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Retarded coupling constants of fast electrons to surface yolaritons of thin films
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The coupling of electrons to surface modes of a metallic or dielectric slab has been derived with full inclusion of
retardation. A detailed comparison of the retarded scattering efficiency to the nonretarded one shows clearly that
small-angle scattering is governed by retardation effects. At high electron energies and small angles of incidence the
retarded cross section differs from the nonretarded one by some orders of magnitude in the whole region

0(q (co /c, where q is the wave vector of the surface polariton, and u is the plasma frequency. The coupling
constants are then applied to retarded multiple scattering of fast electrons by surface polaiitons and compared with

the nonretarded results. %'e show that multiple scattering by the dispersive part of surface polaritons or plasmons,

respectively, plays an important role in case of thin metallic slabs.

I. INTRODUCTION

Ten years ago the coupling of electrons to sur-
face modes was worked out systematically by a
number of authors. ' ' Common to all this work is
the neglect of retardation, mainly because the
theory then is simplified to a great extent. Only
qualitative arguments are given for the justifica-
tion of this neglect, mainly based on phase space
arguments. '7 The theory in its simplified form
has been applied to a number of related problems:
the image potential problem, ' the problem of
bound-surface states, ~" surface-plasmon-assisted
tunneling of electrons, and the question of the
additional boundary conditions (ABC) in semicon-
ductor optics. '2

If we look at the dispersion curves of surface
polaritons in thin slabs, it will immediately be
clear that retardation in the coupling of electrons
to surface polaritons is only important at distances
larger than c/~ . Thus it will depend on the spe-
cific nature of a given problem whether retarda-
tion is important or may be neglected. For in-
stance, in bound-surface-state problems retarda-
tion is unimportant for deep states but will strong-
ly change the wave function of shallow states, as
in this case most of the wave function is in the re-
tarded region of the potential. Following these
arguments, the author has investigated the differ-
ential cross section for inelastic slow-electron
scattering by surface-adsorbed dipoles. " Depen-
ding on the electron's energy and the scattering
angles, retardation is shown to be more or less
an important effect.

In this paper we derive the retarded coupling
constants in close analogy to the nonretarded pro-
cedure. ' ' Having performed the "retarded quan-
tization, " both the longitudinal. and the transverse
coupling Hamiltonians are derived in the polariton
representation of a slab. In the next step the re-

tarded single-loss spectrum is calculated and
compared to the nonretarded one. Finally, the
energy-resolved multiple-loss spectra are calcu-
lated by using the fast-particle approximation. '
At the end we discuss how to include spatial dis-
persion effects and damping.

H= d y'X, (1a)

X=2~c'll'+ —(VxA)' —(gy)' yV. P
8m 8m

~a ~II'

+ -'m'f B ——A +—P' e(a+z)e(a —z) . (1b)0 ~ 2

The canonical variables describing the radiation
field are the vector potential A and its canonically
conjugate momentum II. Using the transverse
gauge they obey the commutation relations'4

[A, (r), rr.,(r')] =aSC„a(r —r') —iS—1 8 8 1
4m8x] Bg~ I r —r'

t

'

(2)

The polarization field is described by the- canoni-
cal pair of variables P and B. They fulfill the
commutation relations"

[ ( ) ( )] /@5~~5(r r )i a ziz +a
( )0 elsewhere .

The scalar potential y (not being a canonical var-
iable) is determined by the subsidiary condition

~y =4m% P (4)

and the constitutive relation folowing already from
the classical equations of motions is given as

II. MODEL HAMILTONIAN

The dynamics of a dispersionless polarization
field of a slab in contact with its own electromag-
netic field can be derived from the following Ham-
iltonian:
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e((o) =1+
0

In Eq. (5} ur, is the eigenfrequency due to short-
range forces. In the case of a metal ~,=0, and
4mfcoi0=m' =4vne'/m, with n being the density of
electrons.

Polaritons are now defined in the usual way as
solutions of Heisenberg's equation of motion:

iM' = [S',H] =-S'&e „S'.
The generalized polariton operator 8' is defined by
a linear superposition of all the canonical fieMs
appearing in the Hamiltonian density (1b):

S'= Jtd'r[n(r) .A(r)+p(r) ~ II(r)

+r(r) .P(r)+&(r) 'B(r)].

gext we insert the defining equation (&) in the
equation of motion (8} and commute the resulting
equation twice vfith each of the field operators
A„H&, P„and B,. Having performed all the
commutations we arrive at the following coupled
set of scalar equations of motion:

4—&5(I'") — ' r, (r) —+ p, {r)=i&a„,o.(r), (sa)

2, 4wc Q)0

(dpog GtPO
—

COpol

(do —
Q3po~

8. p waves

(i4)

p waves are by definition the mixed modes of a
slab. After lengthy but elementary calculations
the following equation for 6(r) is derived:

aFT( }+ ',"(~I+, f,' )8(-)=O,c ( wo —~)
Once 5 is known the field p(r) is given as

2 — 2

this case. Thus following equation for n is easily
der xved:

2 4v
Ao (r) + ga(r) =-e(a+ z)e(a -z), ', ~ a (r) .

0

(i 1)
Once n(r} is known, the other fields are derived:

4mc'a(r) = i(o„,p(r),

——5(r)+&; d r' (',
(

i(a„,y(——r),
2

I)'(r} + (o,'fy(r) =i(o„,5(r) .

(sb)

(sc)

(is).(uy.i, , ~i -, ,Vi, , 5(r'),() —v, d
I

— 'I

In (15) p„, , is a solution of the homogeneous
equation

2
pot

Phomolen & 2 Phomosen '

In Eq. (Sa) the transverse-vector fieMs y, and p,
are defined by

, , ~;, y(r')
r, (R = i(r)+ &;

p, (r}= e(a+ z)e(a —z)p(r)

, , ~; e(~+z )e(o -z )p(r )+&-— d r' —'—
4m t r-r'I

(io}

The appearance of these two transverse fields in
Eq. (sa) is a consequence of using the transverse
gauge in the canonical formulation of our prob-
l.em."

The solution of Eqs. (8a) —(8d) is performed in
exactly the same manner as in the classical (non-
quantized) case. There are three different types
of coupled modes, and they are considered sep-
arately.

A. s waves

Since s waves are the Aansvexse solutions of
Eqs. (8}, the vectors y, and y are identical in

The field e follows from p by Eq. (sb), and the
field y is given with help of Eq. (8c).

g. J.ongatudinal solutions

In this case the transverse fields e and p van-
ish, and the remaining fields y, 5 are obtained by
combining Eqs. (Bc) and (8d) with p=0. The re-
sulting longitudinal, equation is well known and not
reproduced here.

D. The boundary condition

We now want to discuss the boundary conditions
under which Eqs. (11) and (15) and the longitudinal
equation are to be solved. The operators repre-
senting the electric field strength E(r) and the
magnetic field strength H(r) are expressed by the
canonical. fields in the usual way' ':

E(r) = —4vcrI (r) —Vy(r)

, , &;. 5(r )4vcll(r)+v- -d'r'-"
I r —r' I

H(r) =W'xA(r) .
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%e imagine the slab to be slowly excited by just
one polariton. To be specific, we consider a p
polariton in what follows. The wave function in
this case reads

( &=~,lo&+c,s;lo&, (18)

where ~0& is the vacuum (no polariton excited) and
z is a quantum number. The expectation values of
the electric and magnetic field, respectively, in
the excited state (19) can be shown to be

[S„S]=4vnc' —+—1 1

(d~ CO&

4m ~(y2

2 2 2 2

x9 (a +z )e (a —z )) .
(26)

The orthogonality for it j is easily shown by using
Eg. (11) for two different eigenvalues:

(lE(')l) =~.~f (- "Pi(~~

g, &r- '4*(r')—zk+- d x -- ———--—+C.C.~ ~ p

(2o)

-r n, (r) + V(z;x, )a, (r) = x, a, , (r),

-~o.~+(r) + V(z;X, )n ~+ (r) = X,n,'(r) .

In Eqs. (26a) and (26b) we have defined

(26a)

(26b)

(I H (r)
~

&
= -c,c,*i&'.&& P,

"(r) + c.c. (21)

Since Maxwell's equations persist in their operator
form, ""the Mmovell boundary conditions are de-
rived for the corresponding expectation values.
Thus we arrive at the following boundary condi-
tions (for p waves):

2 4F (d
x, , =-", , v(z, ~, ,) =e(c+z)e(c -z)~. . . '

(27)

Multiplying Eg. (26a) with n~ from the left and
Eg. (26b) with n~ from the right, and integrating

2 2~0 &a 6c(r-)
2

z(o]
p&, homogen(r)

a=+a 8=~a
(22)

"' "'[~-«(r)]' = ", ' [&;XI, ,...,..(r)l'
~ g=+a

(23)

After identifying 5 with the classical polarization
P,~, , and the field p with the classical. vector po-
tential A,~ „the boundary conditions (22) and (23)
are seen to agree with the classical boundary con-
ditions for p waves. ""The same analysis holds
for s waves and for the longitudinal modes.

Owing to the same boundary conditions, the
classical eigenvalue equations are reproduced. ""
Thus we are left to determine the polariton norm-
ing constants.

0+

[S),Sq] = 6() . (24)

Since we start with the field n, the free constant
is contained in this field. Using the Eqs. (11)-
(14), the polariton commutator (24) between s
waves is derived to be

E. The polaxiton norming constants

The correct polariton normalization is demon-
strated in the following for s waves as an example.
Due to the homogeneous nature of the Eqs. (8a)-
(Bd), there is only one free constant which must
be determined to yield

FIG. 1. Polariton states in this paper are defined as
usual in any quantum-mechanical scattering problem.
The figure shows the coupled scattering states of photons
inside and outside the slab, respectively, and polariza-
tion quanta inside the slab (at normal incidence). In-
coming boundary conditions have been chosen. The
amplitudes A -A v agree with the classical ones. To
obtain the correct quantum-mechanical polar iton
normalization, all the numbers (1,A —A ) must be
multiplied with the factor C given in Eq. (34) of the text.



over the coordinate r, the orthogonality is im-
IQediRtely cleRx'.

Next %e detex'IQine the polarlton Dol IQlng coD-
stant. To this end gre have to distinguish between
the nonradiative modes and the radiative ones.""
The nonradiative modes follow from

(x(r)-=(x;, , (r) =—A. ..(z)e, x—

«,+ri COS(p g)e «r+ri s g (—a
@2+2&

~..., (e)=&„,*,cos(p, „.e), hei «
,e"« "I'cos{P,„.a)e «" I', 2 & +a

(29)

Rnd -e".-, s'Sin(P a)e «;,I' 2 & -a
e,-,f

W, , (z)=C. .. Sjn(p, ,e), &z«a
e "«;,(' sin(p Ia)e « -A', g )+g.

(»)
The px'opagRtion constants (I I Rnd p . Rre de-
fined Rs kDowIl froIQ the nonquantlzed cRse:

(
(x. ..= [q' —(0', ;(q)/c')'",

p„,„=[q'-I0,', ;(q)24&, (q))/e']'",
and the frequencies (d, ;(q) follow from the clas-
sical eigenvalue equations. ' Using (29) and (30),
the DorrQing constRnts are derived Rs fol.lo%rs:

(A ) [( {)) 1]1 (P )
(0 (q) (x a 4IIf ' 2P

(32b)

In the radlatjve xegjon of the djspersjon pjane" r (q &(s)/c) the eigenvalues of R given q Rl'8 colltlnuous ~

go we lntxoduce scatterjng wave functions with incoming scattered ural)es far away from the slab (see Fig.
1), Owing to the same boundary conditions at tile slab surfaces 'a, tile constRnts +'" "" agree with

2

the classical ones. If we use the frequency itself as third quantum number in the continuum

[s; „,~ „l=&(q-q')&((d-(d'),
'the Rddltlonal constant IQultlplylng Rll the classical constants ls given Rs

(33)

Sl)I(x (q, ~)1 "' (x(q, (0) = ((0'/e'- q')'" .
4wc

The same procedure applied to the p waves is much more elaborate. Thus we give only some results
which are central to the electron-surface-polariton scattering. The general polariton commutator within

takeo different p-wave states can be calculated by using the wave functions of Sec. II8 with the foBoming
x'esult (i,g 1I1 the following ls short fol' Rjj tile qllRIltunl numbers being I'elevRnt):

[SI SI]=4„.(~*+~;)&&'I pp& .....+ ~ (~;+~;)&&II&,&,,+'—, ««lp, &". -&0»I&,&".)='~(i-i).
0

(35)

If we write the 8 part of the surface-polariton creation operator [solution of Eq. (15)] in the form

3 tI«p

ii, , (r)=C, , (-cosh(p, , r) —s i S sich(p, , r)),
S, q,

C, ,- (r) = 0, , -sich(P, s) —«,i- cosh(P. s)), ,
~2qt2+

with P. ..following from (31) by replacing the index i by s, and with (h), , (q) following from the well
known equation

{36)

qS 2~( )/CS)(1 IS

) tanh[a(q'- (o'e((e)/c')'"] = —e(00) for (0, ,qS ~2 CS

(
q'- (0'2((d)/e' I'"coth[a(q' —(Ose((e)/e')'~'] = -e((0) for (0

2 2/CS

(39)

(39)

Vfe need to cal.culate the constants C, , , After very lengthy but elementary calculations they are detex'-
IQined to be
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ScÃi, „Sess, , (l
4', &/ ],.

)

4 +J'S sinn(sa)8) 8'-,q')
(q„- I)' 47]uPf ] e, —1 i. P, 2P,a P,'

h32vqe "e, cosh2(P, a) sinh(qa) hi6v(q'+ n', ) sinh (P,a)
(d, ,P,'(c, —1) sinh (P a) cosh(qa) u&, ,(e, —I)'o.',' cosh'(P a)

hl6vqe "sinh(2P, a) „sinh(qa)
(o, ,(e, —1)P,n, cosh(qa) (4o)

In (40) P„etc., is short for P. . . etc.

y, ](r)= y, ;, „(-r),
8&i f)

ylr)]ran�

)H( } ), qr ar )8 27]

(48}

F. Fields in the slab-polariton representation

Since the orthonormalized solutions of the Eqs.
(8) provide a complete set of states the field op-
erators A(r), 11(r), P(r), and B(r) are given in
turn as a linear superposition of all the polariton
creation and annihilation operators. The deriva-
tion proceeds in close analogy to the infinite cry-
stal (or vacuum) case and is not given here. In
what follows, we quote the results only in a some-
what implicit form, because the explicit writing
of all the formulas is not very illuminating and can
be obtained from the author at request. It is only
the longitudinal part of P that is given explicitly,
since the normalization that we have used differs
from that given in the literature. ' Of course, the
physics is the same. We have

P(r) = P, (r) + P, (r-) + P, (r), (41)

I 2

P, (r) =Q '
[y, , (r)S, , +H.c.j, (42)

4 h

&~., ~io-', ~i "'
~0

H (r) =. (,")T,. (r) +—j,. (r))S; +H.c.

A(r) =A, (r)+A (r),

)r,(r)=g ' a, , (r)S, , +H.c.),&s, &

Ac(r) =g [isp, , (r)S, + H c.],

tl (r) = 11,(r) + 11,(r),

ll, (q) g (ia, ;( )8, , +H.c.]

(51)

(52)

(58)

(54)

(55)

(57)

(58)

We are now in a position to derive the slab-polar-
iton representation of any interaction Hamiltonian
describing the coupling of an external source to
the slab. This is performed in the next section
for the complete retarded electron-surface-pol-
ariton coupling.

III. RETARDED ELECTRON-SURFACE-POLARITON
COUPLING

)1/ 8

2@(00 8 Q' + PR 7T 4Q ]

H, (r)= isc — ', a, , (r)S g+H.c )(0 —40 ~

4', (r)= g((scsr, (r)sc +H:c.],
B(r) = B,(r) + B,(r}+B,(r),

B,(r) = Q [Iy,",(r)S,",+ H.c.],

(46)

(47)

(48)

(49)

(50)

m=2, 4, 6, .. .
.(r}= C, ,- e«'

2Ã

I](ccs(
)

—8, -- sin(-- ),(48)

m =1)3)5,. ..

An "external" electron couples to the eigenmodes
of a slab by the longitudinal charge-density coup-
ling and via the transverse-photon exchange coup-
ling. Thus retardation comes into play by two
rather different effects.

First, the nonretarded longitudinal. charge-
density coupling will be changed by retardation
due to the retarded nature of the Sue eigenmodes
of a slab. 'This results in a drastic change of the
electron-to-surface-mode coupling at q values
being smaller than (0,/c. In addition, the O'Me

volume p waves couple by their surface charge
density to the electron. This latter type of coup-
ling is missing in the so-called nonretarded limit.

Second, in addition to the nonretarded charge-
density coupling we have to take into account the
retarded photon exchange coupling. It vanishes in
the llmlt c
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A. Longitudinal charge-density coupling

The coupling Hamiltonian is simply given by the
Coulomb interaction of the external electron to the
polarization charge density of the slab. Thus we
write

(59)

with

p, (r) = -ep(r —r, )

and

p, (r')=-&;. &(r').

(60)

(61)

The polarization charge density contains the pure-
ly 1ongitudina1 volume part, the volume part of the

p waves, and the surface part of these modes. So,
I

this operator can be split further as follows:

.P(rP) g P +~, Pvuluma y g, Pauc aca (62)r'

It is the last part of (62) which is central to the
present paper. The second part of (62) contrib-
utes to the quantized analog of the transition and
Cerenkov radiation and to the volume part of the
image potential. The first part has been dealt
with extensively in the literature and is only con-
sidered at the end, where some numerical exam-
ples are given.

The evaluation of the part of the integral (59)
following from the third part of (62) runs through
as known from the nonretarded version of this op-
eratorP So, we give only the result without any
derivation:

)qupS
Ps, q, p)

( -size el + -qIze+ql)(3 ps+ )
1 aucsaaa . JI- s q ap sinh((xP )St@ S~qe

(63)

In (63) the norming constants C. ..are given by
(40) and the retarded propagation constants p. ..
are 'explained in context with Eblis. (36) and (37).

If we want to go back to the nonretarded coupling
Hamiltonian, we simply replace P. ..by q and the
retarded norming constants by their nonretarded
expression H, y, =2 —.

'
V& + —A(r, ) ~

.
c '] (65)

electron-slab problem the coupling Hamiltonian in
question can be derived from the electron part of
the total Hamiltonian in the presence of a vector
potential A(P}:

8. Transverse-photon exchange coupling

In contrast to the charge-density coupling, the
transverse coupling itself is a retarded one and

vanishes for c- ~. It is only important at higher
velocities of the scattered electron. Thus, we

give numerical results only at high electron veloc-
ities. The volume part of this coupling term is
deferred to another paper, where all the retarded
volume parts are considered on the' same footing.

In a fully-quantum-mechanical description of the

Next we write A as given in (53}and arrive at the
slab polariton representation of the coupling by
using (54) and (55).

In fast-electron spectroscopy this quantization
scheme is actually superfluous. In fact, the fast-
particle approximation can be used, "regarding
the electron as a source-for energy and momen-
tum. Thus the external electron couples to the
normal modes of a slab by its scalar Coulomb po-
tential, Eg. (59) in the fast-particle approxima-
tion, and by its vector potential X,„((r;v„'f,). The
slab couples to this external vector potential by
the polarization current density. " %e end with

z,'= — ' ffc p ff p p(X(s) —-X(c)'I ~ X.„( z; , q) ccip p' (66)

The surface part of the current-density operator follows from E(ls. (52) and (55). The —Q component of
this operator is given as

&(-4,~) --&(-'C, ~) = g "'
E, -, (~)S, ;,+Hc.

+ ~
- (dof

Finally, the transverse vector potential of a moving electron with a constant velocity 0 follows from
Maxwell's equations:
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Q=(C, q, ) ~

» (e.-e'.)~e. -e.'*} le. e'.—)le.

In (68) the retarded and unretarded poles of the
vector potential are defined as follows:

q.'=(I -v', /c') ' v, (%.&)/c'

and t~(t'} are the coupling integrals appearing in
(63) and (66). X is short for the quantum numbers
in question.

The power spectrum is given by

v*, + (4.1I)'/q*)'i*
+i@I 1 — ' (69)

(VO)

P(&o}= bm g [{g (t, t )~[A]) ['5(m —+&„&},
t ~ t'h]

(73)

and the asterisk in (68) means the conjugate com-
plex. In the fast-particle approximation the elec-
tron coordinate is taken on its classical trajectory
r =Y'I; = v g t +v I'

1 +

P(~) =— dt e*"P(t),
21r

(74)

where the sum runs over a)) possible many polari-
ton states [A]. P(&g) is shown to be the Fourier
transform of a time correlation function P(t):

IV. COUPLING INTKGRALS IN THE FAST-PARTICLE
APPROXIMATION P(t) = &oI U (t)U(o)]o), (75)

For the pux pose of calculating the energy-loss
spectrum due to surface-polariton excitation we
proceed in exactly the same manner as described
in detail in the work by Sunjic and Lucas. ' There-
fore, we give only a short summary of their
method.

The dynamics of the slab being coupled to the
external electron by the interaction Hamiltonians
(63) and (66) can exactly be solved. In the inter-
action picture the time evolution of the slab wave
function is

U(t) =exp —-~ J~(+~, ~)S„e ' &'+cc.
(76)

P(t) can be further reduced by using standard
methods of evaluating expectation values like (V5).
The final result is quite simple:

P«}=expl ——g I ~~(+-, --)I'
I

( 1

"expl —.Z I J.(+" -"}I'e '""' l.

)y'(t)) =em --I g&&(t, t.)&.+H.c- I )0'(t.)) (»)I'I z

where g„(t, to) is the time integral

(72)

In this paper we study the surface part of the cor-
relation function (VV) in the power spectrum (V4).
In addition, all retarded results are compared to
the nonretarded ones. Following Sunjic and Lucas
we separate the dispersive part of the spectrum
in writing (VV} in the form

P«) =expl ——g d'~l &, ,-,(+- --)I'I exp' —g q d~ del &+.,.(+".-")I'e
,

'""
~

(78)

The first exponential determines the strength of the no-surface-loss contribution to the no-loss line, the
second exponential determines the strength of the nondispersive multiple surface-loss peaks at n~„where
~, =~~/W2 in case of a metal, and the strength of the dispersive multiple losses is contained in the last
exponential function minus one. The q integration for determining the dispersive part ends at q„~, the end
point of dispersion on the surface yolariton curves. Beyond q„„retardation may surely be neglected.
Therefore, the integral in the second integral is the nonretarded one. The integration ends at q„ the
critical wavelength beyond which the macroscopic model is ill defined. '

The "dispersive part" of the correlation function (V8) creates two different effects. First, its Fourier
transform

S.(~)=
2

e*" e~( — "qag dq[Z. ..(+-, — )) e *"''[-I- (V9)
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determines the pure dispersive part of the spec-
trum. Second, by replacing the frequency in
(79), by (&u -n&u, ) and multiplying the integral with
P„' defined as

q~ 2w )n
&v I&.,..(+" -")I'l

+ ~na 0

(80)

we obtain the repetition of the dispersive part of
the spectrum at each nondispersive multiple loss
S(d~ e

The key quantity determiriing the strength of the
"multiple dispersive surface-polariton loss
peaks" is the first-order analog to S,(&u). It is
obtained by expanding the exponential function in

(79) up to first order:

s', (~)=—g f qdq J dylan. ..,(+, — )~'
+,- 0 0

x 6(&c —tc, (q))

~nu

ZqX, (q)u(n -V, (q)). (8l)
(d) ~ 0

In (81) Q and 0 are the reduced wave vector and

frequency, respectively, defined by Q=q/q, and
II = u&/&c, where tc, is, as before, the frequency
of the longitudinal modes and q, =&c,/c. The di-
mensionless coup/ jog integral+

p 2V

&,(@=~',0 ~ &v~&, , „(+",— )~'
Jo

(82)

LOS'ER SURFACE PQLARI TON

10

10

10

Y(Q)

10 . —

contain all the information we need. For instance,
the first-order line shape is obtained by multi-
plying X,(Q) with [dA„(Q)/dgj ' and summing up the
integral at a given frequency. Another piece of in-
formation contained in the coupling integrals is
the number of scattered electrons on an elliptic
cone centered around the trajectory of the fast
electron (see Fig. 2). In the next section the re-
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10
10 10

I

10

I

10 10

FIG. 2. The incoming electron of velocity V~ and angle
of incidence 8& will be scattered by surface polaritons.
The coupling integrals as defined by Eqs. (81)-(83) in
text give a clear picture of which part of the dispersion
curve is effective in angular and energy spread of the
incoming electron beam. As can be seen from Eq. (81)
the coupling integrals are within the first-order theory
a direct measure for the number of scattered electrons
on an elliptic cone, being centered around Ve.

FIG. 3. Reduced dimensionless coupling integral
Y~(Q) [see Eqs. (81)-(83) in the textj as a function of
the dimensionless wave number Q=q/q& with. q&

=4&ne2/mc. The electron velocity is given in units of
c, where c is the velocity of light in vacuum. A is a
dimensionless thickness parameter defined as q&a,
where a is half of the slab thickness. e; is the angle
of incidence, measured relative to the slab normal.
Continuous line: scattering with inclusion of retarda-
tion; broken line: without retardation. To be short,
the word polariton is used in the figures for both cases.
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FIG. 4. The same as Fig. 3 but with another angle
of incidence.

tarded coupling integrals are discussed in some
detail and compared to the nonretarded ones.

V. RESULTS AND DISCUSSION

In case of a metal (&o, =0, 4~f~ ~20~=cu', ) the
power spectrum (81) depends on four parameters,
the plasma frequency co„ the slab thickness 2a,
the electron velocity v, and the angle of incidence
9,. of the fast electron measured relative to the
slab normal. In what follows the measure for the
slab thickness is the dimensionless quantity
A =q, a= a+~/c and the electron velocity is given
in units of the velocity of light, V=v/c. The di-
mensionless coupling integrals are given in units
of (e'/Sc)/A. Hence, we write

e' 1X,(Q) =——Y, (Q)
Nc A.

(88)

and the quantities Y, (Q) are discussed as functions
depending one, V, 0,-.

FIG. 5. Unretarded scattering in case of A = 0..5,
V= 0.1, 8; = 80' (for the meaning of symbols see text
to Fig. 3). The pronounced oscillations in the scattering
efficiency can be interpreted as "resonant'" or "anti-
resonant" coupling of fast electrons to surface excita-
tions at a certain q vector.

Having discussed the reduced coupling integrals
Y, (Q) in Sec. A, the energy-loss spectra following
from them are given in Sec. B.

A. Reduced coupling integrals

The transverse-photon exchange coupling (66)
and (67) of fast electrons to surface polaritons is
not important at velocities usually used for elec-
trons as an external probe for surface polaritons.
Thus we give only a short account of this inter-
action at the end. Results in this section are given
for the three electron velocities V =0.1, 0.5, and
0.8, which means a kinetic energy of 2.5, 77, and
333 keV. The slab-thickness parameter is chosen
to beA, =0.5, which. means in the case of alumin-
ium (he=15 eV) a slab thickness 2a=2Ac/&u~
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FIG. 6. The same as Fig. 5 in the case of retardation.
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=133 A. The same thickness parameters in case
of heavily doped semiconductors (g&o~= 50 meV}
generate thick slabs.

Figures 3 and 4 show the coupling integrals
F,(Q) as defined in Eqs. (82) and (83} in the cs,se
of V = 0.5. The difference in retarded (continuous
line) and nonretarded (broken line) scattering,
respectively, is indeed quite large in the whole
region Q& 1, q& q, . The rapid change is caused
by the strong dM'erence between the retarded sur-
face polaritons and the nonretarded surface plas-
mons in this region of q space.

The structures appearing at 0,- =80 can be in-
terpreted as "resonant" or "antiresonant" cou-
pling of electrons to surface polaritons at a cer-
tain q vector. This behavior is caused by trigo-
nometric functions appearing in the coupling inte-
grals F,(Q). For instance, the upper surface-
polariton coupling

integrated

contains (iItet alia)
the function

sin'[(A tan8,-)(Q cosy) -A/(V cose, )Q,(Q)], .

where the azimuth y of the q vector is measured

FIG. 7. Comparison of the various coupling integrals
jsee Eqs. (81j—(83) of textJ in case of an high-energy
electron. At such high energies of the incoming electron
the transverse coupling defined by Eq. (66) of the text
must be taken into account. The exact scattering rate
contains in this case a mixed transverse-longtiudinal
contribution which is not shown in the figure (for the
meaning of symbols see text to Fig. 3).

relative to V with V=(V„,O, V,). Depending on
the parameters involved, the sin' may or may
not produce structures in the J,' dy.

Figures 5 and 6 show the coupling integrals for
0,.= 80 in the case of V=0.1. The structures com-
pared to those in the case of V = 0.5 are much
more pronounced. This shows clearly the sensi-
tivity of the small-angle scattering against changes
in the par~meters being involved. A general fea-
ture of aQ these results is the strong difference
in retarded and nonretarded scattering, respec-
tively, in the case of q&co~/c. As expected, the
bigger the difference, the thicker the slab. The
reason for this is quite simple. In the ease of
very thin slabs, the strong dispersion is mainly
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FIG. 9. Energy-loss spectrum as defined by Eq. (79)
in the text. S,(Q) is given in units of (2v&ug, and 0
is the dimensionless frequency ~/co&. Continuous line:
retarded spectrum; broken line: nonretarded spectrum.
0& +1, 0~+1/j/ 2, and 0"~is the reduced retarded maxi-
mum frequency of a slab with the reduced thickness
A. = 0.5. V is the velocity of the electron measured in
units of c, where i is the velocity of light in vacuum.
8& is an angle of incidence measured relative to the slab
normal. The wave number q„„ fsee Eq. (79)] beyond
which the dispersion of surface excitations can be
neglected is chosen to be 5 q&. At this wave number
the difference in the frequencies of the upper and lower
surface mode is 0.5% of cu&. Multiple scattering is un-
important and, therefore, not shown.

FIG. 8. The same as Fig. 7 at another 8;. Owing to
the structures at larger Q another multiple-loss spec-
trum is generated.

caused by the strong electrostatic interaction of
the two surface charge densities being localized at
z = +a. Switching on the interaction to photons as
a competitive dispersive force is therefore only
important at very small q values.

Finally, we give an example for the transverse
coupling of electrons to surface polaritons. Fig-
ures 7 and 8 show results for A. = 0.5 and V = 0.8.
It is only at such high energies that the trans-
verse coupling compared to the longitudinal one
is of some importance and reaches the same order
of magnitude. In this case, the true coupling of
electrons to surface polaritons contains an inter-
ference or mixed term, respectively, which is
not shown in the figures.

B. Retarded energy-loss spectra

In this section we discuss the multiple-loss line
shape due to surface excitations on the dispersive

part of surface polaritons or surface plasmons.
To this end we have to calculate S,(&u) as given
by Eq. (79). The spectra are given as a function
of the reduced frequency 0 = &u/to~ and in units of
(2rto~) '.

Figure 9 shows a comparison of retarded versus
nonretarded single scattering in case of 4 = 0.5,
V =0.5, and 8, =O'. Multiple losses are negligibly
small and not shown. The situation changes at
0, = 80 . In Figure 10 a second broad line is easily
resolved. Since the multiple losses are caused
by a strong coupling of high frequencies of the
single-loss spectrum, nzultiple scattering swithin
the single-loss region does not occur. For the
same reason, there is a complete breakdown of
the scattering rate in the region between the first
and second broad line, respectively.

Another line shape is created in case of the pa-
ratneters 4 = 0.1 and V = 0.5 (see Figs. . 11 and 12).
At 8,. =80 we observe a more or less smooth con-
nection between the first and second loss band due
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FIG. 10. The same as Fig. 9 at another 8;. Owing to larger 8& is a second broad band is easily resolved. It stems
mainly from a dispersive double loss in the region around Q= 1, as shown in Fig. 4.

to a combined excitation of a high-frequency sur-
face polariton or plasmon and a low-frequency
one. Because the nonretarded results are similar,
they are not shown. In the case of these param-
eters multiple scattering seisin tke single-scat-

10
1

FIG. 11. Quite different dispersive single-loss spec-
tra can be obtained as shown in this figure, compared
to the spectrum shown in Fig. 9 (for the meaning of
symbols see text to Fig. 9).

teeing re~on can be observed too.
Finally, we give some results in case of a very

thin slab, A, =0.02, and for a relatively low kinetic
energy of the electron, V =0.02=100 eP. Since
retardation can be dropped in this case, except
at very small q values, only the nonretaxded re-
sults are shown. Figure 13 shows the multiple-
loss spectrum at 8,. =6V.5'.

Comparing the scattering at small and large
angles of incidence, the importance of multiple
dispersive surface-loss "peaks" with increasing
angle of incidence is clearly seen. A similar be-
hRvior Rs shown in Fig. 13 CRn be generRted Rt
each set of parameters. %e only need to use a
large angle of incidence 8, , because this will in-
crease the time of flight in the surface transition
region of the slab.

Concerning the importance of the retarded inter-
action compared to the nonretarded one, the fol-
lowing general remarks can be made.

(l) The inelastic smaH-angle scattering of elec-
trons by surface excitations can quantitatively be
calculated only by taking into account the retarded
nature of the modes. This is clearly demonstrated
by the results shown in Figs. 3-8.

(2) The retarded coupling by "photon exchange"
is unimportant at electron velocities being nor-
mally used in electron spectroscopy.

(3) Multiple scattering due to the dispersive part
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FIG. 12. Retarded multiple-loss spectrum for the parameters shown in the figure. Owing to the actual structure
of the coupling integrals at small Q values multiple loss within the single-loss region is of some importance.

of the surface polariton or plasmon is an effective
energy-loss channel of a fast electron, depending
on the angle of incidence.

(4) Multiple scattering within the single-loss
region is, in general, a small effect (see Fig. 12).

(5) The region between the different broad mul-
tiple-loss bands is sometimes smeared out (Figs.
12 and 13) and sometimes it is not (Fig. 10). It
depends sensitively on the parameters A. , V, and

9;.

VI. CONCLUSION

Starting with a model Hamiltonian, the retarded
coupling of electrons to the normal modes of a
slab has been derived in complete analogy to the
nonretarded procedure. Detailed numerical re-
sults have been given in the case of the coupling
of electrons to surface polaritons in thin metal
slabs. The retarded coupling is shown to be an
important effect for q values being smaller than

.A * 002
V = 002
8] ~ 875'

10

10

p&G. 13. Nonretarded multiple-loss spectrum for a very thin slab and a relatively-low-energy electron. Similar
spectra can be generated for other parameters by a raising angle of incidence 8;. The increasing smearing out ofh region between the gth and (n+1) th dispersive multiple loss is in agreement with general rules in the theory of
dispersive multiple-loss line shapes.
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Finally, we want to outline how to include the

spatial dispersion effects. Within the phenom-
enological model we have to include two fux'ther
terms in the Hamiltonian. Equation (lb), des-
cribing the different dispersion of transverse and
longitudinal polarization waves, respectively. We
derive the equations of motion and arrive at the
analog of the Eqs. (Ba)-(Sd). These equations are
then to be solved under a second boundary condi-

tion, the so-caQed ABC (additional boundary con-
dition). Various ABC's can be found in the litera-
ture, especially in case of a semiconductor. Each
of them produces its own suxface polariton spec-
trum and different coupling integrals to the elec-
tron. A study following this line is underway.
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