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A method is developed for solving the Schrodinger equation to obtain the eigenfunctions

P(z, R ) and eigenvalues of an adsorbed atom. By solving a one-dimensional equation for a

given position R on the surface, one generates an effective potential e(R) for the problem of la-

teral motion. The leading correction to this Born-Oppenheimer-like approach is expressed in

analytic form. A numerical calculation for the case of He on graphite illustrates the simplicity

and accuracy of the method. The mean distance of a ground-state 4He atom is found to agree

with an experimental result of Carneiro, Passell, Thornlinson, and Taub.

I. INTRODUCTION

With increasing attention being addressed to the
problem of adsorbed films on homogeneous surfaces,
theoretical approaches which offer both accuracy and
computational simplicity become particularly appeal-

ing. The classic example is the popular two-dimen-
sional (2D) approximation, which assumes that the
adatom motion is confined strictly to a plane. While
this method succeeds for some applications in achiev-

ing semiquantitative validity, it does not describe
such features as lateral variation of the potential en-

ergy V( r ) and the attendant motion out of the
plane. This paper presents a more realistic approach
which, to lowest order, is not significantly more diffi-
cult computationally than the 2D approximation.
Numerical calculations are presented for the specific
case of individual He atoms on graphite, but the ap-

plicability is quite general.
We denote the particle coordinate normal to the

surface as z and the lateral position as R. For a given

R, the potential has a minimum value ( V;„) as a

function of z at the position z = ((R). We expect the
ground-state wave function to be localized about this

value, the extent depending on the mass m and the
form of the potential. The motion along the surface
will then follow the periodic variation of $(R). This
description motivates our choice of wave function,

p(R, z) =g(z;R)h(R)

regarding g as a function of z, its form depending on
R. The analogy with the Born-Oppenheimer ap-
proach to treating diatomic molecules is evident. In
both cases the solution of one part of the problem
(here z motion) generates an effective potential for
the other. The present calculation as a whole is facil-
itated if there is only small coupling between the
parallel and perpendicular motions. This corresponds
to relatively slow variation of the z-dependent form

of the potential over the surface. In general, there
are correction terms, which we calculate in terms of
gradients of ((R) and the form of the potential. For
the specific case of He on graphite, their magnitude
is of order 1% of the binding energy. Even in this
case the evaluation of this term is worthwhile be-
cause its inclusion brings the result into good agree-
ment with experiment'~ and a more conventional
band-structure calculation. '

A method similar to ours has. been proposed by

Lai, Woo, and Wu. 4 Our work differs in several
respects, including the choice of the function g and

by our having determined an explicit form for the
correction term mentioned above.

The wave functions computed here may find use in

a variety of applications. We illustrate this by deter-
mining the mean distance (z ) of a 4He atom from
the top surface layer.

II. METHOD

We define a complete set of functions at each la-

teral position R to be solutions of the 1D equation

h d
, + V(z, R) g„(z;R) =E„(R)g„(z;R), (2)

2m dz

which are orthonormal with respect to z integration.
Then a general solution of the Schrodinger equation
can be written

P(z, R) = ga„(R)g„(z;R)
n

Inserting this into the Schrodinger equation yields

A~ d~
X,a„— + V' + V(z, R) —E g„

2m

(g„'7'a„—2'Vg„'Va„) =0 . (4)
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Here the gradient refers to x and y coordinates. Mul-

tiplying by g' and integrating over z yields

A2V2
E,„(R)— —'7z —E a

2/P1

—X ('72„+A „9)a„=0, (5)
n Wm

h
t/rnn

2
g' dz gn + gn

2m ~

A „=(g2/m) „dz g "0'g„

(6a)

Equations of the form (5) are coupled differential
equations for the functions a (R). Note that the
coupling depends on the "off-diagonal" terms enter-
in'g the summation. It is easy to show that they may
be written

A „=[E,„(R)—E„(R)] ' „dz Vg'V(z; R)g„

(6c)

+rnn XAin1 Aln + 7 Ann
1

(6d)

'7'+o,„(R) h(R) =Eh(R)
2m

(7a)

(R) =F.,„—7 =—E +a, (7b)

For the deeper bound states, these are small since
they involve 2D gradients of the potential Vdivided

by the energy separation of the g„'s. In the numeri-
cal calculations described below, for example,

I &ot I

—0.1I

drool

—0.001I &olm/h'

In solving the coupled equations, their effect on the
eigenvalues is proportional to the square of their
magnitudes, divided by energy differences (E —E„)
between the diagonal terms. The resulting contribu-
tions to the eigenvalues E would be very small for
widely spaced, deeply bound solutions of Eq. (2).
Thus we neglect these for treating the lowest adsorp-
tion bands.

In this decoupling procedure, the function h(R) of
Eq. (I) becomes equal in turn to the various coeffi-
cients a (R) in Eq. (3). From Eq. (5),

go= [a/I'(h —I)]'~ yt' '&~ e»
0 i

= (b —3)'"[I—(& —2)/y]Po,

h = (gmP/g2rzz) t~2

y =h exp[ —u(z —g)]

(10a)

(Iob)

(10c)

(10d)

Known potentials are well fitted in the vicinity of their
minima [of depth D (1 + 5) ] by this form, o' and that
is the important region for determining the strongly
bound states. The incorrect form of VsM at large z is
irrelevant for these. With this parameterization, the
energy shift a, associated with the V2 term of Eq. (6)
may be calculated. This analysis is presented in the
Appendix, with an explicit expression given in Eq.
(Al). Note that it is of second order in the gradients
of a, h, and g. In the case discussed below, it is less
than or of order 1% of the binding energy.

ground-state band, one needs only the lowest
(m =0) solution of Eq. (2). A conventional band-
structure calculation, in contrast, requires a larger set
of solutions of Vo(z), the laterally averaged potential.
Higher-lying states must be included there because
they are admixed by the periodic potential and the
concomitant variation of g(R).

%e note that the related problem of atomic beam
scattering has been treated by a qualitatively similar
technique-the corrugated hard wall method. ' By in-

corporating directly (via the P =0 boundary condi-
tion) a major aspect of the lateral variation, one sim-
plifies thereby the ensuing calculation of scattering
intensities.

Equation (2) can be solved either numerically or by
fitting the z dependence of the potential to one of
variety of analytic forms. Particularly convenient
is the shifted-Morse potential,

VsM(z) =D(exp( —2u[z —((K)] ]

—2 exp (
—u[z —g(R) ] )

—&), (8)

because its spectrum and eigenfunctions have analytic
forms'

r

F.„=—D b, + 1—2fl +1
b

The analogy with the Born-Oppenheimer procedure
is apparent. Soving the z part of the problem for
each R generates the input e (R) as an effective po-
tential for the 2D wave function h(R). The term a,
represents an additional kinetic energy which would
be absent from a naive procedure which assumed
separability of the Schrodinger equation.

The present method offers several computational
advantages over conventional band-structure calcula-
tions. One is that the principal R variation of the
wave functions is associated with the variation of
g(R), which may be treated explicitly. For the

III. CALCULATIONS

%e have tested this method by treating He isotopes
on graphite, a case of particular experimental and
theoretical interest. The input potential used is the
anisotopic 6-12 potentials of Carlos and Cole." It is
consistent, within experimental error, with the 19
bound-state resonances and matrix elements obtained
in scattering experiments by Derry et al."and Boato
er al."

By fitting the z dependence of V(z, R) to a



TABLE I. Parameters of the potential and ground-state energies (in meV) along symmetry lines of the basal-plane hexagon
[see Eq. (14) for the notation].

3He 'He

(0.0,0)
{0.1,0)
(0.2,0}
(0.3,0}
(0.4,0)
(0.5,0)

(0.05,0.05}
(0.1,0.1)

(0.15,0.15)
(0.2,0.2}

(0.25,0.25)
(0.3,0.3)
(——)1

3'3

1.85
1.90
1.98
2.04
2.08
2.10
1.88
1.96
2.03
2.08
2.12
2.15

2.15

13.32
12.64
11.43
10.43
9.82
9.60

12.79
11.73
10.73
9.95
9.44
9.17

9.14

0.43 2.57
0.48 2.59
0.54 2.65
0.60 2.71
0.64 2.75
0.65 2. &6

0.47 2.59
0.53 2.64
0.59 2.69
0.64 2.74
0.67 2.77
0.70 2.79
0.70 2.79

—14.07
—13.64
-12.75
-11.91
-11.38
—11.20
-13.74
—13.00
—12.20
-11.56
—11.13
—10.92
—10.89

0.06 0.0
0.07 0.13
0.09. 0.19
0.11 0.11
0.13 0.03
0.13 0.0
0.06 0.11
0.08 0 20
0.11 0.17
0.13 0.09
0.14 0.03
0.15 0.01
0.15 0.0

—14.01
—13.44
—12.46
-11.69
-11.22
—11.06
-13.57
—12.72
—11.92
-11.34
—10.96
—10.76
—10.73

—14.67
—14.24
—13.32
—12.46
-11.91
—11.73
—14.34
—13.57
—12.76
—12.10
-11.66
—11.44
-11.41

0.04
0.05
0.06
0.07
0.08
0.09
0.05
0.06
0.07
0.08
0.09

- 0.09
0.09

0.0
0.12
0.17
0.10
0.03
0.0
0.09
0.17
0.16
0.08
0.02
0.0
0.0

—14.63
—14.07
—13.09
—12.29
-11.80
—11.64
—14.20
-13.34
—12.53
-11.93
-11.55
—11.33
—11.32

5=—(I + V;„/D)

D U U (Uin Ut/z)-z

a=(1/Sz) ln[U /U+]'Iz

(1la}

(lib)

Values of these parameters obtained with bz =0.3 A
along symmetry axes are given in Table I. The
points S, A, and SP denote the adsorption site, C
atom position, and midpoint of the C—C bond,
respectively. '4 %e shall restrict our attention to the
n =0 solutions in the following.

Although the potential VsM fits V(z, R) extremely
well (to better than

z
0/0) over a. range 1 A near the

minimum, there is a non-negligible discrepancy at
more distant points. Since the zero-point motion of
these very light atoms extends somewhat farther out
[—(tz/mD}'~z from g], a precise calculation requires
computation of the effect of this error. From pertur-
bation theory it is evaluated to be'5

ha, (R) = Jl g'(z;R)[ V(R,z) —V (R,z')] dz

As seen in Table I, it is of order 1'/0 of
~ E0( (larger

for 3He than for ~He because of its lighter mass).
&e next determine the value ~, of the Laplacian

term in Eq. (7), using Eq. (Al). This, too, is of or-
der 1%. Collecting these terms the effective potential

shifted-Morse form, Eq. (8), one generates the
values of D, ~, g, and 4 at any R. The arbitrary pro-
cedure we adopted for convenience was to set
V,„=V(R,z) at three points: z =g(R) and
$(R) + Sz. Denoting the values of V at these points
by V;„and V+, %Ye obtain three equations. Defining
U = V —V;„, the solutions are

for lateral motion is

e(R) = ED+4m, +~,.

shown in Fig. 1 and Table I.
%'e have not performed a 20 band-structure calcu-

lation with this potential since onc already exists. '6 It
is possible, however, to use perturbation theory to
determine some of the principal features of the
lowest band. To that end one needs the Fourier
coefficients eo of the function a(R) of Eq. (12).
Rather than evaluate the Fourier integrals, we have
least-squares fitted coefficients to the Fourier expan-
sion"

a(s, ,s, ) = so+2m&[cos2a s, +cos2ms, +cos2n(s, +sz) l

+2tz[cos2$ (si —sz) +cos2n (2$i + s )

+cos2s(s, +2s,)]

R = 5]a] +$2a2

where the origin is at the center of the hexagon and
a~ and a2 are vectors to the center of neighboring
cells. In this notation (s~,sz) = ( z .0) for the Sp
point and ( 3, 3 ) for the A point. The expansion

(13) corresponds to including only sets of the two
smallest, inequivalent, nonzero reciprocal-lattice vec-
tors G~ and G2. The values found for the coeffi-
cients ~0, ~~, and ~2 are —12.19, —0.33, and —0.04
meV for Hc, and —11.50, —0.33, and —0.11 meV for
3Hc, respectively.

%e may estimate by perturbation theory various
properties of the band structure. The ground-state
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FIG. 1. I3ashed curve shows Vm;„(R) (defined in the
text) for points R along symmetry lines S A and S SP
in the hexagonal graphite cell (shown in the lower right
corner). Full curves show the energy e(R) for'the two He
isotopes in the ground state of motion perpendicular to the
surface.

now contrast these with the band-structure results3:
—12.22 and —11.73 meV (which in turn are in excel-
lent agreement with thermodynamic measurement".
—12.27 and —11.72 + 0.17 meV). The differences
are very small, indeed, indicating that the present
method is a viable calculational tool. In order to
further test this method, we compared the band gaps
computed with the 2D potential e(R) with those ob-
tained previously. We use perturbation theory and
neglect coupling to states other than k and k +0,
which are degenerate in the absence of the ~t and ~2

terms of Eq. (13). The splitting at the P point (hex-
agonal corner) in the 2D Brillouin zone is 3~a~~ and
at the 0 point (midpoint of a hexagon edge) it is

2~e~ ~. Our methods predicts then 0.99 and 0.66 meV
for both isotopes. The more complete and conven-
tional calculation obtained'7 0.93(0.86) meV for
4He(3He) at the P point and 0.73(0.64) meV at the g
point. The discrepancies (of order 10%) can probably
be attributed to the inadequate incorporation of other
states in this perturbation calculation. Thus omitted
are higher-lying states of perpendicular motion. To
put the interpretation into perspective, note that the
principal determinant of the gaps in the conventional
method' is the matrix element of the lowest Fourier
component of the potential Vo(z), between ground-

state solutions g(z) of the 1D laterally averaged po-
tential ((0~ Vo 0) in the notation of Ref. 3). This
has magnitude 0.28 meV according to the measure-
ment of Boato et aI. ' The computed band gaps thus
have a significant contribution from other states
(both on- and off-diagonal).

We address next the probability densities associated
with the wave function of Eq. (1). From perturba-
tion theory, ' the K =0 wave function appropriate to
Eq. (7) satisfies

g 1/2h (R) 1
2m + o eG R

0
G

energy (for Bloch state K =0) is given by

Eo= eo —12m ef/t G~

2m I eGeH Ge iH ~ R

g G2H2
6G

2

2G4

omitting the negligible contributions of G2.
The resulting values of ~EO~ are 12.33 and 11.69

meV for 4He and 'He, respectively. It is necessary to
perform one small correction to these before compar-
ing with the previous band-structure calculation. The
latter utilized the experimental (scattering) eigen-
values of the laterally averaged potential, which are"
—12.06 + 0.1 and —11.62 + 0.1 meV. The eigenvalues
of the model potential used in the present calculation,
however, are" —12.12 and —11.53 meV. We there-
fore add the differences (+0.06 and —0.09 meV) to
our computed values in order to obtain the most real-
istic values of Eo. The results are Eo= —12.27 and
—11.78 meV for 4He and 'He, respectively. We may

normalized to unity in the unit cell, of area A, =5.24
A2. The prime means that the reciprocal-lattice sums
exclude zero. The probability density go2 (z;R)h2(R)
calculated with this function are shown in Figs. 2 and
3 for "He and He. Note the greater localization of
the heavier isotope and the tendency of the equal
probability contours to follow the variation of $(R),
especially near the very repulsive, small z region.

The 4He density may be used to calculate the mean
distance (z ) above the topmost carbon layer. Our
result, (z) =2.89 A, is in very good agreement with
the value (z) =2.85 A obtained recently by Carneiro
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FIG. 2. Contours of equal probability density $2(z, R) for
the 4He ground-state wave function (normalized over a hex-
agonal cell). The R values lie along the lines S SP and
S A, respectively (see Fig. 1). Values of p (in A ) are
0.6 (dotted curve), 0.2S (dash-dot), 0.05 (dashes), and 0.01
(full curve). The pulses denote the curve z =$(R), the
loc'us of potential minima as a function of z.

et al. '9 These workers deduced this from the contri-
bution of a submonolayer 4He film to the Bragg peak
intensity of neutrons scattered by a 4He-Grafoil sys-
tem. Comparison can be made with a number of
other calculations of (z): (a) 2.92 A, computed with

a wave function P(z), the solution for the laterally

FIG. 3. Same as Fig. 2 for 3He, , There is no region where
lII2~0.6 A 3.

averaged potential Vo(z), shown in Fig. 4, (h) 2.45
A, obtained from the anisotropic Yukawa-6 potential
of Ref. 11, and (c) 3.25 A, foundzo from the vener-
able isotropic 6-12 potential with parameters chosen
prior to the era of scattering experiments. This sub-
stantiates further the accuracy of the anisotropic 6-12
potential, which was inspired originally by the scatter-
ing data. ""
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FIG. 4. Laterally averaged potential energy Vp(z) is the dash-dot. curve (right ordinate scale). Also shown are the ground-
state probability densities and eigenvalues for "He (full curve) and He (dashed curve); left ordinate scale.
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IU. CONCLUSIONS ACKNO%LEDGMENTS

We have described a convenient scheme for calcu-
lating the spectrum and wave functions of adsorbed

quantum gases. The problem is separated into two

parts, associated with motion perpendicular and paral-
lel to the surface, respectively. The Schrodinger
equation for g can be solved easily by fitting the po-
tential to a shifted-Morse form, Eq. (8). An impor-
tant feature is that the maximum in g as a function
of z followszt the periodic variation of tt:(R). This
minimizes the coupling to excited states perpendicu-
lar motion. The numerical example studied finds a
very small coupiing [which depends on the gradients
of both the one-dimensional potential and ta(R)].

An application is presented in the form of a deter-
mination of (z ) from the probability density
hz(R)gz(z;R). There results a 1% shift from the
value calculated using a smooth surface approxima-
tion. Agreement with experiment is remarkably good.
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APPENDIX

We compute here the term a„defined in Eq. (6),
using the definition of Eq. (Sb). The calculation can
be accomplished accurately with the shifted-Morse
potential and wave functions of Sec. II. After some
lengthy algebra, we obtain the following result:

a,.(R) (b —I)
2N1-

t

1

Vb
b

22b 1 — b 1) +f +f(2,b —1) V
b(b —I)z (b —2)&

' '
tz 4

b —1 ~ z 2b b(b —1) '7a '7b
4

'
b —1 (b —2)z 2czb

b —1+ — —b gz(2, b —1)(b-2)

+ (b-l)f57. . 04 V b. Pt
2 2b

(Al)

f= tit( b ) —
,lnb-

Here g(2, b —1) is the Riemann zeta function and tit(b) is the digamma function.
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