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A model Hamiltonian for which a stable fixed point is not accessible is expected to yield a first-order transition. By
applying a symmetry-breaking field, a continuous transition may be restored. The crossover from first-order to
continuous transition induced by the most general quadratic symmetry-breaking field, g, for an n = 2 cubic model,
is studied using large-g expansion, mean-field, and renormalization-group calculations. It is shown that the (g,7)
phase diagram is rather complex, exhibiting tricritical, fourth-order critical, and critical end points. This phase
diagram may be realized in certain compounds corresponding to » = 2 and n» = 3 cubic models such as Tb,(M0O,)s,

BaTiO,, RbCaF;, and KMnF,.

I. INTRODUCTION

First-order phase transitions brought about by
the existence of critical fluctuations have been of
great interest in recent years.*™® Within the re-
normalization-group framework, this phenomenon
manifests itself in the following way. Consider a
model Hamiltonian 3¢ which, in the mean-field ap-
proximation, yields a second-order transition.
Let 3 be such that', under renormalization-group
transformation, it does not flow to a fixed point,
but rather to a region in its parameter space
where it becomes thermodynamically unstable.
This may be due either to the absence of stable
fixed points,'™ or to the inaccessibility of existing
stable fixed points.®™° Such a situation has gen-
erally been interpreted as signaling the presence
of a first-order transition. Physical systems
which are described by model Hamiltonians with
no stable fixed point have been studied extensive-~
ly.!7 In these studies one first constructs the
Landau-Ginzburg-Wilson (LGW) Hamiltonian which
can describe the transition of interest and which
embodies the correct symmetries. This Hamil-
tonian is then studied using renormalization-group
techniques in d= 4 — € dimensions.!®!” The LGW
Hamiltonian associated with a phase transition
described by an n-component order parameter is:

H= fscd“x, (1a)

ac=-%rf2¢f—% 2 (V9,)?
=1

i=1

n 2 L
—u(E ¢?) -3 w00, (1b)

where 7 is a temperaturelike variable, v ~T ~T,,
and O,(¢;) are fourth-order terms in ¢;, which
are invariant under the symmetry group of the
disordered phase. It has been shown by Brézin,
Le Guillou, and Zinn-Justin!® that the ésotropic
fixed point, characterized by u*> 0, u}=---=u}

=0, is stable if the order parameter has less
than »n*(d) components, with

w(d)=4-2e+0(€?). (2)

For n>#n*, the isotropic fixed point becomes un-
stable to the anisotropic u,,... ,u; perturbations.
The model may or may not possess an anisotropic
fixed point depending on the detailed symmetry of
the Hamiltonian. It has recently been observed™
that the LGW Hamiltonians appropriate to some
real materials (such as MnO, UO,, Cr, Eu, TbP,
and others), for which n> 4, exhibit no stable
fixed point. Thus, even though the Landau theory
predicts a second-order transition in these ma-
terials, one is led to expect the transitions to be
of first order, as indeed is observed experimen-
tally (see, e.g., Ref. 1).

It is also expected that when applying a field
which does not break the symmetry of the disor-
dered phase (e.g., hydrostatic pressure), the
transition should stay first order. This is due to
the fact that the LGW Hamiltonian associated with
the transition in the presence of the non-symme-
try-breaking field has the same form as the one
without a field, and therefore it does not possess
a stable fixed point. This prediction has recently
been tested experimentally’® on MnO. It was
found that hydrostatic pressure of up to 33 kbars
does not change the nature of the transition. How-~
ever, it has been suggested!*™ that by applying a
symmetry-breaking field, g (such as a magnetic
field or a uniaxial stress), the number of compo-
nents of the effective order parameter can be re-
duced, and the transition may become second or-
der. This has been verified by Monte Carlo calcu-
lations and high-temperature series expansion*
on a model Hamiltonian appropriate for the phase
transition in UO,. The crossover from first-order
to continuous transition has been observed experi-
mentally?® in MnO when a sufficiently strong uni-
axial stress along the [111] direction is applied.

It has also been observed in RbCaF, under a [100]
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uniaxial stress.*

Models which do not possess a stable fixed
point are quite complicated (they usually have a
large number of coupling constants). Detailed
study of the (g,T) phase diagrams associated with
these models has thus not been carried out. In-
stead, Domany, Mukamel, and Fisher'? have studied
the (g,T) phase diagram of a relatively simple n-
component LGW model with cubic anisotropy de~
fined by

o= %1’2¢2—22(V¢ -u}f;qs*—v}:wcbz

(3a)
For stability of the free energy one requires
u>0 (3b)
and
u+s(n-10>0. (3¢c)

This model does have a stable fixed point. For
n<n*, the isotropic fixed point is stable in agree-
ment with Brézin et al.,'® while for n>n* the cubic
fixed point becomes stable. However, when ex~
amining the flow diagram of the model, one dis-
covers that there exist two regions in the (u,v)
plane from which the fixed point is no¢ accessible.
These regions are (see Fig. 1):

(a) w>0,

where

unstable

a
borderline
. fixed point

o <

limitof . -
quartic T;Z?:Zpic
stability \\ fixed point

N
Gaussicn/

fixed
point 4 unstable
borderline
limit of fixed point
quartic
smbnhty/

]

FIG. 1, Schematic renormalization-group flow diagram
in the (z,v) plane for the n-component cubic model, with
n<n*(d). The stable isotropic fixed point is not acces-
sible from the two shaded regions marked (a) w >0, and

®) v<0.

23
v-6u for n=2,
w= < v=3u+0(e?) for n=3, (42)
v~-2u for n=4,
and
(b) v<0. (4b)

The free energy associated with the Hamiltonian
(3) in the regions (4a) and (4b) has been studied by
several authors®™® who found a first-order phase
transition. This result is to be contrasted with
the Landau-theory prediction of a continuous
transition in the entire stability wedge, as defined
by Egs. (3b) and (3c). Consider now the Hamil-
tonian (3) which lies in region (a) (w> 0) and let
&, be a symmetry-breaking field which enters i€
via the term

& (- m)E@ my o). (5)

i=m+l

For large and positive g, the fluctuations of the

(n —m) components Pmars - - - » P, are suppressed
and the number of fluctuating components of the
order parameter is effectively reduced from # to
m. The region w> 0, as defined by Eq. (4a),
shrinks as the number of components of the order
parameter is decreased. Thus, although the »n-
component model (with g, = 0) lies outside the do-
main of attraction of its stable fixed point, the
effective m~component model (for large and posi-
tive gl) may lie inside the domain of attraction of
its own stable fixed point. In this case one should
observe a crossover from first order to continuous
transition. This situation has been studied in de-
tail in Ref. 12 using large-g, expansion and re-
normalization-group calculations in d=4 - € di-
mensions. It was found that for sufficiently small
&, the transition remains first order while for
large g, it becomes second order. These two
segments of the phase-transition line are separa-
ted by a tricritical point [see Fig. 2(a)].

In this paper we study the phase diagram associ-
ated with the cubic model when more complicated
symmetry-breaking fields are applied. In particu-
lar, we consider the (g,,7T) phase diagram asso¢i-
ated with the model (3) with n=2 and w> 0, where
&, is a symmetry-breaking field which enters into
the Hamiltonian via the term g, ¢,¢,. The easy
axis associated with this field lies along the [11]
direction in the (¢,, ¢,) plane. This anisotropy
competes with the quartic terms which favor the
[10] or [01] axes. We find that this competition
gives rise to a rather complex phase diagram dis-
playing two critical lines, a line of first-order
transitions, a critical end point, and a tricritical
point [see Fig. 2(b)]. To complete the analysis we
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FIG. 2. Schematic (g, T) phase diagrams associated
with the » =2 cubic model which lies in region (a) of Fig.
1, with symmetry-breaking fields (a) g; and (b) g, de-
fined by Eqs. (5) and (7), respectively. Thin lines rep-
resent continuous transitions, thick lines represent
first-order transitions. T; and T, are tricritical points
and C is a critical end point. The direction of the order
parameter in the (p4,,) plane is indicated. Note that
the discussion in Secs. II and III refers to order param-
eters which are rotated by 45° with respect to those of
the figure.

consider the most geneval symmetry-breaking field
which enters into the Hamiltonian via quadratic
terms in ¢, and ¢,. Such a field can always be
written as a linear combination of g, and g,. We
find that the (g,,g,, T) phase diagram exhibits a
fourth-order critical point as shown in Fig. 6. The
phase diagram has been studied in the limit of
large symmetry-breaking field using perturbation
expansion in # and v. In order to substantiate
these results we have included a positive sixth-
order term in the Hamiltonian (3), and have then
studied the phase diagram within the mean-field
approximation in a region of the (x,v) plane which
is otherwise thermodynamically unstable. The
qualitative features of the phase diagram are found
to be the same in both methods. A preliminary re-
port of this study has been published elsewhere.!®
In the following paper we apply the methods de-
veloped in the present work in order to study the

phase diagrams of several more complicated
models corresponding to real physical systems
which do not possess a stable fixed point.

The present paper is organized as follows. In
Sec. II we analyze the phase diagram of the n=2
cubic model in the limit of large anisotropy field.
The mean-field approximation is considered in
Sec. III. In Sec. IV we discuss several possible
physical realizations of the model studied here.
The results are summarized in Sec. V.

II. CUBIC MODEL WITH LARGE ANISOTROPY
FIELD

A. (g5,T) phase diagram

Consider the following model Hamiltonian:

H= _[J(’.d’x , (6a)
with
K= ~z7(¢2+ 92) 2 [(V9,)+ (V9,)?]
—u(pi+ d3) —vp2P2. (6b)

For stability of the free energy one requires u> 0
and 2u+v> 0. Letwu and v be such that w=v - 6u
> 0. Thus the Hamiltonian lies in region (a) of
Fig. 1 [see Eq. (4a)], and it exhibits a first-order
transition. Consider now an anisotropy field g,
which introduces a coupling term

g2¢1¢2 (7)

into the Hamiltonian. It is readily seen, by apply-
ing a 45° rotation in the (¢,, ¢,) plane, that this
problem is equivalent to one which is described by
the same Hamiltonian (6), lying, however, in re-
gion (b) of Fig. 1 [Eq. (4b)], with a symmetry-
breaking field g,(¢% - ¢2). For convenience we
consider in this section the Hamiltonian

3= —37,0% =37,02 =5[(V9,)*+ (V,)?]
—u(di+ ¢3) —vdio3, (8)

withr, =7 -g, 7,=7r+g, and —-2u<v<0.

The gross features of the (r,g) phase diagram
can be found quite easily. At g=0 and low temp-
eratures; there exists an ordered phase in which
the order parameter lies along the [11] direction
in the (¢,,¢,) plane. As discussed in the Introduc-
tion, this phase is separated from the disordered
phase by a first-order transition. Consider now
the ordered phase when a small field g is applied.
Owing to the competition between the quadratic and
the quartic terms, the order parameter will lie
along some direction [@8], determined by the
strength of g. For large and positive (negative) g,-
the ¢, (¢,) component is suppressed and the sys-
tem will order in a phase characterized by an or-
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der parameter pointing along the [10] ([01]) direc-
tion. The [10] ([01]) phase is expected to be sep-
arated from the [@B ] phase by a phase-transition
line at which the order parameter starts rotating
away from the [10] ([01]) direction. The two
transition lines PARA-[10] and [10]-[@8] should
be lines of second-order transitions for large g.
In this section we study the details of the (r,g)
phase diagram. In particular, we analyze the way
in which the two transition lines meet, and the
various multicritical points which appear in this
phase diagram.

Consider the limit of large symmetry-breaking
field g= 1 and u,v<< 1. Furthermore, assume that
the Hamiltonian, although stable, is very close
to the instability limit, namely, 0<v+2u
< O(u,v). For gz 1, there exists a critical line /
[Fig. 2(b)] given by 7,~ O(u,v), separating the
disordered phase {¢,)=(¢,)=0 from a phase where
(¢ =0 but (¢ #0. Note that (¢, ¢,) of Fig. 2 are
rotated by 45° with respect to those of the Hamil-
tonian (8). To study the phase transition which oc-
curs inside the ordered phase, we introduce a shift
in the order parameter ¢,. Define

$,=M+o0, (9)
with
M?=|v,|/4u. (10)

The Hamiltonian (8) becomes

K= -37,0% =37,02 =3[(Vo)2+ (V,)?]

—w,0% = w002 —u(o*+ ¢3) —vo?dZ, (11a)
where
7=2|7,|, (11p)
Vo=7y+ 20M2 (11c)
w,=4uM , (114d)
and
w,=20M . (11e)

‘1'he choice (10) for M ensures that no term of first
order in o enters into Eq. (11). It is not difficult
to show that the considerations which follow are
not affected by this choice. We now study the re-
gion », < ~1, deep inside the ordered phase.
Clearly, fluctuations of ¢ become small. Thus we
may integrate out the o field and obtain an effec-
tive one-component (Ising~-type) Hamiltonian

Kopy = =272 =5 (VP,)* —u 03 ~ughpg =+« . (12)

The coefficients which appear in this expression
are evaluated by performing a perturbation ex-
pansion in # and v. We find

7=r, - 20A,(7,)+ O(v?,u?), (13a)

u4=u—£1; V2 =4A,(7,) v+ 0W?,v°) , (13b)
and
ug=— R 03A,(7,)+ 0w, v?), (13c)
where
1 ds
A (x)= — 2L 14
n( ) [alsl (x+q2)n (zw)d ( )

The diagrams which contribute to », are given in
Fig. 3. There are two diagrams which contribute
O(u,v) terms and six diagrams which contribute
O(u?,v?) terms. The diagrams involved in the
calculation of #4 are depicted in Fig. 4. There are
two diagrams [Fig. 4(a)] which contribute O@2,v?)
terms, but they cancel each other. Therefore the
leading contribution to u, is of O(u®,v%). Of the
diagrams listed in Figs. 4(b)-4(d), only those of
Fig. 4(b) contribute a nonvanishing term to u,.
Those of Figs. 4(c) and 4(d) cancel each other and
their net contribution is zero. Note that in region
(b) of Fig. 1, where we work, u, is always posi-
tive. Now, consider the sign of #,. In three di-
mensions or more, (12) yields a continuous trans-
ition for u,= 0 [the transition being located at ¥
~0O(u,)], a first-order transition for u,< 0, and

a tricritical point at u,=u, ,~ O(ug)=0(v®) and 7
=7,~ O(ugs)=0(v®). To leading order in « and v,
the tricritical point is located by solving the
equations

T_t(r’gruyv)=u4,t(77g1u7U)=0' (15)

Taking into account that A,(#,) is a decreasing

>—<4

(a)

T o -

FIG. 3. Diagrams contributing to », [Eq. (13b)]; (a)
to O(u,v) and () to O(x?,v?). The combinatorial factor
associated with each diagram is indicated. Dashed lines
denote ¢ propagators and full lines denote ¢, fields.
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FIG. 4. Diagrams contributing tou, [Eq. (13¢c)], (a) to O(x2,2?) and (b), (c), (d) to O(«3,v3). The combinatorial factor
associated with each diagram is indicated. Dashed lines denote ¢ propagators and full lines denote ¢, fields. The net
contribution of the diagrams (a), (¢), and (d) is zero. The only nonvanishing contribution to ug comes from diagrams

®).

function of its argument and approaches zero as
¥+, we see that for large 7, = 2|'r —g| , namely,
for large enough g, one has u,> 0, and the transi-
tion is continuous. There will be a tricritical val-
ue g, for which #, ,=2|7» - g,| is such that u, van-
ishes, namely,

A7y, )= (2 =v/u)(2u+v)/v?. (16)

For g<g, the transition becomes discontinuous.
Note that our approximation is valid only for #, ,
2 1 which implies 4,(7,, ;)< O(1). Thus, the ex-
istence of a tricritical point has been established
only for 0<2u+wv <v® However, one should no-
tice that, provided we start out in region (b) of
Fig. 1, the Hamiltonian (8) will flow, under re-
normalization-group transformation,!?r 2223
towards the instability limit 24 +v=0. We there-
fore expect our result to hold in the entire region

(b).

Consider now the PARA-[10] critical line I [Fig.
2(b)]. We will show that one does not expect to
find a tricritical point on this line at large g.
This can be seen in the following way: Consider
the Hamiltonian (8). In the limit of large aniso-
tropy field g, and in the vicinity of the critical
line I, one has 7,=0(1). One can therefore inte-
grate out the ¢, field and obtain an Ising-type ef-
fective Hamiltonian for the field ¢,:

Hoge = =27 o002 =2(V,)? ~Ugpy Pt — 0(09),

(17a)
where u,, is given by

Ugge =U —02A,(r,)+ O, 0°) . (1'70)

For 7,2 O(1) the integral A, satisfies A,(r,)

< O(1). Therefore, in region (b), where v+ 24> 0,
one has u,,,> 0, and no tricritical point is found on
the critical line I at large g. It is, in principle,
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possible that this critical line terminates in a
tricritical point located at small g (see Fig. 5).
However, mean-field analysis, which is described
in detail in Sec. III, seems to indicate that the
critical line I terminates in a cvitical end point
rather than a tricritical point, as shown in Fig.
2(b) [in the mean-field study, we add a positive
sixth-order term to the Hamiltonian (8) and study
its (g,T) phase diagram outside the stability
wedge, namely in the region v+ 2u<0].

B. (£1,82,T) phase diagram

In this section we study the phase diagram as-
sociated with the most general symmetry-break-
ing field which enters into the Hamiltonian via
quadratic terms in ¢;. Such a field can always be
written as a linear combination of g, and g,. We
thus consider the Hamiltonian:

= "%'rl¢f —%7’2055 —g2¢1¢2 _%[(V¢1)z+ (V¢2)2]
~u(pi+ ¢3) —void;, (18)

where v, =7 —g, and 7,=7+g,. Since both fields
g, and g, are present in this Hamiltonian, it is
immaterial whether the Hamiltonian is located in
region (a) or (b) of Fig. 1. In order to study the
(g, &2,T) phase diagram associated with the
Hamiltonian (18), we first demonstrate the exis-
tence of a fourth-ovder critical point at a non-
vanishing value of the fields g, and g,. This point
is located on the critical surface which separates
the paramagnetic and the ordered phases. The
various thermodynamic surfaces which appear in
the (g,,T) and (g,,T) planes can then be connected
in a simple way to yield the phase diagram of
Fig. 6.

We start by performing a rotation in the (¢,,¢,)

FIG. 5. A possible (g,,7) phase diagram exhibiting a
tricritical point T'; on the critical line I at small g,.
This diagram also exhibits a triple point TR, Mean~
field and renormalization-group considerations indicate
that this is nof the correct phase diagram for the model

®).

plane, which diagonalizes the quadratic terms of
the Hamiltonian (18). Define

¢1=a¢l+ﬁ¢2 ’ (19)
= =BY+ay,,

with 24+ 8%=1, a=cosd, tg20=2g,/(r,-7,). The
Hamiltonian now takes the form

= —%’Flzpf _%Fzng ‘%[(V¢1)a+ (V¢2)2]
—u(Yy+ ¥3) = 0P ~ w3, - ¥39,),  (20a)

where
w=u+ @ —-2u)a?(l -a?), (20Db)
v=v+6(2u -v)a?(1 -a?), (20c)
and
W=2(2u —v)(202 = 1)a(1 —a2)/2, (20d)

Assuming that the symmetry-breaking fields g,
and g, are large we take 7, O(1) near the critical
surface 7,~0(,v,w). Integrating out the ¥, field
we obtain an effective Ising-type Hamiltonian

Roge= = 5797 =5 (V) =91 =g}~ - O,
(21)
where the coefficients 7, i,, #s, and %, can be
calculated using a perturbation expansion in#, v,
and w, as was done in the preceding section. To
leading order in#, v, and w, the fourth-order
critical point is located at
?(r,gl,gz,u,v)=ii4(1’,gl,g2,u,v)
=ﬁ6(7!g1’g2’u’v)=01 (22)

with %> 0. Consider first the coefficient i,:

. —, 1 _ _
Ug= — W2 5;7: +$0°%A,(7,), (23)

with A, defined by Eq. (14). Repeating the reason-

ing presented in Sec. IIA, we see that the equation

=0 is satisfied for #,=O(1) only if
w2=0(w3). (24)

Using the expressions (20c) and (20d) for v and w,
we find that Eq. (24) implies

20(202 =1)(1 —a?)*/2=sindg~0(Vu,vVIivl),

(25)
which means that either
6=0(Vu ,YTvl) (26a)
or
g=31-0(Vu ,VIvl). (26Db)

We now evaluate %#,. To leading order in#, v,
and w we find
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G, =1 =T %A, (7,)+ 0@?) . (27)

In this expression we have made use of the fact
[Eq. (24)] that @?=0(57%). At the fourth-order
critical point one has »,=0 and therefore

u=0@?), (28a)

which reduces, according to whether 6 is close to
Oor n/4, to

0<u=0(v?) (28b)
or

0<2u+v=0(?), (28c)

respectively. Therefore, we have demonstrated
that the equations #%,=%4,= 0 may be satisfied near
the instability limits of the Hamiltonian (18). We
note again that if the initial Hamiltonian lies any-
where in regions (a) or (b), it will flow, under
renormalization-group transformation, to the in-
stability limits (28b) and (28c). We therefore ex-
pect that one should be able to satisfy the equa-
tions #,=17i,=0 in the entire regions (a) or (b)
(although not necessarily for large anisotropy
fields g, and g,). To conclude, we demonstrate
that the fourth-order point is stable, namely, that
#1g> 0 at this point. We find

, (29)

fig= — 30 A (7)) + W %0

R

which, together with ;= 0, yields

178'_'%_ (—2‘44(';;2)*' 8;,:2A3(Fz)>> 0. (30)

This proves that the fourth-order point found in
this section is locally stable.

In order to construct the (¢,,5,,T) phase dia-
gram we connect, in a simple way, the various
thermodynamic surfaces which appear in the
(g,,T) and (g,,7T') planes, taking into account the
fact that there exists a fourth-order critical point
at nonzero fields g, and g,. In doing so we make
use of the detailed study of the phase diagram in
the vicinity of a fourth-order critical point, per-
formed previously.?* The resulting phase diagram
is shown in Fig. 6. This phase diagram has a
critical surface which separates the paramagnetic
and the ordered phases. This surface connects
the critical line I of the (g,,7T') plane and the criti-
cal line which appears in the (g,,T) plane. On
this surface one finds a tricritical line 7' F and a
line of critical end points CF. These two lines
join at the fourth-order-critical point F'. The
shaded areas which appear in the figure are co-
existence surfaces. The line T,F is the wing
critical line of the tricritical point T',.

9,

9,

FIG. 6. Schematic (gy,g7, T) phase diagram. Thin
lines are continuous phase transitions; thick lines and
shaded areas are first-order phase transitions, dash-
dotted lines are tricritical points, and dashed lines are
critical end points. T, and T, are tricritical points,

C is a critical end point, and F is a fourth-order critical
point, The line T, F is the wing critical line associated
with tricritical point Ty, The critical lines in the g,-T,
go-T, and g,-g, planes and the curve T, FC form the
boundary of a critical surface.

III. MEAN-FIELD APPROXIMATION

Consider the flow diagram associated with the
n=2 cubic model (Fig. 1). If the initial physical
parameters « and v lie in one of the regions (a)
or (b) [Eq. (4)], the Hamiltonian flows, under re-
normalization-group transformation, to a region
in its parameter space where it becomes thermo-
dynamically unstable (i.e., either <0 or v<-=2u
<0). In this section we study, in the mean-field
approximation, the (g,7') phase diagram associated
with the model (8) with v<~2x<0. For stability
we include in the Hamiltonian a term of sixth or-
der in ¢, and ¢,. We therefore consider the
Landau Hamiltonian

5, =37, 97+ 237,05+ u(9i+ $3)+voids+ p(oi+ ¢5)°,
(31)

where ;=7 —g and v,=v+g and p> 0. The phase
diagram is symmetric under the transformation
g—- —g and therefore we take g> 0. Since the ini-
tial physical Hamiltonian flows to one of the un-
stable regions, it is expected that the qualitative
features of the phase diagram obtained by classi-
cal (mean-field) theory in the unstable regions
should be the same as those obtained by perturba-
tion expansion in the regions (a) or (b) of Fig. (1).
We find that the (g,7') phase diagram associated
with the Landau model (31) is given by Fig. 2(b),
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as suggested by the large-g expansion. In particu-
lar, no tricritical point is found on the critical
line /. This line terminates in a critical end point.

The order parameter associated with the criti-
cal line I is ¢,. At the critical line one has (8¢, /
3¢3), j=05=0= 0, Which yields the equation

r,=0 (32)

for the critical line I. In order to locate the criti-
cal line I7, we first find the expectation value of
the order parameter in the [10] phase. Setting
83C, /8¢, =83, /0¢p,= 0, we find

(b)=M, ($)=0, (33)
where M satisfies the equation
7+ 4uM?+ 6pM*=0. (34)

The order parameter associated with the critical
line IT is ¢,, and therefore at the critical line one
has (8%C, /80,)y .u,0,20= 0, Which yields

Vot 20M%+ 6pM*=0. (35)
Using (34) and (35) we find the following expression
for the critical line II:

2u+v
2 -v

1
g—sp(zu_,u)zgz' (36)

We now show that this critical line terminates in
a tricritical point (g,,7,). In order to locate the
tricritical point, we introduce?*® a small para-
meter A defined by

P2=2 (37)

¢, =M+ ar?,
where a is a constant. Expanding 3C, in power
series of A we find

JCL((PN ¢>2)=SCL(M,0)+§ah2+ﬁk“+0(h6), (38)
where
a = (r,+ 202+ 6pM*)+ 2a(r,+ 4uM?+ 6pM* M (39)
and
B=(4uM?+ 12pM*)a? + (20M + 12pM®)a+ (u+ 3pM?) .

(40)

It is easily seen that at the critical line II [Eqs.
(34) and (35)] one has @=0. In order to locate the
tricritical point, we first minimize B with respect
to a. This determines the value of the parameter
a=a,,. Setting B(a,;)=0 and using Eq. (36) for
the critical line one finds an expression for the
tricritical point (g,,7,). The result is

v? — 442
=2 2 41a
8t 126 ( )

and

g = 2utv)?
¢ 24p

For g<g, the transition becomes first order and
may be located by finding the solutions of the
equations 83C, /8¢, =83C, /8¢,=0 and comparing
(numerically) the free energy of the various
phases.

Consider now the critical line I. We will show
that this line terminates in a critical end point.
Let

¢,=¢cosé, (42)
¢,=¢sing .

In terms of the polar coordinates (¢,8) the Landau
Hamiltonian at the critical line I, namely at»,=0,
is:

(41b)

3, = o*z7, 8in0+ [+ (v — 2u) sin®20]p2+ po*}.
(43)

The critical line I is stable as long as 3¢, > 0 for
any ¢# 0 and any 6. At a critical end point 3¢,
satisfies ¥, (¢, 0)= 0; however, there exists a
solution (¢,# 0,0,) for which 3¢, (¢,,6,)=0. Solving
the three equations 93¢, /8¢ =0, 83C, /86=0, and

3, =0 we find

11
"2 =5 ;'2'[“+(v—2u)22(1 -z%)], (44a)
where
1 (14u —0)1/2]
2__ [EEEE—
Z=% [1+ 2u ~v ) (#40)

These equations, together with the equation »,=0
for the critical line I, define the critical end
point. Note that in the limit » - — 2x the tricritical
and the critical end point [Eqs. (41) and (44), re-
spectively] join at ¥=g=0. For v> — 2« this point
becomes an ordinary tetracritical point. We have
thus demonstrated that the phase diagram associ-
ated with the Landau model (31) is given by Fig.
2(b).

IV. PHYSICAL REALIZATIONS

In this section we discuss several physical sys-
tems which, we believe, should exhibit the phase
diagrams of Figs. 2 and 6. Clearly, any physical
system which is described by the n=2 cubic model
and exhibits a weak first-order phase transition is
a suitable candidate. However, we will show that
these phase diagrams may also be realized, e.g.,
by appropriately stressing systems described by
n-component cubic models with »> 2. In particu-
lar, we discuss several examples corresponding
ton=3,

Consider first the improper ferroelectric com-
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pound Th,(MoO,),. This is a tetragonal crystal
which exhibits a first-order phase transition at
T,=159 °C associated with a zone boundary mode,
d=(,3,0). This transition has been discussed in
detail by Dorner ef al.?s who found that it is des-
cribed by an n=2 component order parameter
(¢,,9,). The LGW Hamiltonian associated with
this transition has the form

3= =37(d2+ $2) =3[(VP, )2+ (VD, )] —u(di+ dd)
— 0930 =00, 0,(2 = d2)+ 0(¢°). (45)

This Hamiltonian possesses an extra fourth-order
term, #, which does not appear in the Hamiltonian
(6). However, this term is a redundant variable.
By applying an appropriate rotation in the (¢,, ¢,)
plane, the Hamiltonian (45) can be transformed in-
to a model of the form given by Eq. (6). It has
been shown by Dorner et al.?® that the xy compo-
nent of the stress tensor T', namely T, is
coupled to the order parameter (¢,,¢,) via term

Txy[a¢1¢2+ b(¢i - ¢§)] ) (46)

where a and b are temperature-dependent coupling
constants. Therefore, by applying a T,, stress
one produces both g, and g, symmetry-breaking
fields. It has been argued® that the parameters
u, v, and ¥ which appear in the Hamiltonian (45)
are such that the model lies outside its stability
wedge, and that one has to add positive sixth-or-
der terms to stabilize the free energy. However,
this should not affect the expected phase diagram
(Figs. 2 and 6), as shown in Sec. III, provided the
sixth-order terms are almost isotropic. If this is
not the case, a more complicated phase diagram
is expected.

We now discuss first-order phase transitions
described by the n=3 component cubic model.
Such transitions occur in many physical systems
among which are BaTiO,,*® KMnF,;,*” RbCaF,,*
RbCAF,,?® TICAF,,* and others. To be specific
we consider the ferroelectric phase transition in
BaTiO,. This compound undergoes a cubic-to-
tetragonal phase transition at 7',~ 130 °C. The or-
der parameter is the polarization vector and it
has three components (¢,, ¢,,d;). The LGW
Hamiltonian takes the form

3 3 3
K= ~dr 207 =3 2 (Ve ~u D 0}

-v j2¢%¢§+o<¢6). (47)
<4

The anisotropy terms » and v are such that the
[100] direction is favored (namely v> 2x). The
stress tensor is coupled to the order parameter
via the term

(T, P2+ Ty 05+ T,,03)
+ b(Ty:¢2¢3+ Tx¢¢1¢3+ Txyq);lqbz), (48)

where a and b are coupling constants. Therefore
by first applying a uniaxial stress along, for ex-
ample, the z axis (T,,#0), one removes the de-
generacy between ¢, and (¢,,¢,). Taking a stress
(either tensile or compressive) which favors the
n=2 components (¢,,¢,), the fluctuations of the
¢, component are suppressed and one is left with
an effective n=2 component cubic model. The g,
and g, symmetry-breaking fields are now realized
by applying a uniaxial T,, or a shear T, stress,
respectively. Both fields may be realized by ap-
plying a uniaxial stress in a general direction in
the xy plane as well. These symmetry considera-
tions also apply to KMnF,, RbCaF,, RbCdF,, and
TICdF,.

The phase diagram of RbCaF, under uniaxial
[100] stress (T,,) has recently been studied exper-
imentally.?! It was found that the system exhibits
a tricritical point as indicated by the (g,,T) phase
diagram [Fig. 2(a)]. It is therefore suggested that
if in addition to the compressive T,, stress, one
applies a shear component T,,, the (g,,T) phase
diagram can be mapped out. Note however, that
the dispersion relation in RbCaF, and KMnF, is
strongly anisotropic,? suggesting that a cross-
over to a Lifshitz-type behavior?® should occur in
these systems. Again, this may complicate the
phase diagram.

V. CONCLUDING REMARKS

In this paper we have studied first-order phase
transitions associated with inaccessibility of a
stable fixed point, It had previously been argued
that by applying a symmetry-breaking field, g,
such a transition may become continuous. This
crossover from first order to continuous transi-
tion induced by symmetry-breaking fields has been
studied in detail in the present work. More speci-
fically we considered the LGW model with cubic
anisotropy. This model exhibits a fluctuation-in-
duced first-order transition in certain regions of
its parameter space. The pkase diagram associ-
ated with the most general quadratic symmetry-
breaking field for the n=2 cubic model, has
been determined. We found that the crossover
from first-order to continuous transition occurs
in quite a complicated fashion, through a series
of multicritical points including tricritical, fourth-
order critical, and critical end points. The com-
plete phase diagram is given in Figs. 2 and 6. Qur
results are based on large anisotropy field expan-
sions combined with mean-field and renormaliza-
tion~-group calculations.
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It is suggested that the interesting crossover
found in this work may be observed in certain
compounds exhibiting structural transitions such
as Tb,(MoO,);, BaTiO,, KMnF,, RbCaF,, RbCdF,,
and others. These physical systems are described

by n=2 and n=3 cubic models. We believe it would

be of great interest to test the predictions of this
study in these compounds.

In the following paper we apply the methods de-
rived in this work in order to study the phase dia-
grams associated with physical systems described

by LGW models with no stable fixed point. These
LGW models involve a large number of fourth-or-
der invariants, and the (g,7') phase diagram is ex-
pected to be rather complex.
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