A, envelope function is not a par-
ticula. xly good approximation because of the strong
central-cell correction, but may be an adequate
Rpproximatlon for the ca,leulRtion of strain-depeQ-
dent donor polarizabilities.

Rather than write the strain-dependent ground-
state (GB) wRve fuIIctio11 111 EIl. (1) Rs R 811111ove1'
valleys, with each valley characterized by an
E,-(r, s) with a single strain-dependent Bohr radi-
us, we shall write Qo~(r, x) as
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g ,(r, x) = y(x)g„ (r, x) + P(x)ys (r,x), (4)

where g„, and Px, contain the zero-strain coeffic-
ients C„, and Cx given above (we now drop the ls
since we consider only the 1s manifold of donor
states) A. comparison of Eqs. (1) and (4) for the
same Bohr radii for each valley and for P„and
gs yields the result~a

I (f)g ( E (p, 8, S, )lg(X))

, tI(x)+ ~„~,(p, ..., k, (x)), (6)

where p = (x' +y')') ', and the strain-dependent re-
eiproca]Bohr rad.ii k„(x) and ks(x) are given by

and

am, &s )
)

@~,(~)-E (&))"'.
m~(s +2m, /m, ) a, k 8, ,

(Va)

.( )- .,(*))'"
m*(s'+2m/m, ) a, l E,

(Vb)

In Eqs. (Va) and (Vb), m* is the isotropic mass
which yields E, =31.2V meV (for Si) and a is
the isotropic Bohr radius a, =a~a„(m/m*). (For
Si, m* =0.299 and a, =20.184 for e„=11.40. )
The energies E (x), Es, (x), and Z„(x) are the
strain-dependent energies of the A, state, the E,
state, and the center of gravity of the six conduc-
tion-band valleys. For zero strain k„=1.03/a,
and ks =0.8V/a, —a 16% difference which shows
that the use of a single strain-dependent Bohr ra-
dius for this z vali. ey is not a good approximation.

r( ) = (-.')"'(2C + C, ), and P(x) = (-,) (C, - C, ) .

(5)
One observes that y(x) decreases from 1 as x in-
creases in magnitude while P(x) increases linearly
for a tension (C„' & Cs) and decreases linearly for
a compression (C„' & Cs) for the [100] axis-stress
case. For a [110]axis tension, P(x) decreases
(C„&C,).

The wave function g (r, x) in Eq. (4) is not the
same wave function as Eq. (1) when the A, and E,
states have different Bohr radii. In particular if
we view go (r, x) in Eq. (4) as a sum over the six
conduction-band minima we find that each valley
will have two components, rather than a single
component in Eq. (1), one with a Bohr radius for
the A, component and a different Bohr radius for
the Z, component. The +z-valley component of

in Eq. (4) will take the form

The results for the [100] strain axis show kx(x)
decreasing by 3-,'-/o at x»0 ——1, compared to a much
smaller 0.9/o decrease in k„,(x).

The two Bohr radii characterizing g„(x) and

gs (x) become more different for a [100] axis ten-
sion as the tension increases. Thus, it is not a
good approximation to replace the E,(p, z, k„(x))
and E,(p, z, k~(x)) in Eq. (6) by a single strain-
dependent E,(p, z, k, (x)) and combine the two terms
to obtain

[r(x)/Wl'"+ P(x)/(~'"& (p, z, k, (x))

=c„( )z. ,

where C„' is obtained from Eqs. (5). On the other
hand, if the valley-orbit splittings were negligible
(EJ. =E„)then Eqs. (1) and (4) would yield virtu-
ally identical wave functions at small strain. The
difference in the two approaches is that Eq. (4)
places the emphasis on the eigenvalue rather than
on the valley. When the two eigenvalues differ
substantially in energy the eigenfunctions, charac-
teristic of different sums over the val. leys, should
be characterized by different envelope functions
with different Bohr radii. The Bohr radii are no
longer associated with individual valleys. For
donors with sizable valley-valley couplings and
large chemical shifts Eq. (4) should be consider-
ably more accurate than Eq. (1).

The strain dependence of j P (r =O, x) I2 has
been measured by Wilson and Feher3 by measur-
ing the uniaxial. stress dependence of the donor
hyperfine interaction. The Fermi contact hyper-
fine interaction a„„(x)c(: t g s(r =0,x') ('. Since
P~ (r = 0, x') =0, Eqs. (3) and (4) yield

a„„(x) r(x')'
~ s„(0)I

'k', ~s . (8)

The y(x')' factor will be that given Wilson and
Feher' and is given by

(9)

Equation (9) gives the strain dependence of
a„„(x')/a„„(0)based on only the VRM, taking no

account of changes in the Bohr radius a~(x) with
strain. This was the procedure used by Wilson
and Feher, who obtained values of „/6c, leading
to -„values 14 to 25% larger than values obtained
from piezoresistance' ' and piezo-optical"
studies. However, Eq. (8), along with Eq. (Va)
shows that I Pa&(0, x') j

' also depends on the strain-
dependent Bohr radius a„(x'). We will show that

1
one can explain the%'ilson-Feher results for Si:P
with "„=8.6 eV (Ref. 15) and 6n, =12.95 (Ref. 16)
by including a strain-dependent a„,(x'). Only a
0.5% increase in a„(x' =1) is required to explain
the Wilson-Feher results for a„„(x')/a„„(0).
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B. Strain4ependent donor polarizabilities

The Hassb variational approach" is knox' to
give an exact result fox the polarizability of a
hydrogen atom. This approach has been employed
by Dexter" to calculate the magnetic-field depen-
dence of the single-vaH. ey polarizability tensor
components n~~{H) and n, (H} and also been used
by Castner" in calculating the donor polarizability
enhancement n ~(N}/n, (0) as N-N„where N, is
the critical concentration for the onset of metal-
lic behavior associated with the insulator-to-met-

I

al transition. For an electric field F applied
along the z axis the trial wave function of Hasse
is of the form

q, = g, (r, x}(l + bz + crz)

and the Hamiltonian is of the form H =H& —eFs.
Minimization of the energy 8, = ( $, IHI II, ) /
( P, I g, ) with respect to the variational paramet-
ers h and c leads to E „=EG,{x)-a.~(x}E'/2,
where the donor polarizability no(x) is given by
the expression

(A —~,Z„)(a —qZ ) —(C —~,E„)'

where A. , 8, C, and Eo, are aB strain-dependent
matrix elements of H& and A.„X~, and As are
strain-dependent parameters given by X, = ( zg~ I

zgoz ), A2= ( zgrol zrzg ~), and As= (zrg~l
zoo ) . The matrix elements A, &, C, and Eoz
are given, respectively, by (z(~IH&l zgoz ),
(zrgoeIH~I zrg~ ), ( zrg~I H~Izgoz ), and
( Pozl Hg) I poz ) ~ @Oz(x) ls the strain-dependent

donor ground-state energy and mill play an impor-
tant role in determining o.~(x} as can be seen from
Eq. (11). The donor Hamiltonian HD includes a
central-ceB correction (CCC) term UD(r) which is
strongly donor-dependent and makes an important
contribution to &~(x). However, the contribution
of Ug(r) to A, , 8, and C will be neglected. This
is an excellent approximation since the matrix
elements A, B, and C contain extra factors (com-
pared to &~}of r, r~, and r and therefore
strongly emphasize the large-z outer portions of
g~ and de-emphasize the CCC from Un(r). The
contribution to A from U~(r) is much less than 1%
of the contribution from HEM„.

In the present calculation the polarizability a D(x)
has been calculated in the limit as F 0, i.e. , for
an infinitesi. mal electric field, but for a, finite val-
ue of the strain. The trial wave function in Eg.
(10) apparently does not include a specific contri-
bution from an electric field-induced intervalley
admixture, such as an admixture of the 1s —T„
state. This omission is consistent vrith our ne-
glect of all intervalley contributions to the matrix
elements in Eq. (11) with the exception of those
contributions to E~(x). Thus, in the limit I Fl
=E,=E-O the valley coefficients C,(x,F)
=C,(x, E) and we believe the neglect of a specific
intervalley admixture in ii, represents an excel-
lent approximation.

Although it is possible to get an analytic expres-
sion for a D(x) the expression would be very long
and unwieldly. Since the calculations of n~(x)/
&~(0) were done numerically by computer, we

shall discuss here a typical, quantity A.,(x). The
remaining quantities X„g, A. , 8, and C are giv-
en in Appendix; A, but in fact all have the same
type of functional dependence illustrated by X,(x).
Using Eq. (4}, ),(x) takes the form

X,(x)= y'(x) (zg„, Ized~, ) +P'(x) (z(z Iz(z )

+2y(x)P(x) (zy„ lzyz ) .

For the [100]axis-stress case the three quantities
( zy~ I zg~ &, (zilz I zeal'z, ), and ( zeal~, l zII'z, )
are given by, if we neglect intervaBey couple. ng
terms,

) = —'((zE„IzE„)+ (zE„lzE„)

+(zElzE ))

(zq, Ized„) =-', (4(zE„lzE. )+ (zE„lzE )

+ (zF,'IzE,') )

(13b)

(zg&, lzpz, ) = ( —2(zE„lzE,') + (zE„I2E„')

+ (zE.lzE. ))

a&ere I', and E& differ because of the different
values of k~(x) and kz(x) for the two eigenvalues.
The quantities X",= (zE,lzE, ,) and X;= (zE„,I

zE„„)are the corresponding parallel and perpen-
dicular single-valley parameters. The form of
A.,(x) is finally given by



&,{x)= y'(x)f 3&",(k~) + -:&',(k~)j

+ p'(x)[-', X,"{k )+-,'~,{k,)]

+ y(x)p(x)[~",(k„,k, ) —~;(k,k )]. (14)

The cross term in Eq. (14) proportional to
y(x)p(x) plays an important role in the strain-de-
pendent behavior of &n(x}. It turns out that the
paraH61 quantities (such Rs 3l~) Rre I/8 times the
perpendicular quantities (such as h.,). As a re-
sult the cross terms containing y(x)P(x) will be a
negative quantity times y(x)P(x). P(x) is linear in
x and changes sign from tension to compression.
It is this term that accounts for the linear behav-
ior of nn(x) for smaH x. The quadratic behavior
of the donor a ~( )x/a f(0) results since g~ (r =
=O, x) =0 and the P{x)does not enter the expres-
sion for a, (x}. However the linear behavior
characteristic of o.n(x) is also characteristic of
the piezohyperf inc Fermi contact constants
~~{r„x)of Si ' nuclei at positions r, with respect
to the donor nucleus. In this case re (r„x)4 0
(except for those Sil' nuclei lying along the vari-
ous [111]axes) and the linear term proportional
to y(x)p(x) plays an important role in determining
the site-dependent magnitude of ([I/a ~{r„x=0)]
x6a ~{r,„x)/dxj.

If one were to use isotropic envelope functions
(8=1) the quantity [A~(k~, k@ ) —Ag{k~, kj )] van-
ishes and the cross term effect wonky' app»entiy
vanish. However, when one takes account of the
anisotropy and the fact that the x valleys move up
and the {y,x) valleys move lower for a [100]axis
tension, the coefficient of the y(x)P(x) term takes
the form [32&(k,) +)P~(k, ) —2)F~(k,)j„where k, and k,
are the inverse Bohr radii of the upper and lower
vaHeys. Calculation of X,(x}with Eq. (1}would

yield

X,{x)=2C„'[X",(k, ) + X',(k, )]+2C'A.,(k„) (15)

which is to be compared with Eq. (14). If one
converts this to h.,(x} in terms of the y(x) and P(x)
using Eqs. (5), it would look similar to Eq. (14).
The real difference is in the different Bohr radii.
(k&' and k~') which enter Eq. (14). Equation (15)
starts out with the same Bohr radii for all the val-
leys at zero strain and contains only one Bohr ra-
dius per valley, not taking into account the aniso-
tropy from m, and m . Finally we re-emphasize
that all the quantities A, 8, C, and L and A have
the same form as X,(x), aH having the same type
of cross term. It only remains to discuss the be-
havior of E~(x) and E..x .(x).

The energy in the effective-mass approximation
is discussed in Appendix A for the zero-stress

case. Clearly there will be no cross term y(x)P(x)
since {$8 IH~[ g~ }=0. Solution of the coupled-
valley equations (see Ref. 3) leads to results for
E~(x) and Ez (x) of the form

E~(x) = -ERM, —A —&[2+& --'x.00+ 4@(x...)j,
(16a)

E.„,(x) = E „-A-n.[+2+6--,'x„,--,'y(x„,)],
(16b)

where @(x, ) =(4+~x~«+x,«}', A is the single-
valley correction to EMA theory, & is the valley-
valley coupling matrix element between adjacent
valleys, while &(I +6) is the valley-vaHey coup-
ling matrix element between opposite valleys on
the saIQe cubic axis. These parameters are ac-
curately known20 for the shallow donors in Si and
Ge. Equations (16a) and (16b) can be written in
the form

Eu, (x) =-
Ep ~MO +q + $[ —2 ioo+ a 4 (xg«) - ~]j

(IVR)

and

ERMAI+c+ 5[ 2xzoo &&(xzoo)+29 ~

where Z = [A+ n. (5+6)]/E,„„,o = [A+~(-I+ 6)]/
EzM~y Rnd g =n'/Ezl~ In this for m one observes
that the strain dependence of both E~(x) and EzP)
both depend only on the parameter g (or &}. Both
square brackets []are zero at x»0 ——0 but the
square bracket in E~(x) is small and positive
while that in E,x (x) is larger in magnitude and
negative. It should also be noted that both E~(x)
and E.~, (x} are measured with respect to the cen-
ter of gravity E~ (x) =(S»+28»)(:"„+—', " )o of the
six conduction-band minima. Thus the reciprocal
Bohr radii k~ (x) and kx (x) are proportional to the
respective curly brackets in Eqs. (IVR) and {IVb).
With q and g constant, E~(x) becomes more nega-
tive with positive x~«(tension) and kz(x)
~ [-E~(x)/E»„]'I' increases corresponding to a
decrease in a~ (x) which is contrary to both the
polarizability data for o.~(x,«) and to the donor
hyperfine constant a,(x). However, as discussed
by Fritzsche, ~ the valley-valley coupling matrix
elements & and &(I +6) both depend on the stress-
dependent Bohr radii. These matrix elements de-
pend critically on the central-cell potential Un(s),
the envelope functions at small r, and how they
change with strain. It is doubtful one can do a
reliable calculation of &(x). Instead we shall as-
sume a power series of from &(x) =&(0)(1
+~&.~C,x~). The C, will be chosen to fit the polar-
izabiiity data &~(x,«}and a~(x», ) and will then be
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compared with each other for consistency and
compared with the donor hyperfine data. The
above analysis, only for the [100]axis stress, can
readily be extended to the [110)axis case. The
expressions for the quantities X1(x„o), etc. , are
discussed briefly in Appendix B.

III. STRAIN-DEPENDENT DONOR
POLARIZABIL1TY RESULTS

Using Eq. (11) the strain-dependent donor polar-
izabilities on(x) have been calculated numerically
versus the reduced valley strain x for [100] and

[110]axis cases. Figure 1 shows the calculated
results for an(x, «)/a~(0) for the isolated P donor
in Si for the [100] axis tensile-stress case. The
solid curve VRM-EMA is that for the valley-re-
population model with a constant Eos(x) = EE„„
= 31.2'7 meV. The slope is only about two-thirds
of the experimental slope (~ indicates the experi-
mental points) and the curve shows a flattening
at larger g, but exhibits no minimum out to g- 0.9.
On the other hand the [VMR]~«& curve [with Eos(x1«)
given by Eq. (16a) for b, (x) = h(0) = constant = 2.16
meV] shows almost the correct slope, but falls
well below the experimental curve at g,~- 0.5
and also shows no sign of the minimum shown by
the experimental data. By assuming all the valley-
valley coupling matrix elements have the same
reduced-valLey strain dependence as the adjacent
valley-valley matrix element

+(x1«) ( }( C1 x100 Cax100 C3x100

the data can be fit very well for C, = 0.01, C,
=-0.145, and C., =0.042(the calculated points are
given by the x points). Using the theoretical ap-

I.03—

1.02—

I.OI—
~(x)
t2 (p )

O. I 0.2 0.3 0.4 0.5 0.6 0,7 03 09 IQ I.I

Ipp I I I I I [ I I

0.99
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proach given in I and a strain-dependent b,(X,«)
the experimental data in Fig. 1 can be fit with

C~ =0.101, C2= —0.236, C, =0.068. These coeffi-
cients are considerably larger than those above
obtained using Eqs. (10) and (ll). The much larg-
er C, actually yields a different qualitative behav-
ior of Eos(x,«). In the treatment given in I, Eo,
(x,«) initially becomes greater in magnitude (neg-
ative), passes through a minimum in the vicinity
of x~~, and then increases (becoming smaller in

magnitude). Using the approach in this paper,
Ezz(x1«) is flat for small x„,and then slowly rises
[decreasing in magnitude (see Fig. 7)]. Thus, the
qualitative behavior of the two approaches differs
for gxoo gi~oo but is similar for g~oo~gi~oo

One might argue that force-fitting these two
different theoretical approaches to the data does
not give one a basis for reliably choosing between
the two theories. The fact that the C&'s are small-
er (C, is much smaller) in the new approach is
hardly a convincing argument for choosing be-
tween the tw'o approaches. However, the small-
ness of C, in the new approach is suggestive.
%bile a first-principles self-consistent calcula-
tion of b,(x,«) is beyond the scope of the present
work it is clear that 6(x1«) depends on a„(x1«)
and az (x1«) [a„(x,«) and a, (x1«) in the approach in

I] and that these quantities in turn depend on

6(x1«) through Eqs. (7} and (16). It is reasonable
to assume that b,(X1«) depends predominantly on
the core part of the envelope function and that
this part of the envelope'function is somewhat less
sensitive to strain than the outer part for vari- a„
(x„,). In fact our reanalysis of the Wilson-Feher
aha(x}/a„, (0) data definitely supports this view.
This being the case, then a small C, in 6(x1«}
would be more plausible.

For the [110]axis tensile-stress case one might
expect similar behavior with x,~ replaced by zyyp

[but note in C„and C~ given in Eqs. (4a) and (4b)
of I that x,«must be replaced by -x»0]. However,
this change in sign in the C„(x) and Ce(x) does give
a different power-series expansion for y(x», )
than for y(x,«} and the two cases are not expected
to be identical. However, it is worth checking
what sort of fit one obtains if one uses the c& above
for h(x, «) which gave an excellent fit for n~(x1«)/
on(0) for the [100] case. Figure 2 shows the [110]
axis data for o11(X»,)/n~(0) vs x„,[note the electric
field was along the g axis and the experiment de-
termined n+„(x»,)/n~(0)] Also show. n in Fig. 2
are the calculated curves for on(x M) /o~( 0} for
the two cases C, =C, =C, =. . .=0 [b, k1M) =a(0) = con-
stant], and secondly for C, =0.01, C, = —0.145, and

C3 = 0.042. The data is almost linear out to g —0.4
but shows a slight upward deviation from linearity
for larger values of gyro The calculated curve
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FIG. 2. uo(+&&0)/«&&(0) vs x&&&& for the isolated P donor
in Si. The [VHMt&~()~ curve is A{x&op) =6(0)=constant.
The plRM1&~„3 uses the d {x) for the t100) case given in
Pig. 1. A good fit to the data is obtained for A{x)
=6{0){1+0.04x —0.115x ).

for the [VRM]~&» case (C, =C,=C, = 0) shows a slope
at x»p=0 which is slightly too small and which
is nearly linear with a slight downward deviation
from linearity which is contrary to the data devia-
tion from linearity. The second calculated curve
for the [VRM]~&„& case (C, =0.01, C, = —0.145,
C, = 0.042) has a s/ope at x», which is -0.2355-
a trifle smaller than the experj. mental value of
—0.24+ 0.01. However, the upward deviation from
linearity is too large. An excellent fit to the [110]
axis data for ns(&&», )/&&&s(0} can be obtained with

C, =0.04, C, = —0.115, and C3=0. Although these
coefficients are slightly different than for the [100]
axis case the qualitative agreement is sufficiently
good that one can say that the general behavior
of n(~) is the same for both the [100] and [110]
axis cases. Namely, at very small values of g,
a(x) increases slightly, then goes through a max-
imum, and finally decreases in magnitude for
larger x values. It should be emphasized that the
two cases [VRM]~«& and [VRM]~&+ differ in their
prediction of the deviation of Eos(&&) from Eos(0)
with ~. The [VRM]~«& case leads to an increase
in the magnitude of Eos(&&) with && (Eoa becomes
more negative) while the [VRM)~» case leads to a
decrease 111 tile magnitude of EosPÃ) at lal ge x
values after a very small increase at the smallest
~ values The behavior .of &r»(&r)/n»(0) and Eos(x)
are inutually consistent. A decrease in Eosg)
should eventually lead to an increase in ao(&&}/es(0)
after the linear effect is overcome at larger g
values. The effect is transparent for the [100] case
with the minimum a dominant feature of the data.

Xeo
0 02 0.4 0.6 0.8 IQ l2 l.4

0,99

0.97

096
&O(X)

&o(03
095

FIG 3 GD{x(pp)&/'&+0) vs xgop for the isolsted Sb donor
in Si. The IVBM]&~p~ curve is for EGS (x) given by Eq.
{16a). The [VRM]&[„~ case (force-fit to the data) is for
A(x) =A(0)(1 -0.0635x -0.050x +0.004x3). Note that,
contxax3r to the P-donor case, the initia1 slope of the
data is less than that for the calculated )VBM]&~()~ case.

The [110]axis data is limited to a smaller range
of Qg3 p and shows no minimum, although a mini-
mum would be expected at much larger xgyp values.
For the [110]axis case the difference is more
subtle and essentially corresponds to whether the
deviation froQl, linearity ls upward or downward.
The [VRMJ~«& case gives a downward deviation
from linearity contrary to the data while the

[VRM]z&~ case with the above C„C„and C, gives
an upward deviation from linearity. Thus the
behavior for both [100] and [110]axes shows the
same quahtative change from the [VRM]~«& case.

Although less data was obtained for Si:Sb samp-
les, reliable data for one dilute Sb-doped sample
is shown in Fig. 3 and is compared with the theor-
etical results for the [VRM]~„, and force-fit
[VRM]z&,

&
cases. (Note that the VRM-EMA calcu-

lated case would be identical to that in Fig. 1.)
The [VRM]z&» case leads to (accidentally) a slope
at g, = 0 that- is nearly identical to the P-donor
case. The data, on the other hand show a slope
[1/ns(0)](has/s&&)„, = —0 07+ 0..01 which is only
about —,

' of the slope for the P donor. The force-
fit curve [VRM]~@& for the Sb-donor yields
C, =-o 0635, C,

'="-' 0 050, C, =o 004- Alth"gh
the qualitative behavior of a(x,«) for Sb is similar
to that for P in that A(&&,M) decreases with increas-
ing strain for sufficiently large +happ the difference
xn the uutial slopes requires a much larger C, of
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opposite sign for Sb as compared to that for P.
Also the C, for Sb is considerably smaller. These
differences in the C& for the two donors presum-
ably represent the different core electrons for
Sb and the larger size of the Sb impurity atom in
Si compared to the isocoric P impurity atom. One

expects the strain fields (in the absence of exter-
nally applied strain} to be of opposite sign since
the P atom has a slightly smaller bonding radius
than Si, and Sb has a somewhat larger bonding
radius. The [110]axis results for Sb,show twice
the initial slope as for the [100] axis case and lead
to C&'s which are qualitatively consistent with
those for the [100] case in predicting that 6(x»p)
decreases with x», and Eos(x»p) decreases in mag-
nitude just as for the P donor.

We now turn to a reanalysis of the donor piezo-
hyperfine data obtained by Wilson and Feher. '
Since

&s-h,f(x~«)" ltos(r =0,xmp)l'~y'(x, )(&„'ws)

one obtains as h, (X,«}o- y'(x, «} if the ground-state
Bohr radius is independent of x,«and y'(x»~) is
given by Eq. (9). From the data Wilson and Feher
inferred a value of 66/=„= 1.32x10 ' for the P
donor. With 6L=12.96 meV for P this leads to
=„=9.8 eV, a value approximately 15% larger
than the values obtained by transport and optic3l
studies. Employing the value =„=8.6 eV obtained
by Balslev" as a reliable value, this leads to
6b, /=„= 1.50Vx 10 ' and to an x»p scale 14% small-
er than that used by Wilson and Feher. In Fig. 4

the original Wilson-Feher data for gs „,(x, }/
as h f(0) for Si:P is shown versus x,«. However,
after correcting for the 14% smaller x,p, scale
the data would have appeared as the dashed line
based on the new g,~ scale if one had

D-h flump}/+D-hpf( ) y (x

only with no change in g„(x„,}. However, the
data can be explained by an increasing value of
a„(x„p) and the ratio of the dashed and solid curves
directly determines [a„(x,«}/a„(0)]'. The result
for a„(x,«)/a„(0} obtained from this analysis is
shown as the dashed line in Fig. 5. One notes
that only a small increase in a„(X,«) is required
to explain the drop from the dashed to the solid
curve. At x»,- 1.05 (based on the new scale, 1.2
on the Wilson-Feher scale) the two curves differ
by only 2.1$. One can show that a„(x)=a„(0)
x(1+0.0063x,'«) gives a relatively good fit to the
data using Eqs. (8) and (9).

In Fig. 5 the relative changes in Bohr radii a(x)/
g(0) are shown for the A, state and the E, state
versus x for x=x,«. The Bohr radius as(x) in-
creases much more rapidly than changes in a„(x),
and the increase is slightly smaller for the
[VRM]a«case than for the [VRM]a«& case. The
more interesting and important result is for the
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FIG. 4. +~ h f(xgpp)/aa-h f( )
P donor in Si after Wilson and Feher (Ref. 3). The Wil-
son-Feher x~pp scale was based on 66(0)/-„=1p32x10 3

while the new scale fez x~pp is based on 6A(0) =12.96
meV (Ref. 16), „=8.6 eV (Ref. 15), and 66(0)/=-„=1.50
x10 3. The dashed curve is for constant Bohr radius
case whereaL) h~f(x~pp)/az»f(0) =y (x~pp) and the new

scale for x~pp.

FIG. 5. The Bohr radii ratios a~(x)/az(0) and az(x)/
as(0) vs l x$ppl for the PTRMj&~p& and (VRMjz, ~ &

cases
for the isolated P donor in Si. The PTBMJ&~„~ curves
are based on b, (x) =4(0)(1+0.01x-0.145x2+0.042x3).
The dashed curve is the value of a&(x)/az(0) needed to
explain the Wilson-Feher donor piezohyperfine data
shown in Fig. 4 using the new x&pp scale.
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a~(x) Bohr radius. Here there is a small decrease
for the [VRM]«,

&
case, but significantly there is

an increase for the force-fit [VRM]n&„i case. It
is largely this increase in a„(x)/a~(0), in contrast
to the decrease for the [VRM]nt» case, that ac-
counts for the minimum and subsequent increase
in on(x, «)/otn(0) for x»c& x~«even though as(x) is
increasing more rapidly than a„(x). The increase
in a„(x) is the more important effect for the range
of x,«covered in the experiments (x,«& 1.2},
since at x»~-1 y'(x|«)- 0.95 and P'(xi«) =0.05,
although the cross term proportional to y(x}P(x)- 0.25 wiII play an important role also in deter-
mining tzn(x»c)/nn(0). The dashed line in Fig. 5
is the value of a„(x)/a„(0) required to fit the Wil-
son-Feher P-donor piezohyperfine data with the

x„,scale based on =„=8.6 eV. It is very encour-
aging that these two different types of experimen-
tal data both suggest that g„(x,«) increases with

x,~, even if the magnitude of the increase is some-
what less when inferred from the hyperfine data.
Qne should take into account the fact that the hy-
perfine data depend on the r = 0 value of the wave
function /os(r, x„,) while the polarizability shift
nn(x, «)/an(0) depends on matrix elements which
emphasize the outer portion of gus(r, x„,} in addi-
tion to depending on 8os(x,«}. Since the envelope
function for the j.g-A, , state should contain a linear
combination of exponentials with different Bohr
radii from small, values up to g„(x), it is not sur-
prising that two different experiments yield dif-
ferent magnitudes of a„(x»,)/a„(0).

In Fig. 6 we show the strain dependence of the
Sb-donor Bohr radii as(x) and a„(x) for the [100]
axis-strain case. Although the results are quali-
tatively similar to those for the P donor there
are some quantitative differences. Because of
the much larger C, for Sb the as(x) for the [VRM]«&
and [VRM]n „& cases exhibit a much larger differ
ence which starts at much smaller values of x,~.
It is clear from Fig. 5 that for the P donor, as(x)
varies more linearly with x,«while a„(x) varies
more nearly quadratically with x,oo. For Sb the
large g, term has a much larger effect on as(x)
and also causes the [a„(x)/a„(0)]z,«case to be
less quadratic (i.e., it contains a linear compo-
nent) than for P. The curvature of the Sb [a„(x)/
a~(0)]n«curve for larger values of x,« is oppo-
site to that for the P donor.

The ground-state energy variation Sos(x», ) for
the P donor is shown in Fig. I for the [VRM]n«&
case (same as Wilson-Feher result —see their
Fig. 1) and the [VRM]n«case. The energy ~Q,«)
clearly decreases in magnitude (becomes less
negative) for x,«& 0.2, although there is a very
slight increase at values of x»o (x,«( 0.07). As
already stated, the decrease in Sos(x»o} is quali-
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FlG. 6. The Bohr radii ratios az(x) J&z(0) andaz(x)/
u&(0) vs x~pp for the [VHM]g(p) and fVHM]p(„) cases for
the isolated Sb donor in Si. The (VBM]z~„& curves are
based on d (x) =6(0){1—0.0635m -0.050x +0.004@3).
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FIG. 7. The ground-state energy ratio EG& (}/&E~z
vs x~pp for the isolated I' donor in Si for the IVHM] p(p)
case and the [VRM]&(„) case. The latter case is for
h, (x) =6(0)/+0.01' —0.145m +0.042' ).

tatively consistent with the increase in a„(x,«)
and in ne(x, «)/ab(0) for x», &x,«. From the view-
point of second-order perturbation theory it might
seem surprising that the admixture of the js-E',,
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excited state by strain could raise (make less
negative) the energy &oQ,~) rather than lower it
as expected. The reason is that the first-order
correction to Eo~(el~) [II in Eq. {1'la)] becomes
smaller in magnitude with increasing g,~ since
we have assumed all the valley-vaQey coupling
matrix elements have the same strain dependence
Rs ~{z)[1.8., II{z}~~(z)]. The behavior of E,gz,~)
for the sb-donor case is qualitatively similar to
that in Fig. V but with quantitative differences
like those between Figs. 5 and 6.

The calculation of the uniaxial strain-dependent
donor polarizabibty nn{x) using Eq. (4) and the
Hasse approach [yielding Eq. (11)]has only pro-
duced good agreement with the experimental data
after force-fitting the valley-valley coupling matrix
element L(x). This approach has also led to good
quab~tative agreement of the strain dependence
of the IS-A, state Bohr radius a~(x) inferred from
Ixg)(zloo} Rlld the dollol' plezohyperfine 1'eslllts fol'

)gn(r =0,x) ['. However, it is not easy to establish
independently the reliability of the Hasse approach,
which in our particular case (1) neglects the cen-
tral-cell potential contribution to the matrix ele-
ments', B, and C in Eq. (11), and (2) neglects
the intervalley coupling terms in ~» A,» A.» A. , B,
and C [but not in Eo~(z)]. For the single Bohr rad-
ius envelope functions used, the neglect of the cen-
tral-cell correction contribution to & is an excell-
ent approximation. The correction i.s less than
0.5% for A and is much smaller for B and C. The
neglect of the intervalley terms [except for Eozg}]
is harder to estimate and depends critically on
the nature of the envelope functions. Again we
believe the intervalley contributions to ~, and A.

are less than I'f~ and are even smaQer for A2, A„
B, and C. The major effect of IT~(r} and the inter-
valley contributions is on Zo~{z) and these effects
on Sos(Z) have been explicitly included in a phen-
omenological manner in Eq. (16a). A comparison,
however, can be made with other. calculations
for the zero-stra, in case and for the zero-strain
EMA case.

For the EMA case with no intervaH. ey coupling,
Dexter has calculated I1E~=g (cll+ 2tx1) = 4.328
x 10' A'. This result is just 2~ larger than the
value ~2&I, a3 = 4.216x 105 A3 based on the isotropic
Bohr xadius g, = 20.18 A. For the EMA case Eq.
(11) yields a value of +EM„about 1% larger than
the isotropic value and in close agreement with
Dexter's result. Since Eq. (11}yields a many-
valley result, with the approximations mentioned
above, it might be considered a moxe reliable
result for the donor many-valley wave function

in Si. For the P donor with Un(r) included [ES
= I 45.6EEMl,~Sos(0) =En], Eq. (11) yields cx~(z= 0)
= 1.V4x 10' A', a value about 45% larger than the
P-donor experimental value for a~{an =1.2x10' A')
given in I and by Capizzi et g/. " Lipari and Dex-
ter, ,

' employing a single-valley approach with an
envelope function consisting of a sum of exponen-
tials with Bohr radii extending from the order of
s~(0) down to the size of the central cell, have
calculated a value for the P donor of' ~~ =1.2x10'
A' which is in excellent agreement with the experi-
mental values. Although the Lipari and Dexter
g(r, x = 0) is significantly too large at r = 0, it
nevertheless must be substantially correct at
the larger values of I -g„(0) in order to produce
the correct value of the polarizability which em-
phasizes the outer portion of pos(r, x). For an
envelope function of the form F(r) =QC,(IIa,') '~'

xg ~'&, a coefficient of Qo- 0.83 for the exponential
with Bohr radius a„(0}[a„(0)o- I/k„(0) as given by Eq.
(Va,}]will explain the value of ~n(0) for P if the
snlRllel' Bolll' 1'Rdll conlponellts 111E(y)make 'R

negligible contribution ns(0). It seems clear then
that /os(r, x = 0) in Eq. (4) will give too large a
value of an(0) because it uses a single Bohr radius
envelope function. A calculation of the donor pol-
arizabilities for shaGow donors in Si and Qe by
Palaniyandi2' using both spherical and spheroidal
band approximations and one- and two-parameter
trial wave functions obtains very similar results
for nn(0} to those obtained here. This calculation
also uses only a single Bohr radius envelope func-
tion. Palaniyandi obtains, for the spheroidal band
case, with a two-parameter trial function analo-
gous to ours, crn(0) =1.V4X10'A'for Si:P and
an (0}= 2.01X 10' A' for Si:Sb—both in excellent
agreement with our results for an(0}. This strong-
ly suggests that it is essential to use an envelope
function containing a. sum of exponentials, as done
by Lipari and Dexter, .

a to obtain good quantitative
results for nn(0).

The question of the strain dependence af c.n{z)/
~n(0) is another question. It is our judgement that
the calculated ratio o~g}/cn(0) using Eq. (4), Eq.
{11),and single Bohr radius envelope function
gives a considerably more accurate result than
the absolute value as{ad). If one were to employ
an isotxopic envelope function with various expo-
nentials of weight C;, one would also in principle
have to consider the C,- as strain dependent imply-
ing that the relative shape of F(y, z) could change
with uniaxlaJ. strain. A simplifying assumption
would be to assume only strain-dependent Bohr
radius aI {d, but constant C, . For the case that
nD(x) results mostly from the outermost exponen-
tial with Bohr radius a„(g}, then the C,. would can-
cel out in both numerator and denominator of ns{z)/
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a~(0), leading to a result essentially in agreement
with our calculation. For the calculation of a,

property such as n~(x}/c~(0} which emphasizes
the strain dependence of the outer or large-y
portion of Pcs(r, x), the present approach should
be reasonable.

An earlier study of the Si" piezohyperfine Fermi
conta, ct consta. nts by Hale and Ca,stner" for Si'
nuclei at positions r, with respect to the donor
nucleus at r = 0 has yielded extensive information
on i(os(r»x) l'. This very detailed information
on goz(r„x) at many different lattice sites gives
much more information on the strain dependence
of poz(r, x) than c~(x)/cD(0}. The original consid-
eration of the changes in i)os(r, , x}l' with strain
was based on the approach given in I with strain-
dependent Bohr radii for the stress-raised and

lowered valleys. These changes in jgoz(r, , x}l'
with strain will be reconsidered using the pcs(r, x)
in Eq. (4) in a future manuscript.

An elegant, more sophisticated many-valley
theory of the shallow donor wave function )os(r, x)
has been given by Ivey and Mieher" and applied
to the Si" Fermi contact constants a„»,(r„x) for
x = 0 and finite g. Their approach goes beyond
the EMA and explicitly takes account of the varia-
tion of the Si conduction-band Bloch functions
away from the conduction minima at k, . This then,
leads. effectively to a complex envelope function

E,(r, x) with an imaginary component that varies
from site to site and is not simply proportional
to the real part of F,(r, x). While this complex

P;(r, x} has been shown to be very important for
the aQpf(r, x) at certain Si" sites it is uncertain
how this complex E,(r, x) would affect the quantity

a~(x)/nn(0). The neglect of explicit stress-induced
changes in the Bloch functions suggests that the
strain dependence of F,('P, x) would be the same for
both the real and imaginary components of E,(r, x).
Further work is required to determine the effects
of the Im[E, (r, x)] on o.~(x).

In summary this work has given an alternative
strain-dependent many-valLey wave function which
can successfully explain the donor polarizability
changes with uniaxial stress if strain-dependent
valley-valley coupling matrix elements are con-
si.dered. This new approach gives new information
on how the ground-state energy Eoz(x} and the
ls-A, state Bohr radius a„(x) vary with strain
and demonstrates that the a„(x) dependence is
consistent with a reinterpretation of the Wilson-
Feher piezohyperfine Fermi contact constants for
the P donor in Si.
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APPENDIX A: MATRIX ELEMENTS FOR THE DONOR
POLARIZABILITY- t & 00] AXIS STRESS

The wave function g, in Eq. (10), where (Gs(r, x)
is given by Eq. (4), leads to the matrix elements
A.y p2 A. 3 A, B, and C already def ined in the text.

has already been discussed in Sec. II. Analogous
to the expression for A, ,(x) in Eq. (14) one finds
similar expressions to Eq. (14) for A.,(x) and A, ,(x}
with the subscripts 1 replaced by 2 and 3, respec-
tively The e. xpressions for X~~(k) for f = 1, 2, 3 are
given by

P3/2pa/2
~,'(k) — k, , z,'(k„, kz) =

s[(k„+k )/2]' ' (A1)

y3/q 3/2

&2(k)
2 k. &&2(» z) [(k k )/2)v

p 3/2p3/2

2 sk" ' "' s[(k„+kz)/2]' '

where k=k„ for the ( ~ A, l
~ A, ) matrix ele-

ments and k =kz for the ( ~ E, l
~ ~ Eg matrix ele-

ments. , The A,,~(k) and X,~(k„,kz) are just s times
the respective ll component terms. The matrix
element A=(zgoslHlzgosj will be given by

A =y'(x)&zA, If' lzA, ) + p'(x)&zz, llf lzz, )

+ 2p(x)y(x)(zz. lelzA, ).

Keeping only the intravalley contributions to A
and separating H into kinetic energy and potential
energy contributions (H = T+ V) we obtain

A = y'(x) [-,
' A",(k„)+ —,

' A', (k„)+ —,
' A,"(k„)+ —', A', (k„)]

+P'(x)[6A'r(kz)+6A'(k )+vA" (k )+ A (k )l

~2y(x) P(x)
[A'r(kg, kz) —Ar(k„, kz)

+A (k k ) A»(kx kz)] (&4)

=( E,zlTlzEg, etc. The expressions for the
matrix elements for 8 and C have the identical
form to Eg. (A4) but with A'r replaced by B'» or
&'r, A» by &» or C», etc. The (k„, kz) dependence
is also explicitly shown in (A4). The y (x) term
depends only on k„, )he P (x) term only on kz,
and the y(x)P(x) cross terms on both k„and kz.
The various required kinetic energy integrals are
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NI p(s) „ I' 7P(g) „ )I' 8P(s)

k' (, )II 'fq(s). ~, k' 8q(s)A'=2 q B'i=2, 2k C'=2, 8k

~1th Eq, . (Ae), f(s) and g(s) take the form

() "'(& / ).@
& "'( + / )

(s'+ 8mI/m, ) ' (s'+ 2m, /III, )

(A10)

(A5)

where p(s) = [(8s/5) + (8mI/5m, )] and q(s) = [(s/5)
+(4mI/Sm, )]. The k dependence of the y(x)p(g)
cross terms is consideraMy more complicated
than indicated by EII. (A5), and these are shown
belom.

0 kg kg5/2 5/R

Ar and Ark [(k k )/8p

kg~ kg~ ' I'k~+kg&a", a d a, k- -~[(k,k )/2]7 15k„kg -
8~

(A6)

a~ "a~" &e~+ as&'d~'k -8[(k k)/8] '"" 'I, 8

The potential terms A&, 8&, etc. are calculated
neglecting the donor-dependent central-cell
terms as discussed in Sec. II:. The matrix ele-
ments take the form

8 e'f(s) „158'f(s). C„8e'f(s)

8 e'g(s). ~, 15 e'g{g). ~, 8 e'g(s)

The only changes that occur for this case occur
because of the different CI(x) as described in
Sec. II. The new matrix elements in XI(g) take
the form

{gag
~
gag )= ~ X'I(kg)+ 3 XI(kg),

(gag gggI) =-
8

[X['(kg, kg) —Xf(kg, kg)],

(B11I

while the {gp„I
~
gp„I) term remains the same.

The numerical coefficients in EII. {Bla)are dif-
ferent than those in the p (x) term of EII. (14) [or
EII. (18b)). The cross term proportional to
{gag

~ zggI) has' c11RIlged slg11 and ls R factol' of
two larger [compare EII. (Blb) with Eg. {18C)].
The sign of p(gII0) has also changed sign and is
opposite to that of P(xI00). Hence the magnitude
of cross term explains the different magnitude of
the initial slope (gI00 and gIIO-0') of [1/ug{0)
X~a, (g)i'm].

The other quantities of X2, X3, A, 8, and C mill
all change in an exactly similar matter mith only
tl18 I11111181'1calcoefflci811ts [1dentlcal to those 111

EIls. (Bia) and (Bib) changing for the p (x) term
and the cross term].

s )'~'& 1 ) Is-1'~I I
( -1))~

(Agb)

Using only the effective-mass potential V(I )
—e /z, r and minimizing the energy of the single
valley mith respect to 8 one obtains

( sin '(
I

—— s~s-1) ~ s )~ {s'+8IgI/I, )
'

(A9)

APPENDIX C: THE VAI.LET-ORBIT MATRIX

The. generalized vaQey-orbit matrix for an
arbitrary strain along a [100)axis will take the
form

I/5 nl nl nt

I/5 ~ I

n I n I t/5 ~l
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where s'=
"„(span

sj2}a,. &0 is the valley-orbit
matrix element between the stress-raised (ten-
sion, o, & 0} x and —x valleys while b,o is that be-
tween the stress-lowered y and -y and z and -z
valleys. 4, is the matrix element between the
adjacent valleys split apart by the stress [i.e. ,
between (x, -x) and (V, -y, z —x)) while A,

' is the
matrix element between the adjacent stress-
lowered valleys [i.e. , between (y, —y) and (z-z)].
In principle 40, &0, &„and ~,' are all different
functions of the valley strain x+0(x,oo ~s'). In
the limit xgpp

——0, &o ——&0——&,(1+6) and n,'=4„
one has the form of Hvo given by Wilson and
Feher. If one solves for the eigenvalues W of
this matrix for arbitrary s' one obtains the result

W= ———(n. '+ n. +2&')8 1

~2 ~1/2
Go+26, —ho+ —

) +326, (C2)

with the plus sign for the "E," state and the minus
sign for EGS. The energy splitting between "E,"
and EG~ is just given by the square root which
reduces to 64(0) for r,'=E, =A(0} for s'=0. One
also observes that the dominant contribution to W
comes from &, with the next most important con-
tribution arising from d,'. Thus, it is clear that
the b,(xMp) used in force-fitting the polarizability
data uz, (xqoo)/o!$0) depends most importantly on
&,(x&00), the adjacent-valley coupling between the
stress-raised and the stress-lowered valleys.
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