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Structure factor of a charge-tIensity wave
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The elastic structure factor of an unpinned charge-density wave (CD%') is derived. Both phase and amplitude
excitations are studied. Phase modes cause a reduction of the intensity of CD%' satellite peaks of any order.
Amplitude modes, however, do not alter appreciably the intensity of the first-order CD& satellite. In fact, they
enhance the intensity of peaks of higher order on account of their nonlinear nature. Neither phase nor amplitude
excitations affect the usual Bragg reflections. The mean-square fluctuation of the CDW phase and the associated
reduction of the sateHite peaks are discussed for the case of potassium and are shown to depend critically on the
phason spectrum.

I. INTRODUCTION

Systems containing incommensurate modulations
of normal crystalline periodicity have recently
attracted much interest. In particular incom-
mensurate spin-density-wave' and charge-density-
wave (CDW) systems have been studied extensive-
ly since their observation in chromium and in
layered compounds.

An interesting feature of these materials is the
existence of a new branch of acoustic, collective
modes named phasons associated with fluctua-
tions in space and time of the relative phase be-
tween the lattice and the incommensurate modula-
tion. Such extra low-frequency modes, which
coexist and merge with the normal acoustic pho-
nons, affect many physical properties. Examples
are the low-temperature heat capacity, elec-
trical resistivity, ' NMR spectrum, ' lattice
thermal conductivity, and diffraction pattern.
The latter phenomenon is the object of the present
paper. Our emphasis will be on CDW systems
but most of our results are directly applicable to
any displacive, incommensurate modulated struc-
ture.

The static structure factor of an incommen-
surate CD% has been thoroughly studied in Ref. 5,
where it was shown that new collective modes as-
sociated with CDW phase modulation provide a
peculiar contribution to the Debye-Wailer factor
of the CDW satellites in a diffraction pattern. In
the present paper we extend the analysis of the
structure factor to include the amplitude modes. 13

This is necessary for a complete and consistent
treatment. The paper is organized as follows:
In Sec. II we derive the general expression for
the structure factor of an incommensurate CDW.
In Sec. III we propose a theoretical model for the
dispersion relation of the lowest-lying collective
modes. In Sec. Hf we discuss the temperature
dependence of the CDW structure factor and the

mean-square fluctuations of the phase and amp»-
tude variables. Finally Sec. V contains further
discussion and application, especially to some
problems involving alkali metals.

11. DYNAMICAL STRUCTURE FACTOR FOR A CD%

The dynamical structure factor for an array of
N ions is given by

icot -84k R~(t) -t Ry(0)) (I)
1 dt

T t
OO &t9

where R,.(t) represents the position of an ion i at
time t. The subscript T denotes that a thermal
average is taken over an equilibrium distribution
of states. In a CDW system the ionic lattice
undergoes a small distortion from the normal
crystal situation. The new equilibrium positions
are given by

R,.=R, +g sin(Q' R,. +

pbbs),

~here R,- is the equilibrium position of the ion i
in the undistorted lattice. Q', X„and p, are the
wave vector, amplitude, and phase of the CDW in
the ground state. Q' is the Brillouin-zone reduc-
tion of Q, the wave vector of the corresponding
electronic-charge-density modulation, which is
assumed to be incommensurate with respect to
the ionic lattice.

In a CDW system the vibrational modes of the
lattice are strongly modified for wave vectors
near the CDW wave vector Q'. In this region the
eigenstates of the distorted lattice are phasons
and amplitons. ' These vibrational modes are
associated with modulations of the phase @ and
magmtude (g~ of the CDW ionic displacements.

Away from Q' these new modes merge with the
phonon modes. The effects of phonons on the
structure factor are well known. Moreover, pho-
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nons are not relevant as far as the typical features
of the distorted state are concerned. For in-
stance, they do not affect appreciably the ratio
of the CD% satellite intensities to the usual Bragg
reflections in a diffraction analysis. "" Ac-
cordingly we will disregard altogether these de-
grees of freedom in what follows. Allowance for
phase and amplitude modulations in the CDW
causes the positions of the ions, E(l. (2), to

change in time and in space.

%,(t) =P, +A, [1+8m(P„t)]
)(.'sin[ / ~ 5) + 5$(P)t t)] t

where 5Q and 5A are the magnitudes of the phase
and amplitude modulations. For convenience $0
has been taken to be zero.

Inserting E(l. (3) into (1) we obtain

0 0 0 0S- = —Q 8'"'"& "J'e'o '""(~y'J(k'A')J (k A ) e—'"'4 (f)A (]))0 0 m 0 2 &mf &y f1mi&2
f, y n, m*- a 00

where g and m are integers and J„ is a Bessel function of the first kind. The functions C„,~ and 4„
are defined as follows:

((f) (e(n5e(R), t)& (m5P(-R&t, 0))

{&„{k.A [I+52(R„t)]}'4{k A0[1+5&(50,0)]j}„
Z„(k.A,)J„(k.A,)

These quantities are correlation functions and
contain the dynamics of the phase and amplitude
modulations. In obtaining E(I. (4) extensive use
has been made of the Jacobi-Anger generating
function for the Bessel functions:

fg~iIIX +in''

Finally since the eigenvectors of the amplitude
and the phase modes are orthogonal, the average
in E(l. (1) can be carried out independently for
the two categories of fluctuation.

A. Phase excitations

We sta.rt with the quantization of the phase var-
iable {}Pof the CDW. Accordingly the phase field
5(t){H'„f) is defined as

8y(R f) ~t)(+ e)(t) R(-te~)) t )((f,R. te ))) (8)]P 2. g Qyg

where (I, 5(t);, and (d~ are the wave vector, ampli-
tude, and frequency, respectively, of the phase
mode created and destroyed by the operators
g; and a,». These operators satisfy the usual
commutation relations for bosons. From E(I.. (8)
it follows that

[5j(Ro, f), O j(R0„0)]=

-2i ~ 2
' sin[@,~{(I,t)], (8)

5(t);

{f

where y, ~((I, f) is an abbreviation for (I ~ (Ro —Ro&)

—co&g. This commutator is clearly a c number,
and both {)$(R„f) and {)@(R&,0) commute with it.
Now the function C„,& of E(l. (5) can be expressed

e„,t{t)= exp(em Q, eie[ttt(tt, t)])(exp{i[et!j(tt], t) —mep(Pqp)]})„. ,

Since the exponent in the last factor is a, linear form in the boson operators a;, the thermal average in
E(l. (10) reduces to a simpler result when we take the phasons to be harmonic oscillators.

(exp'[~{}j(R'„f)-m{)y(R„0)]),=exp--', &~n{}y(R'„f)—m{}y(R'„0)~'& „.

(10)

The remaining thermal average is then computed in a straightforward manner with the aid of E(l. (8),
x.e. ,

(~n {()R(t)„)-]}m{()(])),R)~0)r =g (2¹+l){n + m - 2n cmo[ys, &(j, t)]] . (12)
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(is)

N& is the temperature-dependent mean occupation number of the phason mode of q, &a~a;&r, and is given
by the usual expression [exp(5ur;/k»T) —1] '.

The mean-square fluctuation of the phase at a given lattice site is defined by

&6e'&= &I 6e(Itl f) I'&'

By means of Eq. (8) one can readily show that

2

&5Q )=g (2N;+1)
2

(14)

Then with the use of Eqs. (10), (11), (12), and (14) the function 4&„,.
&

can be finally written as

2

„(f)=exp[--,'(n'+m')&5P'&]expnm Q ' ((2Ng+1) cos[y„(q, t)]+i sin[y„(q, t)]J.

If we define 4&„as the time-independent component of the function C„,~(t) we have

-& /2(n2+ 2)&6y2 &„~=e (16)

B. Amplitude excitations

Consider the function J„[k~ Ao(1+ 5A) J entering Eq. (6). For small amplitude modulations we can expano
this quantity to second order in 5A. In the limit of small CDW amplitude, (k A, «1), we use standard
recursion relations for the Bessel functions and write

z(&.Xh+~~(R'„»&&=z(i X&(&+~n~t&~(&&'„»+
'"' '"'

t&~'(R', , »}. (17)

In analogy with Eq. (8) we introduce the field 5A(R~„f) defined as

6A(RO f) —g I
(I& e&&C a(-op& $ -&&b@$-o~&&)

22
(18)

where q, 5A~, and & are the wave vector, amplitude, and frequency, respectively, of the amplitons
created or destroyed by the operators b& and b&. These also satisfy the usual commutation rules for
bosons. The function A„„,~(t) can be evaluated explicitly. With the use of Eqs. (17) and (16) in (6), we

get

A.,~~«) =1+i[I~I(I~ I- »+I~ I(lm I- »]«A'&

5A-+ Inm Ig ((2N&+ I) cos[y, &(q, t)]+i sin[y;&(q, f)]]. (19)

(20)

With the use of Eqs. (15) and (18) in (4) the
dynamical structure factor of the CDW system
can be obtained. Finally notice we use our ap-
proximations, 5A «1 and k Ao «1, to calculate

The functions N& and y, &(q, f) differ from N; and

y, &(q, t) only by the substitution of 0& for &o&. In
complete analogy with &5Q'&, Eq. (13), the CDW
fractional amplitude fluctuation &5A ) appearing
in Eq. (19) is defined as

&6A'&= &IA(P„ t) I'&,

5A ' (2N, +I).

A„, the time-independent part of A„,&(t) It.
can be written in the following suggestive way:

A.- =exp-'[I. I(I.I- »+ I~ I(l~ I- »] &»'&.

The exponent of Eq. (21) is positive definite.

C. Elastic structure factor

We focus our attention now on S- the elastic
part of the dynamic structure factor, Eq. (1).
From Eq. (4) it is clear that the elastic contribu-
tions to Sg „come only from the time-independent
components of both C „„(t),Eq. (5), and A„„(t),
Eq. (6). By means of the results (16) and (21) in
(4), the elastic structure factor of an incommen-
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surate CD% can be expressed as QJ(kz)

g k- 6+g J„'k. E.' T, T,
(22)

where 6 is a vector in the reciprocal lattice. The
temperature dependence of this quantity is con-
tained in the functions E~ and E"„defined as fol-
lows:

Cdo "
I
I

h
I
I

~(zv) -tn w&, &T&

with

W~(T) =2(6$ )

2&II &Inl-1)lv~ &r)

with

W„(T)= 2&{5A ).

(28}

(24)

(25)

(28)

0

FIG. 1. Schematic dispersion relation for the low-ly-
ing excitations of a CD& {in a three-dimensional metal).
The phonon, phason, and ampliton regions are denoted
by P, Q, and A.. ~0 is the frequency of the lowest-ener-
gy phonon {ofthe normal state) at k= +Q'. The phason
{or amplitonj wave vector if is the deviation of k from.
yQt

The functions E~ and E„are, respectively, the
phason' and ampliton temperature factors.

The pattern associated with the elastic structure
factor 4 Eq. {22), has been thoroughly dis-
cussed in Refs. 5 and 15. We add here just a
few remarks. The phason and ampliton tempera-
ture factors do not affect the normal Bragg re-
flections, (m=0). As is apparent from Eq. (23),
I"~ plays for the phase modes a role similar to
that of the usual Debye-%aller factor. The phase
oscillations of a CDW reduce the intensity of the
satellite peaks.

The amplitude fluctuations, on the other hand,
do not have any significant effect on the intensities
of both the Bragg reflections and their first,
(n = 1), satellites, which are the most relevant
features of the diffraction pattern. FinaHy a
noteworthy result is that the intensity of higher-
order satellites, ~n

~
2, is enhanced by amplitude

fluctuations.

IH. EXCITATION SPECTRUM

The strong coupling of phonons with wave vec-
tor +Q' induced by the presence of the electronic
CDW gives rise to a qualitative modification of
the vibrational dispersion relation. As already
pointed out, the regions of the spectrum most
strikingly modified are those assigned to phase'
and amplitude modes. ~s The dispersion relation
of the lowest-lying modes is shown schematically
in Fig. 1, where the wave vector q of a phason
(or an ampliton} is also defined. The situation can
be described by the following simple model.
We start with the assumption that only the lowest
acoustic branch of the phonon spectrum of the
undistorted lattice is relevant. That is, for k
=+Q' the other branchs have much higher fre-

quencies. In this case, for small q (i.e., for
k= +Q') the vibrational modes of the system can
be described by a 2 x 2 dynamical matrix

~o ~P{q}
(27)

&0P'(q) &0',

where 0 is the frequency of the unperturbed pho-
nons with k=+Q' (see also Fig. 1). These phonons
are assumed to be dispersionless in the vicinity of
+Q'. The off-diagonal coupling E(q) is associated
with new terms appearing. in the electronic dielec-
tric-response matrix and caused by the CDW. ~3

The spectrum of collective modes described by
(2V) is given by

&0, (q) = &og], +E(q)]'~'.

The frequency &o, is 0 (the ampliton frequency),
Eq. (18), whereas &o is &o- (the phason frequency),
Eq. {8}. 'Ihe situation here differs significantly
from that of a one-dimensional CD% system. In
that case the Peierls mechanism" is related to a
giant Khon anomaly's~' in the phonon spectrum.
Such an effect need not occur in the diagonal part
of the dynamical matrix, Eq. {2V}.

The function E(q) dictates the crossover region
where phase and amplitude mode merge into nor-
mal phonons {as I q~ increases). The knowledge
of this function is crucial in the present context
since (as discussed above} the two different sets
of collective modes contribute in a completely dif-
ferent way to the Debye-%aller factor of the sys-
tem. At present a theory for &(q) is not at hand.
Nevertheless the problem can be easily solved in
the limit of long wavelength (q-0) by taking ad-
vantage of the phason dispersion relation which
is known in this regime.



STRUCTURE FACTOR OF A CHARGE-DENSITY WA VE

C2 2 2 2 2 2

F(q 1 ( cq„+qcqq +cqgg)

0
(30)

The corresponding expression for 0;, the ampliton.
frequency, is obtained from (28).

0;= [2uPo —(c„q„+c'„q„+c,q,)]'~ ', q- 0.

Expressions (29), (30), and (31) provide a correct
description of the excitation spectrum only for
small

~ q~, but fail to account for the details of
the dispersion relation when +;, Eq. (29), be-
comes comparable to &u, . A model for F(q) can be
postulated when such details are needed. '

As was first shown in Ref. 5, the phason fre-
quency goes to zero linearly with

~ q~ and can be
expressed as

(29)

c„, c„, and c, are the phason velocities along
orthogonal principal axes x, y, and g. Usually
z can be taken along Q. &u; is in general very
anisotropic. In jellium, for instance, the spatial
isotropy causes c„and c„ the transverse-phason
velocities, to be zero. (The longitudinal-phason
velocity c, is finite. ) For a CDW in simple me-
tals c„and c, are expected to be of the order of
magnitude as the sound velocity, "whereas c,
is thought to be larger by one order of .magni-
tude. '"

If we substitute &u;, Eq. (29), for &u in Eq. (28),
we obtain

) 2 "e~/2T
f~(T) =8 —

i
dxx cothx.

ey i "0
(35)

e~ is the phason characteristic temperature de-
fined as 9~=I~,/ks. The constant factor W~ in
Eq. (34) is

magnitude of the CDW wave vector Q'. Notice
also that the contribution to W~ of a phason com-
pared to an equivalent phonon's contribution to the
Debye-Wailer factor is a ratio (in the exponent)
of (~ G ~A,) ', typically of the order of 10'. Of

course this factor does not carry through to the
total sum (32) when compared to the total Debye-
Waller factor, since N~ is much smaller than 3N,
the total number of vibrational modes of a mon-
atomic lattice.

The qualitative behavior of W~ as a function of
temperature can be readily obtained by an expli-
cit evaluation of the sum (32). We approximate
&u- by Eq. (29). The phason wave-vector space is
then taken as the volume in q space contained in a
surface of constant frequency „ the frequency
at Q' of the lowest-energy phonon of the normal
lattice. Due to the strong anisotropy of the
phason spectrum, such a region of the Brillouin
zone has the shape of a pancake with the shor't
axis along Q. Within tins model the quantity
Wo(T) can be expressed as

W~(T) = W~ f~(T),
where the temperature-dependent. function of f~(T)
ls

IV. PHASON AND AMPLITON TEMPERATURE
FACTQRS n(0,9,)'

Wq = (38)

This section is devoted to the study of the temp-
erature dependence of both the phason and ampli-
ton temperature factors E~ and F"„.

A. Phasons: W@

The quantity S~ is proportional to the mean-
square fluctuation of the CD% phase and is de-
fined in Eq. (23). With the use of Eq. (14) we can
write

An average transverse-phason velocity c,=-Fc„c,
has been introduced together with the quantity p,
the phason anisotropy ratio, defined as

(37)

If the temperature is much smaller than the
cutoff 9~, f~(T) =1, i.e.,

(32)

lim W~(T) = W~ .
T/eg, » 0

(38)

where the sum runs over all the N~ phason modes
of the system. The virial theorem allows us to
obtain the amplitude coefficient of a single phase
mode, defined by Eq. (8).

W~ represents the contribution of zero-point phase
fluctuations of the CD%. In the high-temperature
limit, when T is greater than 6~, W~ is propor-
tional to T. In. this regime we can write

(
4lI )'I (33) W, (T) =4 —W'„T&9, .

where p and V are the mass density and the total
volume of the ionic lattice. As discussed in Refs.
5 and 11, 8~ does not depend explicitly upon the

The temperature dependence of E~, Eq. (23), is
readily deduced with the use of Eqs. (35), (38),
and (39). As the temperature increases E~ goes
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to zex'o exponentially with T from its zero-temp-
erature value exp{-n'W~).

8. Amplitons: 8A

pressed with the use of Eq. (22):

+nQ 0]
I F~(T)/&(T)z,{G.A,) ) (44)

The mean-square fluctuation of the fractional
amplitude of the CDW, 2W„, Eq. (26), can be re-
written by means of Eq. (20) as

Wi =» E I5+1I coth(jM /2ksT), (40)
i

'ihe sum in Eq. (40) runs over the same range of

q as in Eq. (32). Then the analysis can be carried
out with the use of Eq. (31) and follows the same
procedure outlined in the discussion of W~. For
the sake of brevity, we report here just the most
relevant steps and results.

The virial theorem allows us to show that &&-

is also given by Eq. (33), with 0; replacing &v;.

The final result can be cast in the following form:

W~ (T) = W~ f~ (T), (41)

W~ = W~ —0.57WO~

f ( )=, 2 X/2~dx
(2 2)&/ 2 cothI~ (2 x ) )

(43)

V. DISCUSSION

In the previous sections we have discussed the
theory of the dynamical structure factor in a
CD% system. The elastic part of this quantity
can be directly analyzed by a neutron-diffraction
experiment. The typical signature of a CD% is
the presence of extra spots, the satellite reflec-
tions, in the diffraction pattern. ' The ratio of the
intensity of a satellite peak k= 6+nQ to that of a
normal Bragg reflection k= 6, can be readily ex-

Notice that the zero-point, fractional-amplitude
fluctuations, Eq. (42), are roughly half of the
corresponding phase fluctuations. In the high-
temperature limit W„(T) increases also linearly
with T, with a slope which is approximately one-
quarter of the corresponding slope of W~(T), Eq.
(39). The behavior of E„"(T), In I

~ 2, is obtained
via Eq. (25) and is of course the inverse of that
of E~(T), as the signs of the exponents in Eq. (23)
and (25) differ. From its zero-temperature value,
exp[In I. (In I

—1)fP], F„(T) grows exponentially
with T. Nevertheless the product F„(T)&~(T),
entering the expression for the CD% structure
factor, Eq. {22), goes to zero exponentially as
the temperature is increased.

F~ and E„" are given in Eqs. (23) and (25). In par-
ticular, for the first-order satellite this ratio
is

o
I

wtr&-
2 j (45)

This quantity is explicitly evaluated in Ref. 15 for
the case of a CDW state in metallic potassium.
Equation (45) gives also a satisfactory descrip-
tion of the temperature dependence of the satel-
lite spots in the quasi-one-dimensional conductor
KCP." Notice that for higher-order satellites the
amplitude fluctuations tend to oppose the reduction
of intensity caused by phase fluctuations. This
phenomenon may be relevant in the explanation of
the anomalo+My intense high-order satellites
observed in modulated structures such as Na, CO, ."

Recently the authors discussed some aspects
of lattice dynamics in alkali metals assumed to
have a CDW ground state."""In particular the
CDW amplitude

I A, I and the average transverse-
phason velocity c» were calculated. The specific
values for potassium are

I
A

I
=0.03 A (Ref. 15)

and c,=1.4 x 10' cm/sec. " As far as the phason
anisotropy ratio &I [Eq. (37)] is concerned, no
theory is currently at hand. However an esti-
mate for this quantity can be obtained in an indi-
rect way by fitting experimental data. '" Ac-
cording to those analyses, 'g is thought to be
roughly 0.1. Furthermore if &„ the frequency
cutoff for phasons, is chosen as in Sec. IV, its
value for potassium is ~,=1.2 ~10"Hz. Ac-
cordingly e~ = 9 K. With the use of Eq. (36) we
can. now evaluate the zero-point, mean-square
phase fluctuation for this CDW model. The re-
sult is W~ =O.S5 &10, corresponding to a temp-
erature factor which is practically unity at zero
temperature. At T-10 K, W&(T}=0.37. The re-
duction of the satellite intensity would be given
by F~ = exp[-2W~(T)] =0.93.

This indicates that at low temperatures (T ~ 10
K), the phase fluctuations in the system are small
and do not seriously reduce the satellite intensity.
It should be noticed, however, that W~ is ex-
tremely sensitive to the value of c»: a change of a
factor of three in c», for instance, would com-
pletely reverse these conclusions.

The phase fluctuations in a CDW are also rele-
vant in the NMB spectrum. A static CDW theory
for the NMH spectrum in potassium" "leads to an
inhomogeneous shift having a full width of -40 G."
What is observed" is a single narrow line with a
fuD width of -0.2 G. This result could be explained
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within a CD% model if motional narrowing of the
Knight shift by thermal phase fluctuations" were
large. The results obtained above seem to make

this explanation unlikely. The discrepant NMH

linewidth is an important challenge for the CD%
theory of alkali metals.
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