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By considering the relationship of the matching techniques of Bruce and Wallace to the dif-

ferential renormalization-group generators, we find that a restatement of the former gives im-

proved results with the same number of perturbative terms. Iri particular, the vertex functions
and specific heat of a n-component spin system are given exactly in the spherical limit n

even at first order in perturbation theory (T & T, ). The nature of the nonlinear scaling vari-

ables is clarified, and the results are generally expressed in a more compact form. The general
n-component disordered phase functions are rederived to O(~2), where e —4 —d. The cross-
over equations for the n =1 Ising-like case are derived for the Helmholtz potential A (M), the
magnetic field h/M, the inverse susceptibility I 2, and the correlation length g to O(~ ).

I. INTRODUCTION

& = exp „g(l') dl' (1.2)

In Eq. (1.2), ri(l') is an I'-dependent effective value
of the critical-point exponent g. Without the X)

The possibility of calculating the complete, and not
merely the critical, form of the thermodynamic func-
tions using the renormalization group was indicated
even in the early papers of Wilson. ' This approach
relies on the often-forgotten fact that the original
Wilson renormalization-group approach represents a
stepwise evaluation of the partition function. A par-
ticularly simple formulation of this is given by the
use of differential renormalization-group genera-
tors." The generators supply differential equations
for the renormalized Hamiltonian. The complete
nonlinear solution of these equations provides the
physical free energy in the limit of infinite 1, where
exp( —I) describes the scale of the fluctuations not
yet incorporated in the Wilson elimination of degrees
of freedom. For example, using the one-particle-
irreducible (1PI) generator, ' the renormalized ¹pin
coupling constant U~(l ) can be used to calculate the
N-point 1PI vertex function I'N (at all wave vectors
k =0):

I ~= Iim&N 'UN(l) exp( —XNI)
I ~oo

In Eq. (1.1) A.~ is the canonical dimension of the N-

point vertex in dimension d, A~ =d+ —,N(2 —d),
and X) is the anomalous dimension crossover function
(Nicoll and Chang, 4 referred to as Ia):

factor, 1 & would be an exact nonlinear scaling field
(Wegner') of canonical dimension. For example

(1.3)
where g is the (second moment) correlation length
and an exact scaling field of dimension (or eigen-
value) —1 (in momentum units). If we allow the
renormalization-group equation to-act on the parame-
ters on which g depends, its transformation proper-
ties are simple: ( exp( —I ) g. The function I) has
no such simple property, having an effective dimen-
sion of —q close to the critical point and a dimension
equal to zero far from it (where "dimension" refers
to its renormalization-group behavior). Therefore,
the. inverse susceptibility (=I'2) is not itself a non-
linear scaling field. Crossover equations of state can
be obtained for a variety of systems with this method
(Nicoll and Chang6 henceforth referred to as Ib).

However, the solution of coupled nonlinear dif-
ferential equations of the sort provided by the dif-
ferentia1 generators becomes extremely difficult
beyond lowest order in perturbation theory. The
essential difficulty lies in the fact that the equations
must not only embody the renormalization-group
property that the renormalized Hamiltonian has the
same free energy as the original system; it must also
be capable of evaluating that free energy complete in
every detail. Even if one is interested simply in ther-
modynamic functions, the renorrnalization-group
equations are in terms of the full wave-vector depen-
dent correlation functions. This coupling is in turn a
consequence of the expression of the evolution of
the partition function in closed form by the differen-
tial generator without perturbation theory.
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An alternative approach is that of Bruce and Wal-
lace, ' henceforth referred to as II. (A related ap-
proach is considered by Lawrie. ') This relies on the
existence of a renormalized theory in the pre-Wilson
sense of a cutoff parameter A ~ (Brezin et a!.9)

The A independence of the renormalized theory leads
to renormalization-group equations for the unrenor-
malized theory reflecting that independence. This
corresponds to the part of the Wilson view relating
the coupling constants of a renormalized Hamiltonian
to an original or bare Hamiltonian with the same
thermodynamic properties. In their usual form, these
equations cannot evaluate the thermodynamic func-
tions; they simply relate the properties of one system
to another system with a different value of the cutoff
A. Specializing for the remainder of this paper to the
n-component s~ theory with coupling constant A'u
and reduced temperature A't (t ~ (T —T, )/T, ] the
renormalization-group equations take the form

+p(u) — I --„—At~—(u) r,9 1 9
8A Bu v(u) Bt

=br =0 . (1.4)

The inclusion of the A2 in the definition of t changes
the form of the renormalization-group equations
from that given in II and increases the resemblance
to the generator equations. The dropping of the in-

homogeneous term lLI'&, which is presumed negligi-
ble in the critical region, is the step that simplifies the
renormalization-group equations; the functions p(u),
v(u), and q(u) can be calculated perturbatively. The
solution to this is

rg(u t, A=1) = gg 'rfy(u(l), t(i), A =exp( —I))

Following Nelson and Domany, '0 Bruce and Wallace
have chosen the value of I in II such that L =—Int =0
at I = I', giving the results

r, =~(I,)e 't(l, ),
r4= u'(l4) e 'u (I4),

(1.10a)

(1.10b)

I'4 ——X)'(I')e " u(I') I+ Xu"(I")bo„

As we will see below, u (I') is a renormalization-
group invariant with a temperature dependence which
varies from the bare value u to the fixed-point value
u' [defined by p(u') =0], as t 0. The principle
nonanalytic temperature dependence of I 2 and I 4 is
carried by the behavior of the explicit exponential
terms. The terms in the summation therefore
represent correction to scaling terms.

This particular choice of matching puts a double
burden of interpretation on the potential user of
these results. In general we cannot expect to have
exact closed form expressions for t(l) and u(l). To
the uncertainty of their perturbation expansions we
must add the interpretation of the series of
correction-to-scaling terms given in the summations.
In one case however, the exact renormalization-group
trajectories of t (I) and u (I) are known: the spherical
limit n ~. In this case, the matching condition
L = 0 does not properly represent the exactly known
solutions unless the entire perturbation series is used.
The choice of L which does give the spherical limit
exactly even for a truncated perturbation series is
that L for which the perturbation series cancels exact-
ly. With this L the results are (for all n)

where

I'2(u, t, A) = A't I + Xa~ru'(Int)"

I4(u, t, A) = A''u 1+Xb, u'(Int )
(1.8}

and u(l) and t (I) are the solutions of the
renormalization-group flow equations

du =—p(u}, —=dt 1

dl v(u)

These equations are quite similar to those of the dif-
ferential generator formulation. However, in this
case there is no natural choice of I corresponding to
the limit I ~. Equations (1.5) —(1.7) must be sup-
plemented by concrete perturbative expressions for
the vertex functions themselves. If we use the de-
vice of expanding around d = 4 in an e expansion,
e =4 —d, these will be of the form

where we have indicated that the matching point for
each vertex function is in general different. It will
also change as more terms of the sum are used. This
particular choice of matching condition and no other
makes the resemblance between the generator and
field-theoretic approaches strongest. Further it is dif-
ficult to propose any other equally simple condition
which will recover the spherical limit as n becomes
large. Of course, any choice of L which is a
renormalization-group invariant and reduces to a con-
stant as t 0 is formally equivalent in perturbation
theory to the order that the calculation includes. We
can only hope that the alternate resummation of the
correction-to-scaling terms represented by this choice
is an improvement for all values of n. For example,
with any other matching condition the error in a
second-order calculation is 0 (e'). With the spherical
limit given exactly the error is presumably reduced
for all n. An examination of the form of the e ex™
pansion suggests that the error is reduced by a factor
of n +8 to O(e3/(n +8)). Thus even for n = 1, 2,
and 3, a considerable improvement may be gained.
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This can be checked explicitly by comparing the
first-order results with the second, since this new
matching condition gives the exact spherical result
even at first order. Even if the actual improvement
is small, there are advantages in anchoring the calcu-
lation at the spherical limit, thereby allowing some
direct d =3 spherical results to be used for compari-
son. For example, a clear distinction is made
between cutoff-form-dependent and independent
terms which is lost in the L =0 match.

In Sec. II, the results of II are reinterpreted in this
light and a similar calculation used to give a corre-
sponding expression for the specific heat which may
be compared with Theumann. " In Sec. III, the
Ising-model equation of state is considered; with the
free energy A (M), h/M, I'q, and I'qg given to
O(a'). Finally in Sec. IV, the application of the
results to three dimensions will be discussed. Appen-
dix A contains a discussion of the effects of varying
cutoffs on the crossover in the spherical limit. Ap-
pendix B gives a compilation of the various perturba-
tion series used in the text.

II. DISORDERED PHASE RESULTS FOR
n-COMPONENT SPIN SYSTEMS

In this section we will rederive O(a') crossover
functions in the light of the proposed matching con-
dition. We will see that the results are expressible in
more compact, physically meaningful, and suggestive
forms, as well as recovering the spherical limit. The
notation of II will be used throughout with a few
changes to show the relationship to the generator ap-
proach given in I.

The expressions for P(u) and I/v(u) are given in
II and summarized in Appendix B. To O(u') the
solution to Eq. (1.7a) is given by

4/Ol
1 —p u ~( (2.1)
1 —u p

where p = u (I)/u', u = u/u'. The fixed point value
u' and the corrections to scaling exponent co have the
following ~ expansions.

v

3a
1

9n +42 +O( g)
(1+—,

'
)(an +8), ("+8)

[—=u/(1 —u) t"] is an exact nonlinear scaling field of
dimension ~ =4 —d. As we will see, the value of p
assigned by the matching condition is a renormal-
ization-group invariant changing in value from p = u

to p =1 as the critical point is approached. We have
factored out 80 —= 1+—,~ which represents the exact ~

dependence for n ~. 80 depends on the nature of
the cutoff (cf. Appendix A), while u is independent
of the cutoff form. Where appropriate we will use u
to show cutoff invariant expressions.

The corresponding solutions of Eqs. (1.6) and
(1.7b) are

2lt (t—) t Y(2—v )/m

(n + 2) (13n + 44)
& exp u p u

6(n +8)'

~= Y &t"exp[ —(p —u)rt/cu)

(2.3a)

(2.3b)

The critical-point exponents v and q have the ~ ex-
pansions

(n+2)
(n+8)

& (n +2)(13n +44) +O 3)
(n+8)'

7l = f(+2 e'+ 0 (e')
2(n +8)'

(2.4)

Note, however, that the forms of Eqs. (2.1) and (2.3)
may be used with critical-point exponents determined
to higher order in the ~ expansion or with experi-
mentally determined exponents (this is termed ex-
ponent improvement, see I and Brezin et al. 9).
Equations (2.1)—(2.4) are exact for n ~. Equation
(2.3) shows that

These expressions are equivalent in the e expression
to those given in II but are rewritten to exhibit the
resemblances to I and to clarify the nonlinear scaling
behavior. The numerical factor in Eq. (2.3a) can be
rewritten in a cutoff-form-independent way to the
same order as

(n +2)(13n +44)u' 2 —1/v i +2 u

6(n + 8)' (u

(2.3c)

1
u

1+—e
2

(2.2a) T[= t(1 —u)"" ""ex—p(uD„) j

9n +42OJ=K 1 (n+8)' (2.2b)

The combination (1 —p )/( I —u ) occurs frequentiy
and in correspondence to the notation of I will be
denoted by Y. Equation (2.1) is a statement that U

is an exact nonlinear scaling field of dimension 2.
Note in this regard that the fields defined in II are
not global nonlinear scaling fields in this sense. This
is immediately clear from Eq. (2.35) of II since, if the
indicated scaling fields were global nonlinear scaling
fields the susceptibility would be a global nonlinear
scaling field.
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Using the diagrammatic expansion for I ~ given in
Eq. (2.5) of II, the matching condition is

L& ———Int(lq) = —1+
4
e+

~
u"p(f —1) (2.5)

where f =4+m~ —Sh. , X =1.17. We can now use
Eqs. (2.1)—(2.3) to determine p and hence the entire
function; alternatively, we may eliminate 1 by defin-
ing K~q = exp( —2lp) t (Ip)

Y' "—= Kq exp —( —eL&)
u 1

p 2
(2.6)

I",= X)exp( —2I, )t(lp) =&K' (2.7a)

Yf —= K&80[1 — pique(1 —f) +O(e —) ] . (2.7b)

Although this is of the same form as Eq. (1.13) we
may not deduce that Kq = ( '. The series for I q/g

'
can be derived to give (for general L)

Since L~ is only determined in an e expansion, the fi-
nal results should be written

behavior and will provide a crossover to mean-field
behavior. Ho~ever, the details of this crossover do
depend on the choice of L. The point to note is that
any choice of L other than that adopted here gives
rise to a series of corrections (polynomials in p)
which in fact are properly represented by the adjust-
ment of the constant amplitude appearing in Eq.
(2.7b). For n W ~, we cannot be certain that this
matching condition is optional, but the relationship to
the generator expressions is suggestive. %e see in
these matching conditions the cutoff dependent scale
factor 80 explicitly appearing in Eq. (2.7b). This
term is nonuniversal even for fixed u, but it can be
removed by a change of scale. As shown in Appen-
dix A, the use of the L = 0 or any other matching
condition does not generally isolate this nonuniversal
factor, so that the use of different cutoffs would give
different crossovers in the e expansion. The present-
ly employed matching technique correctly gives a
universal crossover curve.

Turning now to I'4, the matching condition gives a
different value. of the invariant L:

T

L4 —2+u p ——(n+2—)+— u pf . (2.11)1 1 Sn +22
6 3 n+8

where I = —2.349. Therefore, with ~ =g
2—,'= (I+gpp —,

' I)
I

(2.9)

Note that in the spherica1 limit L4 does not reduce to
a p-independent constant. However, it is also true
that exp( —2I4) is no longer exactly equal to I'q/S;
the series for I'q is not canceled by this choice of L.

There is a small weak distinction which is O(q).
Therefore in equations such as Eq. (2.7b) xq can be
replaced by K to the same order. The equation for K&

is simply Eq. (2.3a)

The best physically transparent answer is given by ex-
pressing the p for I'4 in terms of g not t(l4). To this
order we do not need the 0 (e~) corrective factor
given in Eq. (2.8) and may set n' = I'q/Q:

~ =tYP " ' " exp[D„(pq —u)] (2.10) K =e t(I4)[1 —u"p46 (n +2)] (2.12)

providing a complete parametric representation.
The subscript 2 reminds us that this value of p is

that appropriate to the matching condition for I ~.

Note that Kq considered as a function of its argu-
ments (t, u) is an exact nonlinear scaling field of di- .

mension 1; combining this with the exact nonlinear
scaling properties of U given in Eq. (2.1) we see that

p& is an exact nonlinear renormalization-group invari-
ant. There is only one invariant for this problem so
that any other renormalization-group invariant is a
function of p&.

The above results are exact in the spherical limit,
both in form and in detail even at one loop order,
Lq = —1. As shown in Appendix A the constant fac-
tor in Eq. (2.7b) for the cutoff used in II is exactly
80 to all orders in e. The proper value of
exp( ——,aL ) is obtained for all cutoffs if the one-loop

integral is evaluated exactly. The difference between
tl][is matching condition and any other is also seen
most clearly in the spherical limit, as detailed in Ap-
pendix A. Any renormalization-group invariant
choice of L gives the same asymptotic critical

Therefore, 14 is given by I'4=5)'(14) Ygl"u where

Y4 =K 1+6+
~

6. 66u p4
&I 1 p 1 y SPl +22

p4 n+8
t

(2.13a)
The p dependence of L4 in the large n limit is can-
celed by the corresponding p dependence of the rela-
tionship between n~ and t(I4). In this case, the am-
plitude given in Eq. (2.13a) is not given exactly for
n ~. However, considerations of the exact result
allow it to be written as

80 1 ——Kup4
u K' i - Sn +22 f, (2.13b)

p4 1 '~ n+8

which is exact in the spherical limit. The invariants

p& and p4 are, course, related:

1 SP1 +22
1 cup4 f

P4 [1 p;,' eu (1 f) ](1---,
'e)-

(2.14)
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The specific heat C also satisfies a renormalization-
group equation. In the renormalized field theory,
there is an additional additive renorrnalization con-
stant resulting in an inhomogeneous term even in the
critical regime

t

A- +P(u) — 2+t —C=A+8(u)a e 1 a
8A Bu v(u) rjt

(2.15)

Again, there are small differences in notation from
that of Ref. 11 to increase the resemblance to genera-
tor methods. The solution of this equation is given
by

C (u, t, A =1)= C(u (l), t(l), A =e ') t'(I)

Lc = —2+ —(n + 2) u'pc (2.17)

The integration is performed by transforming the in-
tegral over t to one over Y

model has no specific heat in the disordered phase.
Moreover, the original idea of Wilson' for calculating
the free energy (and hence C) was simply to add up
the constant terms in the Hamiltonian produced by
each iteration of the renormalization-group reduction
of degrees of freedom (Nauenberg and Neinhuis, "
Nelson and Rudnick'3). These terms correspond to
the inhomogeneous term in Eqs. (2.15)—(2.16); for
these reasons we choose to match by canceling the
entire perturbation expansion leaving only the inho-
mogeneous term. To the order needed we have
B =nBp and

t'(I')+ J exp( —dl')8(u(l')), dl'

(2.16)

For the specific heat there is no bare term to which
the diagram series is added; the Landau-Ginzburg

I

C =n8 „exp( I) y2t' " 'I" (I +2D, (p —u))dl
~J P

(2.18)

Evaluating the integral (again terms ~p2 in the in-
tegral are dropped) we find

I I

Y-ck/olv 1 Y 1 -A/olv
C=+ 8O + ——1+2D„(1—u) exp2D„(1 —u)

eu A/av 1 cl/Q)v Gl
(2.19)

Y f/co fu Bp
C

Pc (1 ——e)
2

(2.20)

%c have shown that a simple change in the match-
ing condition allows us to express the results of field
theoretic perturbative calculations in a more compact
form which more closely resembles the differential
generator approach and recovers the exact spherical
limit for large n. In general, this matching condition
still requires the usc of ~ expansions both in the
solution of the renormalization-group equatioris and
in the matching conditions for L. However, the non-
trivial dependence of the results on L [essentially in
the amplitude terms of Eqs. (2.7b) and {2.13c)j is
second order in the e expansion rather than entering
at first order for any other matching value.

This is exact for n = ~ and —2 which correspond
to the most negative and most positive values of o, .
(This result for the inhomogeneous term differs from
that of Ref. 11.) Finally the choice of matching con-
dition gives

III. ISING-LIKE n 1 EQUATION OF STATE

In this section we apply the matching method to
the equation of state. Only the n =1 case will be
considered because such a simple matching approach
is suitable for resumming perturbation series with
only a single singularity. The general n-component
model has both transverse and longitudinal suscepti-
bility and thus has two types of logs. In the differen-
tial generator approach there are two values of I at
which the longitudinal and transverse fluctuations are
essentially suppressed (cf. I). In the I ~ limit
these mark breaks in the behavior of the I-dependent
functions as portions of their forms reach their
asymptotic values. No single matching point can
properly represent such behavior; other methods can
be employed such as an analysis and rcsummation of
important diagrams (Schafer and Horner'4). We will

give the crossover equations for the free energy
A (M), It/M, r2/»' (where It is the magnetic field,
r, =X-', =g-') to O(").

The renormalization-group equations for finite
magnetization M are

t

A +p(u) — t ——v)(u—) N+M rn =08 1 8 & 8
BA Bu v(u) Bt 2 BM

(3.1)



394 J. F. NICOLL AND J. K. BHATTACHARJEE 23

The solution is simple:

r, ( u, /M', A= I) =S"/'r, (u(i), t(l),QM', A =exp( —I)) . (3.2)

Thus each explicit factor of M2 is associated with an
anomalous dimension crossover factor X).

The perturbation series for h/Mean be easily ob-
tained to 0 (e') from those for A (M) given in Ap-
pen'dix B or from Wallace and Zia." We choose to
match so that h/M has its Landau form

Note that this matching implies that the terms in the
square brackets are identically equal to —,5 at q = 2,

p =1. This allows K~ to be solved for in terms of 12
to complete the equation of state in physical terms.
Equation (3.3) can, of course, be rewritten as

—=u [t(I) exp( —2I)+u(I) [—exp( —el)]&M']
M 6

(3.3)

—=X) [tYt' ' "' "
expDt (p —u ) +

6
u Y' MM']

(3.g)
The matching point is

L t
—=In«t exp(2l)

= —I+—e+ —u'p[(f —1)+—,q(l+f)] . (3.4)

In Eq. (3.4)

«f = exp( —2l) [ t (I) + exp(2 —e) I [—,u (I)&]M~ I

(3.5a)

which again stresses Landau-like nature of the result
in this form.

We now turn to the Helmholtz potential A (M). It
obeys the renormalization-group equation

B(u) t'A —. (3.9)

Y'/"uM'Q
(3 5b)

K

u (I) exp( —el )5)M'
K~

The solution is

A (u, t, M', A=1) =A (u(l), t(l),&M', A=e ')
pl

e ~' , B(u (l))t~(—l) . (3.10)

The M dependence is carried by the exact
renormalization-group invariant q. The present
matching condition has the additional benefit that

q = 3 on the coexistence surface and q = 2 for t = 0
to all orders in e. The solution is completed by speci-
fying Y

We could choose I such that the diagram series for A

vanished leaving only the Landau-Ginzburg and tra-
jectory integral terms. However, by using the same L
as for the equation of state we preserve the useful
normalization of the invariant q. Therefore there are
three contributions to A. First the Landau-Ginzburg
part:

Ato=
q

tY ' "' "[expD&(p —u)]&M'

Y' "—= «[Bo [ I — cup [( f —1)—+ q ( —+ f .) I[—
p 4 2 2'

(3.6)

The exact scaling field K~ has no direct physical signi-
ficance. I 2 is given by

I', =5) «f[1+q—,
'

up(1 ——,
'

up)

——,
'

(up )'q ( I ——,
'

q ) (f + I ) ] . (3.7)

+—Y'"+ M
4r

second, the trajectory integral

(3.11a)

f2 ( Y-a/av I ) ( Yt-a/av I )
Boexp[2D&(1 —u)] + ——I+2D, (I —u)

26u (a/et ) I —a/iav ia
(3.11b)

and finally, the remainder of the diagrams

( 2) Y e/a

p, j

8 u
4

—up [(f —I ) + —,
'

q (3 —f ) ] . (3.11c)

Matching to cancel the whole series would eliminate
Eq. (3.11c) but h/M and I'~ would have to be
evaluated with L~.'

Lq = ——, + —,6
e ——,u'p[1 —q(1 —4f)], (3.12a)

where p and q are defined at L&. We note that in the

I

spherical limit a single match point is again appropri-
ate; matching for h/M gives the exact result for A as
well when the one-loop term is evaluated exactly.
That is, the one-loop match point cancels all the
higher-order terms as well. Since Y —1 is formally
0 (e) the trajectory integral is determined to one less
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order than thc mean-field and diagram terms.
Finally, to complete the survey of the 0(e') Ising-like result we compute the quantity F2/'=+1 q(I)$'(I).

The series for 12$ is given in Appendix B. At the it/M match point this gives

I'qg =S'[I + —,
2 uqp (1 ——,e) + —,s (up )~[1+—,q (1 —41) + —,q'( —l l + I ) ]) (3.1 3)

We may use this to compare our matching length scale ~~ with K =—g
'

[ I + —,
2 upq (1 ——e) + —, (up) 2[1 + —q (1 —41) + —q~( —11+I) ] ]

Ki =K
[1+—upq(1 ——,up) ——(up)'q(1 —q/2)( f + I)]

(3.14)

It is easy to show that these expressions Eqs.
(3.13)—(3.14) give the correct amplitude ratios ob-
tained by other methods. '

I

the desired terms; for example

—'=7 + X a~(t)M~,h,
M

(4. la)

IV. DISCUSSION

In this s'ection we will discuss several aspects of the
present calculations which bear op their applicability
to three dimensions. No attempt to be exhaustive is
intended, but the general lines will be indicated.

We first consider the fact that even at 0 (e) the
spherical limit is recovered exactly. We may under-
stand this by noting that for n ~ all the diagrams
are simply related to the one-loop diagram and sum
geometrically. Thus when wc cancel the diagram
series for n W ~ we are defining an effective "mass"
m'~ K[exp( —,aL ) in terms of which we can make

an equivalent simple summation. The actual summa-
tion is of course, given by the solution to the renor-
malization-group equations, but we can imagine this
mass as containing all the information not embodied
in a "screened interaction. "This gives some physical
insight into the present matching technique;

Conservatively speaking, one lesson is that the
choice of L should not be a passive act; each choice
carries with it a decision about the details of the
crossover behavior. Unfortunately, the spherical ex-
amples also show that it is not enough to consider
various constant values of L; the renormalization-
group invariarits enter when the best n = ~ L is used;
Therefore, we require at least partly objective criteria
for L. Aside from the n = ~ limits being given ex-
actly, the present choice has the advantage of
preserving to the greatest degree possible the original
Landau-Ginzburg form.

This has several consequences which are in part
technical. First, for the Ising-like equation of state
the invariant q (—= uA'GM2/tr~t) can be normalized to
all orders in ~ to its e =0 values: q -2 for t =0 and

q -3 for the coexistence surface. This makes q a
good candidate for a parametric description of the
equation of state. Second, if we wish to blend the
crossover-critical equation of state with a more gen-
eral background we may do so simply by appending

where 2 represents Landau-Ginzburg terms. In fact,
the a~ should also contain crossover terms. To lead-
-ing order we can always express them in terms of Y

ap Y ~ap (4.1b)

with }t~ =
6 p(p —1) +0 (a). Finally, by compactly

expressing the equation of state in terms of Y, it is
relatively simple to correct the crossover equations
for cutoff effects.

The need for such a correction can be seen even at
0 (e). The expression for Y in terms of a matching
/' is

Y '=1+u(e" —1) (4.2)

For t 0, I" ~; but for t —1, I"—0, Eq. (4.2)
makes little sense if /' ~ 0, since it represents the
one-loop integral, which can generally be expressed
as (see Appendix A)

I = 1 K K

b(0) A' A
(4.3)

K = ~'exp( ——eL )
e b(0)

a (0)

~here K and L as usual depend on the function

(4 4)

where a and b are analytic functions of ~'/A' which
depend on the nature of the cutoff employed. The
renormalization-group equations apply as written in
this work only if a and b are set equal to their K =0
limits, converting Eq. (4.3) into something resem-
bling Eq. (4.2). The magnitude of the difference is
calculated at d =3 for the spherical model in Appen-
dix A and is shown in Fig. 1. The differences are not
large until one is well out of the critical regime, but if
a smooth transition to high-temperature behavior is
desired, we must somehow account for the differ-
ences between Eqs. (4.2) and (4.3).

One method that is exact for n = ~, and correct to
one-loop (resumed) for all n is to define a new length
scale K
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U=2

1.0—

u =0.9

0.6

u =0.5

0
0.01

I III
O. I

«III
I.O

0 =0.1

FIG. 1. Family of crossover curves is given for the spher-
ical model at d =3, for four different cutoffs. The function
plotted is C =—um/t as a function of m where m = ( '
= (I 2)' . Each cutoff result has been normalized to have
the same %'egner corrections. The asymptotic form incor-
porating only the %egner terms is also shown. For each
value of u = u/u, the extrapolated asymptotic (Wegner
terms) curve lies highest; beneath it are the sharp cutoff,
the k = 2 [cf. (A 6)] cutoff, the exponential loop cutoff, and,
finally, the k =1 cutoff (A5).

matched. Then the matching condition could be
reexpressed as

t

Y't"~ a (~'), b(tt')
u b(0) b(0) (4.S)

To higher than one-loop order this is only heuristic
but, since it is not expected that cutoff effects will be
large, an approach motivated by one-loop and spheri-
cal results should suffice. An alternate approach is to
properly include the cutoff in the renormalization-
group equations as is done in differential generator
approaches or in the manner of Lawrie. '7 However,
in either case the solution of the nonlinear differen-
tial equations is rendered far more complex, while
Eq. (4.5) is in the spirit of the effective bubble
resummation discussed above. It is encouraging that
the various cutoff forms give similar results (cf. Fig.
1). Any modification of the purely renormalization-
group results should be considered primarily as a
smoothing algorithm for the matching technique to
avoid the unphysical consequences of Eq. (4.2) as
I' 0. A consistent approach would require the in-
clusion of $6 and related terms in the Hamiltonian as
well as the cutoff effects on the renormalization-
group flows for the parameters and inhomogeneous
term.

We now turn to the nature of the dependence of
these 0 (a') results and their arbitrary a generaliza-

t exp J (1/v —2) dl

This can always be written as

(4.6a)

t
1 —p F(p)
1 —Q F(u)

(4.6b)

where F(p =0) =1. To O(a'), F(p) =exp(D„p).
The match point is determined from the u equation

1

4/Ol
i 1 —p G(p) u exp(- , aL„), (4.—7a)

1 —u G(u) p

where G (p) =1 to O(e'), G (0) =1 and we have re-
stored a value for the cutoff A (usually set equal to
1). The behavior of exp( ——,aL„) is known trivially

to one loop; we write it as

1 —p G(p) u ~' b(0) H( )
1 —u G(u) p

(4.7b)

where H(p =0) =1. Clearly, the factor
A 'b (0)/a (0) depends on the form of the cutoff.
To each order in perturbation theory I', 6, and 0 can
be written as polynomials.

The existence of an infinite A limit implies that the
parametric system Eqs. (4.6)—(4.7) has a unique cut-
off independent limit if u = uoh and the limit
A ~ is taken. Then we have

K'=t(1 —p)" ' "' "F(p)

(1 —p)' " uo= tr'uH(p)G()
p

(4.Sa)

(4.sb)

Equation (4.8) defines K'(t, uo) parametrically and is
independent of the cutoff. This applies not only to
the critical limit p 1 but also to the "mean-field"
region p 0. The complete system Eqs. (4.6)—(4.7)
differs from Eq. (4.8) only in the choice of

tions on the form of the cutoff employed. The cutoff
used by Nickel" and followed by many others, in-

cluding II, is to replace a simple k' propagator with
k'+ k4/A'. Many other forms such as
k2(1+k'/A2) are possible. As mentioned above,
the usual renormalization-group formulation discards
most of the consequences of a cutoff choice; howev-
er, some do remain. In particular, the value of the
fixed point u' depends on the cutoff form as do the
details of various amplitudes related to u". Discard-
ing all effects not related to the Wegner expansion in
powers of K" we may show that the entire Wegner
crossover function is independent of cutoff form and
is thus universal. This implies "universal amplitude
ratios" not only for the first Wegner connection-to-
scaling term but for all its powers.

The demonstration is simple and mill be given for
one function, K for M = 0 as an example. Using a
K match point L„, then tr' = t (I')
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nonuniversal [u- and A'b(0)/a (0)-dependent] scale
factors, and is therefore also cutoff independent
(within scales). A similar demonstration is possible
for any other function and for M W 0 (the use of the
invariant q is useful in that context). While each of
the component parts of a general parametric expres-
sion of the form Eq. (4.8) need not be cutoff in-

dependent, they (and all of the corresponding expres-
sions given here) are so to O(a ). This highiights
another disadvantage of the L = 0 match, since it
does not separate the cutoff dependent and indepen-
dent factors into multiplicative factors as in Eq.
(4.7b). Note that for fixed u, all the cutoff depen-
dence resides in the A 'b (0)/a (0) factor.

Strickly speaking, the infinite A limit guarantees
cutoff invariance only in the region 0 ~ p ~ l. Be-
cause p ranges from u (at I"=0) to 1 (at the critical
point), the region p ) 1 is accessible for u ) 1

(which appears to be the case for the d = 3 Ising
model'9). However, at each order in the a expan-
sion, F, G, and 0 and the function N defined by

exp g r) dl = I' ""At'(p)/W(u )

ponents of the Y 's„ this may allow a more useful
determination of these amplitudes. Explicit 0 (a')
calculations of the full crossover equations are in pro-
gress to determine if this is the case. Conservatively,
the work of Chang and Houghton is a warning that
the ~ expansions which remain in the matched cross-
over functions given here [such as for exp( ——,aL ) ]
need to be treated cautiously.

In summary, we have shown that by considering
the spherical limit and the structure of the differen-
tial generators, an alternative matching technique can
be found which should give a better resummation.
Moreover, it yields results in a convenient form for
blending in additional terms in the equation of state
or including the non-%egner corrections due to the
form of the cutoff. Renormalization-group nonlinear
scaling fields and invariants are stressed in the ap-
proach; this should provide reliable expressions since
exact nonlinear principles are correctly embodied.

APPENDIX A: CUTOFF CORRECTIONS AND
MATCHING-POINT EFFECTS

are expressible as polynomials or their exponentials.
%e therefore expect no difficulty in extending the in-
variance of these functions to p ) 1.

A final topic concerns the convergence of the
crossover forms in the ~ expansion. This is
highlighted by the recent work of Aharony and
Ahlers and Chang and Houghton" on the universal
properties of correction-to-scaling amplitudes.
Aharony and Ahlers point out that the lowest order,
the ratio of the correction-to-scaling amplitudes of
any two vertex functions, is given by the ratio of
their anomalous dimensions (shift in eigenvalue from
Gaussian). In the present context, this follows from
the fact that to lowest order the corrections to scaling
are carried entirely by the Y function. If this were
true beyond lowest order, then the ratios would con-
tinue to be given by the anomalous dimensions. Fur-
ther, this ~ould guarantee exponent relations among
the effective critical-point exponents obtained by lo-
cal fits to the crossover curves; e.g. , if only Y oc-
cured, a+2P+y=2 would hold everywhere in the
crossover region.

However, not all the crossover is in the function Y.

Chang and Houghton have calculated several ampli-
tudes two orders beyond lowest order, corresponding
to an O(a3) crossover function. One can easily show
that the results given in the present work duplicate
the first correction to the leading amplitude. The ~

expansions are incredibly poorly convergent, yielding
very little definitive information at first glance. Part
of this poor convergence may be attributable to the
correspondingly poor behavior of the critical ex-
ponents at O(a3). By calculating the full crossover
functions, these exponents are isolated in the ex-

I 2=—m2= ddp

I+(u/a)1 a " g(p )[g(p )+m']

(The corresponding expression for 14 involves

If only the form of a %egner expansion is needed,
then we need not calculate a full crossover equation„
in this case the amplitudes of the leading and non-
leading singularities can be considered as free param-
eters. If more than a single term is necessary, either
because u (& 1 or because a complete passage to
mean field is desired, then the second and higher
powers of the %egner correction will be needed and
their amplitudes are not free. The n th %egner term
is g

""smaller than the leading singularity. In the e

expansion where ru ——a + 0 (a') these are indeed the
most important corrections; but as a 1, 2' (and
3') become comparable to the corrections which ar-
ise from the neglected details of the cutoff mechan-
1sm.

In this Appendix we explore the nature of the
latter effects by means of the spherical limit, n = ~,
for which exact results may be obtained; in particular
cv—= e. They have previously been considered for the
n-vector model to O(a) by Lawrie'7 for several cut-
offs. Lawrie's results are essentially included here
since the 0 (a) results is a one-loop result and for
n = ~ the one-loop result represents all the informa-
tion. These having been examined, the degree of ap-
proximation incumbent in these matching-point
methods is examined. If the propagator is taken to
be g (p') + m', then in the spherical limit, the inverse
susceptibility is
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I = 8/8m~m'I. ) In general I is of the form

I =a(m')m ' —b(m'),
where a and b are analytic in m' [b (0) & 0] and
a (0) is universal

a (0) = I"(1+—,
' a) r(1 ——,

' a)

(A2)

fPI
2 sea+

1+u(m ' —l)e(1 —m)
(A9)

The different values of b (0) lead to different values
of the fixed-point value of u [u" —= 1/b (0)]. In terms
of u —= u/u' and a rescaled m each of the above
results at d =3 can be written for small m as

The function b and the m2 dependence of a depend
on the cutoff. For a smooth cutoff
g (p')' =p'(1+ p')» we find

b (o) = r (2k + —,'.)r(1- —,'.)/r(2k);

on the other hand, for g(p') =p2(1+p'"),

b(O) =r(1 —a/2k)r(2+a/2k) .

The full forms of a and b can be calculated in a
few cases, For example, a sharp cutoff p2 ~ 1,
g (p2) ='p gives a (m') = a (0) and

b, =2F)(l, —,a, 1+ 2a, —m')

On the other hand, associating a factor of exp( —p')
with the loop integral gives

a, =r(1 ——,a)r(I+ —,.)e1 m2

bL =I'(1 —
2

a) iFi(1, I + —a, m')

For d =3, ~=1, the smooth cutoff cases
g (p') =p~(1+p2") can be evaluated for k = 1, 2.
For k = 1 we find the simple result

This last expression contains the first %egner correc-
tion to all orders, but is valid only for m ( 1.

Figure 1 compares the values of C = um/t for the
cutoffs Eqs. (A5) —(A9) as a function of u and m.

As is plainly shown, the inclusion of the non-Wegner
terms changes the deviation from asymptotic
behavior. Ho~ever, for u &&1 the case of a small
asymptotic regime, the complete Wegner crossover is
sufficient. In this case, a single %egner correction
term is not enough. Note also the close agreement
of the various cutoff forms. These deviations are
maximal among n-vector models because they are
corrections to the function Y which appears with the
power (n+2)/(n+8)+O(a). Thus for n =1, the
effects will be roughly the cube root of that shown.

As noted in the text, the match point described in

the present work allo~s a simple inclusion of the cut-
off effects into the crossover function in a manner
exact for n = ~ and correct to resummed one loop
for general n.

Now let us examine (within the spherical model)
the effects of match-point choice. For any cutoff but
ignoring r/A2 terms, the exact answer is

(r =-r2=x '=g ')

1I =- 1—
2m' 42m + I

The result for k = 2 is much more complicated:

(A5) f =
1+u (cr' —1)

where

c = a (0)/b (0) = 1+Xa+ 0 (a')

(A 10)

4 [CP —(%3C D++C+D )/C+]I2=- +-
2m' JZ 3 (3C' +C+)

D+=-'[(C'+3C,')'r'+ C ]'~',

C+=2 ' '[[(m'+ —')' '+m']' '
(A6)

+ [(m'+ —,', )'"—m']'"] .
The rather complicated form of I2 serves as an exam-
ple of a result true for general cutoffs and all e. If
g (p') =p'+ 0 (p'p'»), then a (m') = a (0)
+0(m'"). This is a consequence of the fact that the
nonquadratic parts of g (p2) may be considered to be
irrelevant corrections to scaling of the two-point
correlation function.

In three dimensions the sharp and loop cutoffs
results can be written

I, = —(—m —tan m),1 1 -1 (A7)
l?1

The matching condition of the text would, of course,
recover this exactly. In a one-loop O(a) approxima-
tion with L =0 match we w'ould have

tf=
el 01+u(e ' —1)

I

el 0
A t'e + O ( 2)

1+u(e o —I)
2I

te '
1=-

el 01+u(e ' —1)
(A I 1)

Evaluating Eqs. (Alo) and (Al 1) as written for a = 1

we have the exact result

(A12)
u c [—'(I+a'I+4tx /c )]

2
where x = (1 —u)/u . The one-loop O(a) result for
L=0

IL = —a —e erfc(m)1

fl1
(Ag) f = f2 1— 2) . (A13)

u [—,
' (1 +41+4tx ) ]' 1+41 +4xt
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As an approximation to Eq. (A12), Eq. (A13) is

quite poor. For the k =1 cutoff used here and in II,
1 2

2
c 3 and the asymptotic amplitudes differ

by a factor of —,. Moreover, if a different cutoff were

used, c and A. would change. The effects on Eq.
(A12) can be eliminated by a change of scale; Eq.
(A13) has lost this property. Of course, our primary
interest is in crossover functions. Defining C(y) by
r = A t2C ( y) with C (0) = I and y = const t, the exact
crossover function can be written

l.2—

1.0

0.9—

0.8—

0.7—

) = 025

C(y) = 4
(I+41+y )' (A14)

0.1 !00

(a)

l000

In general the one-loop 0(a) crossover functions
cannot be made to agree with the exact result for
both 0 & y « 1 and y )& 1. Let us consider the
case of u « 1 so that the full crossover regime can
be represented by the %egner terms alone without
the full cutoff functions. Then, if we scale y for the
one-1oop approximation

4 I h, 41+ay —1

(I+a'I+ay )2 1 —h. v I+ay +1

1,2—

IO—

y= -0.75

0.25

2k-1

)-) J

while for g (p') =p'(1+ p'")

(A16)

(A17)

The rescaling factor n is determined by forcing agree-
ment between C~ and C. If we require that the term
linear in y agree (the first Wegner correction) then o.

must be chosen as a=a&,
2(1-) )

2 —3A,

Note that the regime —& A. & 1 is excluded. If we

require agreement for large y, a = a&,

a) ——1/(1 —Z)

Here we require A. & 1.
In Figs. 2(a) and 2(b), the ratio C~(y)/C(y) is

given for various values of h, using a& [Fig. 2(a)]
and n) [Fig. 2(b)].

The value of P given by the e expansion is deter-
mined by the cutoff. For q'(p') =p2(1+p')"

l00

FIG. 2. O(e) L =0 match-point crossover functions
C](y) are compared to the exact result C(y) for various
values of the cutoff-dependent parameter X tcf. Appendix A

(A16)—(A17)j The curve for A. = —0.5 used in II is shown
with a heavy line. (a) The crossover functions scaled to
give the same first %'egner correction. (b) The crossover
functions scaled to agree with the far from critical regime.

The ability to pick a value of X which gives the ex-
act result is an accident of the spherical model. The
model calculations for finite n will be useless if the
~-expansion estimates are allowed to vary arbitrarily,
It is to be hoped that the present technique, which
separates cutoff-dependent and independent quanti-
ties and yields compact expressions, will yield a sharp
test of the details of the renormalization-group
model.

Thus in the e expansion A. is fixed and Fig. 2

represents the error in the crossover function for dif-
ferent choices of cutoff; if we allow A. to vary some-
what from its calculated value, we may improve our
result. In fact, ) =0 gives us the exact result, while

A, =+—, gives a crossover function good to 2%(!) over

the entire region (only h. = 0 and —, permit agreement

at both large and small y).

APPENDIX B: PERTURBATION SERIES

First, we list the results for the Ising-like n =1 case
and the general n disordered phase specific heat. For
completeness, the general n results for the disordered
phase I 2 and I'4 series will be quoted from Bruce and
Wallace. ~

Discarding the non-Wegner terms, the corrections
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to A (M) to two loops are
t

t (')' (/A)'
hA = —-A '—— ——,—Bo + —uA '(n')

]
——„u'M'n2[ —

s
(In'n'/A2 f ) ]—. (a1)

The first two terms are exact for all e, the third can
be obtained from the work of Nickel. '8 A factor of
a (0)Kq where

a (0) = r(1+ —,'.)r(1- —,'.)

Kd 2~&I /(2m. )dr( ' d)

has been absorbed into A, u„and M'. The constant
80 = b (0)/a (0) = I -+ —,e exactly with a cutoff of the

form p4/A2 added to the propagator. Ail higher-order
bubble diagrams include a factor of (K/A) ' Bo s—o
that the matching condition exp( ——,eL ) =1+—,e

would cancel all the bubbles in both A (M) and lt/M.
The equation for IIt/M i«btained by differentia-

tion

t 1 1
ti

, (n/A) ' —Bo t, , (K/A) ' —80 t, , (n/A) ' —80 Ihh M= ——uK + u K

—
6

u n [ 8(—ln n /A f)] + A'—M—u (In K /A +2lnn /A —f )

, u 2u, uM' uM'.t
(a3)

For comparison with Wallace and Zia:

26M, u —'u uM uM2 (a4)

We may also calculate the series for r2$~. With the
,/

Unfortunately, Bruce and %allace7 and Wallace and
Zia" use different normalizations of u. In this work
we have adopted the conventions of Bruce and Wal-
lace for this replacement:

l

Bruce-Wallace normalization

r,g'= I+ —,', uq [I --,'.(I. + I)]
——'u'[ —'(L + 1) ——' I ]3 8 12

+—„u'q [—,(1+L) + (1 —4l) ]

+ —, u'q'[ ——'(L +1)+ —"I] (as)

The specific heat to two loops is given by (exactly) in
Bruce-Wallace normalization

(1 —'e)t 'I' ——80
C=nA~, — 2

1

(I ,'e)t 't2 -B-o (I---, e)—n —(n+2)uAd + — (Bo—t 'I')
3 26

(a6)

For completeness we may add the series for the disordered phase I'2 and I 4 from Ref. 7:

I'2=A't [I+—(n +2)u(lnt+1 —
4

eln~t) +
3

(n +2)u2[(n +S)ln t+3(n +2)lnt+2(n +2) —3f] j, (a7)

I'4 = A'u (1 + —,
' (n + g ) u [ [1+—,

'
u ( n + 2) ] lnt + ,

'
u ( n +2)—+2 —e(-,' In't + ,

'
Int )]-

+—'(n2+sn +20)u~(ln t +4lnt+4)+ 9 (Sn +22)u'( —In t+lnt ——' f))
36 9

This implies (cf. II)
1

p(u) =—au + —, (n + g) u2(l + -, a) —
3

(3n + 14)u3, g(u) = —,
~

(n + 2) u'

I/v(u) = 2——(n + 2)u (1+—e)+ —(n + 2)u2+ —, (n + 2) u2

(a9)
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