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Pseudoatom version of the rigid-muffin-tin approximation
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The electron-phonon coupling parameter {2,) is calculated for the metals K, Al, Cu, and Nb using the rigid-mufHn-
tin approximation but with the Fermi energy as an adjustable parameter and phase shifts obtained by fitting the
Fermi-surface dimensions. A pseudoatom muffin-tin potential is obtained by making a suitable choice of the Fermi-
energy parameter. In simple metals the choice is defined in terms of the screening constraint. In transition metals an
arbitrary choice {half the "band-structure" value) is suggested. For the simple metals 2, changes by a factor of 3 or
more over the range of Fermi energies considered but agrees well with experimental estimates at the pseudoatom
value. In niobium the shift leaves the average value of A, essentially unaltered but changes the anisotropy so as to
better match the experimental anisotropy. Provided the same criteria are used for determining the Fermi-energy
parameter, very similar results are obtained using a scaling procedure suggested by Butler and based on the atomic-
sphere approximation.

I. INTRODUCTION

The problem of calculating the px operties of
the electron-phonon interaction (in particular the
coupling constant &) in transition metals and
transition-metal compounds was si.gnif ica.ntly
simplified when Gaspari and Gyorffy' (GG) in-
troduced the rigid-muff in- tin approximation.
They argued that in a transition metal, where
thexe is a d resonance near the Fermi level. ,
the extra scattering due to displacement of an
ion is dominated by the l,ocal potential of the ion
and will be well represented by taking tbe band-
structure" muffin-. tin potential, i.e., the muffin-
tin form of the potential constructed for the pur-
poses of calculating the band structure. in their
derivation of the relevant formul. as GG made a
further approximation of spherical bands, but
subsequent work" has shown that in cubic metals
the nonspherical terms due to s to p or p to d
scattering vanish and for d to f scattering they are
rather small, .

The rigid-muffin-tin approximation (HMTA) has
the advantage that little computation is required
over and above that for a standard band-structure
calculation. Applied to transition metals it gives
values of X that are approximately correct and it
is particularly useful in studying trends through
the Periodic Table. ' However, there appears to
be a significant discrepancy when considering the
Rnisotropy of X in D1ob1um one of the few metals
for which experimental values are available. The
measured values' show a variation of more than
50%%uo, by contrast the HMTA calculation of Butler,
Ptnskt, and Allen' (BPA) finds only a small var-
iation in the opposite sense. A similar result
wR8 obtR1Ded by Harmon RDd 81Dhaq u81ng RD

augmented-plane-wave (APW) formalism but with

the same rigid-ion approximation and 'band-
strueture" potential. They attribute the discrep-
ancy to neglect of the Coulomb tails associated
with the displaced ion which, although scx eened,
will nevex"theless couple to the neighboring ions.
This effect is seen most clearly in BMT calcula-
tionS of X in simple metals~ where X is under-
estimated by factors of order 3-10. However,
as Harmon and Sinha point out, including the
effects of the tails and screen1ng results 1n a
considerably more eomplieated problem. A
model calculation for niobium including these
effects gave an acceptable anisotropy but at the
expense of values of X about 80% too large.

The formalism of the BMTA is so simple and
so easily implemented that it would obviously be
desix'able if the effects of the screened tails could
be included while retaining the muffin-tin form
of the potential. Ziman' has introduced the con-
cept of a pseudoatom, an atomic potential that
when displaced carries with it not only the ion
core, but also the correctly screened Coulomb
tails. Such potentials necessarily overlap, so
to retain the simple formalism of GG a muffin-tin
ver81on of R pseudoatom potentlRl 18 required
which models the effects of the screened tails.
A clue to fiDd1ng such R poteDt1Rl 18 obtRined
from the results of fitting measured Fermi-sur-
face dimensions (determined usually from tbe de
Haas-van Alphen effect) with a set of phase shifts,
or equivalently logarithmic derivatives, using a
muffin-tin formalism such as the APW or Kor-
ringa-Kohn-Hostoker (KKH) method. ' Although
these phase shifts describe the way the potential
scatters the electrons at the Fermi energy, they
do not define the potential uniquely and this am-
biguity is reflected in the fact that over a wide
range of energy the fit is essentially independent
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of the choice of Fermi, energy measured with
respect to the muffin-tin zero (MTE), i.e.,
the Qat region of enex gy between the muffin-tins
which is chosen as the zexo of energy. The choice
of MTZ may therefore be considered as an arbi-
trary parametex which can be selected so as to
x'eproduce xnost closely a muffin-tin version of the
psedoatom potential. In this context, as distinct
from establishing a procedure for constructing
potentials from first principles, it is important
to realize that the Qat region of the muffin-tin
potential is an artefact of the formalism and of
little physical significance. Indeed, in the APVf
method the radius of the muffin-tin spheres can,
without affecting the shape of the Fexmi surface
or the fitted phase shifts, be varied over a wide
range to include values sufficiently large to
completely eliminate the flat region. The fitted
phase shifts can therefore be considered as spec-
ifying some form of model potential in which the
MTZ appeax's only as an adjustable parameter
with little or no physical significance.

The intent of this paper is to calculate A within
the HMTA as a function of the MTZ and to estab-
lish criteria fox that choice of MTZ which cox'-
responds to a psedoatom potential. Phase shifts
obtained by fitting the Fermi surface have been
used because it was felt important that the muffin-
tin potential reproduce accurately the correct
F811111sllxfRce (wlllch 1S used fol' the ill'tegx'Rls tl1Rt

appear in the BMTA) and because, except for the
density of states at the Fermi level and the phonon
part, no other information is required to cal-
culate X within the HMTA. It is emphasized that
fitted phase shifts provide no information on the
shape of the bands away from the Fermi surface,
as would be required to obtain the density of
stRtes so any density of stRtes (including the
correct one) is consistent with a phase shift fit
to the Fermi surface.

The examples chosen to illustrate this approach
include simple metals rather than just transition
metals because the connection between the choice
of MTZ and the pseudoatom is most easily under-
stood in these cases and also, if the treatment of
the screened tails is successful in these eases, it
will likely be a good approximation i.n the transi-
tion metals whex'e the tails and the screening
produce a somewhat smaller effect. Four metals
are considered: potassium (typical of results in
the alkali metals), aluminum as an example of
nearly-free-electron-like metal where band-
strueture effects distort the Fermi surface and
invalid single-plane-wave approximations, copper
as a nonsimple metal, typical of the noble metals,
and niobium as the most extensively studied ex-
ample of a transition metal.

The connection between pseudoatoms and rigid-
ion potentials is most cleax in the sixnple metals
where the eoneept of a pseudoyotential can be
used. This is the basis of the work by J ee and co-
workers'~'3 in the alkali metals and eoppex whexe
a phase-shift pseudopotential is constructed from
the parametrization of the Fermi surface. Not-
withstanding the discussion above of a yseudoatom
muffin-tin potential purely as a model potential,
there is a connection between the range of the
pseudoatom potential and the position of the MTZ.
The total crystal potential can be considered as
the sum of atomic potentials which overlap to
an arbitrary extent. Pseudoatom potentials have
appreciable overlap because, when displaced, the
sex'eened Coulomb tail which extends into the
neighboring cells must also move. By contrast
conventional muffin-tin potentials, constructed
for a band-structure calculation, do not overlap
at all and if such a muffin-tin potential is dis-
placed, it carries with it not its own tail but the
tails from the surrounding ions which shouM
remain fixed. The flat region of the MTZ between
the muffin-tin spheres has an energy defined con-
venhonally as the average of the residual contri-
butions from the surrounding atoms; If the radius
of the muffin-tin sphere is decreased, an in-
creased fraction of the total potential is included
in the MTZ x egion, the energy of this region
(E~z) is lowered, and the Fermi energy measur-
ed with respect to this energy (i.e., E+-E~z) is
increased Conversely» increasing the muff in-
tin radius, corresponding to a potential having
more overlap, reduces the parametex' E~ -E~z.
Because &~~ is chosen to be zero, the paramet-
er specifying the position of the MTZ is just E~.
In terms of a multiple scattering formalism
the physical significance of overlapping muffin-
ti11 spl181'es 1S Ilot pl'eclsely' defined (although
lt should be noted that KKB equations can be
derived for overlapping spheres, '&" but in terms
of a pseudopotential the important parameter is
the q 0 limit of the form factor 1"(q}. For the
pseudoyotential correspomling to a screened
pseudoatom, long-range fluctuations xnust be
screened out and

F(0)=-+ E 0

where E~o is the free-electron Fermi energy,
or moxe generally"'~

l'(0) = —S/2N(E~),

where S is the valence and N(Er) the density of
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states at the Fermi enex gy for one spin state.
Fox' free-electron behavior Lee and Heine" argue
that

F(0)=E~-E~o . (3)
So~ turniQg on the pseudoatom corresponds to

reducing Ep —EMTz fI 0111 Ego to Ego/3. This is
consistent with increasing the spatial extent
of the potential to include the scxeened Cou-
lomb tall. In terxIls of R muffin-tin model po-
tential of fixed radius this corxesponds to intro-
ducing R step Rt the edge of the muff ill-tin spI18x'8

to represent the effects of the screened tails.
Using this approach, the procedure for con-

structing a pseudoatom pseudopotential is to de-
termine phase shifts fxom a fit to the Fermi sur-
face with the MTZ chosen so as to satisfy the
requirements of screening as given by Eq. (2).
The form factor will therefore be correct at
q = 0 and also, because the Fermi surface has
been fitted, at q of the order of a reciprocal-
lattice vector. Using this pseudopotential Allen
and Lee" then constructed an electron-phonon
form factor within a one-AP% appx'oximation
and obtained good values for the resistivity and
the mass enhancement in the alkali metals. In
copper Nowak'3 retained the concept of a pseudo-
RtoID potentlRl derived froID R fit to tI16 FerIDl
suxface but used a multiple-AP% formalism to .

calculate the electron-phonon matrix element and
replaced the left-hand side of Eq. (2) by the
Fermi-surface average of the low-q limit of the
matrix element.

Howevex', the electron-phonon matrix element
Qeed llot be evR1GRted wlthln the AP% approxi-
mation. Indeed, repeating the derivation in Allen
and Lee using KKH wave functions just repro-
duces the GG BMT formalism" so the results of
the GG formalism can be carried over and used
with the phase shifts and wave functions corres-
ponding to a pseudoatom potential.

In lead a similar but slightly different philosophy
has been used by Papaconstantopoulos, Zdetsis,
and Economou. '"' As in other simple metals
the HMTA gives values of I. approximately 507o
too 1.ow. Following a suggestion of Butler they
reevaluated tbe phase shifts of the band-struc-
ture potential at E~ =EFo/3 and then renormalized
the potential terms in the GG formula using the
Qew phase shifts. This improved the calculated
value of X to 809@ of the correct value. Subse-
quently they used an alternative procedure, a
correction potential describing a screened tail
was explicitly added to the muffin-tin potential,
with the strength of the potential chosen so as to
satisfy the screening requirement [Eq. (2)]. When
the contribution from this potential was added to

the BMT part a good value of A. was obtained.
However, this procedure ean be criticized because
the correction potential is used On/y to calculate
X, to which the lou-q behavior of the fox'm fac.tor
makes a substantial contribution, and was not
used for calcu}.ating the Fermi-surface shape. In
fact the correction potential also contributes at
q of tbe order 2k~ (as is indeed apparent from
Fig. 2 of Hef. 20), which implies that properties
seQsltive to this regloQ of tI16 fox'01 fRctox" sucI1
Rs the FeIID1-surf Rce S11Rpe ox' the reslstlvltyp
would also be changed by the correction potential.
Any correction potential added to the band-struc-
ture muffin-tin potential to approximate a
screened pseudoatom should satisfy not only the
constraint of screening but also retain the correct
Fermi-surface shape. Constructed in this way
the total potential will be suitable for eal.culating
not only the coupling constant ~ but also other
properties, such as resistivity, dependent on the
electron-ion interaction.

Even for copper tbe screening criterion [Eq.
(2)] is not well defined because of the nonlocal
nature of the phase-shift form factor, In transi-
tion metals not only is the fox'm factor nonloeal
but also the derivation of Eq. (2) is suspect and
indeed it is not clear what value should be chosen
for the valence Z. It is nevertheless interesting
to examine the general behavior of the q=O form
factor. Using the KKB-Z phase-shift pseudopo-
tential this takes the form"

1'Kom„s = — —z (2l+ 1) tan I4
, i I(&R,)

t(.n 2m

whe1'e Ic= (2m+@/If ), 0 Is the atoIIlic volume~

8, the MT radius, and cot@,'= [cot5, —n, (zR, )/j,
(loR, )], with j, and n, the spherical Bessel and
NeuIDann functions and 5, the phase shifts. Using
phase 8111fts speclf led ln more detR11 below, this
quRntlty ls plotted 'in Flg. 1 fox' the foux' IDetRls
chosen as examples. In all cases 8, was chosen
as the %'igner-Seitz radius and for potassium,
aluminum, and copper the free-electron radius
was used for k~. For niobium two choices of k„
are shown, a minimum value of 0.25 (in units of
2v/g) which is the mean radius of the octahedron
Rnd a IDaximum of 0.707 which pRsses through
the center of the ellipsoids at ¹ Sevex al features
are apparent; for the simple metals Eq, (3) seems
to be a good approximation for Ez near E~o but
there ls Rn lncreRslng devlRtlon as Ey ls decreased
Rnd it is in just this important xegion that there
is the most difference between the KKBZ and AP%
form factor (cf. Hef. 11). This is attributed main-
ly to neglect of the higher phase shifts, for scat-
teriQg with q of the order of a reciprocal-j. attice
vector, i.e., for describing the shape of the
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FIG. 1. The q = 0 limit of the KKR-Z form factor cal-

culated on the free-electron sphere and expressed as a
ratio to the free-electron Fermi energy Ezp (see Table
I for values). For niobium, where Ezp has little mean-
ing, it has been arbitrarily chosen as 1 Hy and the form
factor has been calculated with two choices of kz (given
in units of 2m/lattice constant). The dotted line is the
approximation .. I'(0) =Ez -Ezp. Corresponding to the
values shown in Table I the limit I'(0) = —Z/2Ã(Ez) is
-0.617 Egg for potassium, —0.631Ezp for aluminum,
and —0.540 E~p for copper.

Fermi surface, contributions from the higher
phase shifts essentially cancel and can be ab-
sorbed into the low l phase shifts but at @=0
the contributions all add coherently and, because
the term j,'(W, ) varies essentially as z", become
increasingl. y important as v is reduced. In this
context it is probably relevant that l was 3 for
potassium but in aluminum, where the deviation
is larger, it was only 2. For this reason it is
suggested that using the expression

E„-E o= —g/2A(E ) (5)

is a better approximation than either the KKBZ
or APW form factor. For both the simple metals
considered, although this is quite close to the
choice of Er =co/3, it gives values of X that are
significantly different (see below).

For copper I"(0) varies over the Fermi surface
but using Eq. (5) [with the value of N(Ez) from
Table I] fixes the choice of Er at 0.24 Ry, rather
close to the value of 0.2V By obtained by Nowak
on the basis of the q=0 limit of the electron-
phonon matrix element. For niobium, however,
this criterion is obviously useless because neither
E~o nor 8 are well defined. At the band-struc-
ture value of Ez, of order 0.65 Ry, I'(0) is posi-
tive for all values of k~ which would correspond

to a negative value of Z. It is reasonable to sup-
pose that Z is positive, if only slightly, because
electrons move off the atoms when they are
brought together in the solid, so the pseudoatom
choice of &~ is presumably less than the band-
structure value. It is suggested that the some-
what arbitrary choice of half the band-structure
value (say 0.32 Ry in Nb) will not be too much in
error though this may need to be reviewed in
light of the calcul. ated values of A. In copper this
value (-0.29 Ry) is close to the value deduced
from Eq. (5).

It is emphasized that the value of N(Ez) used
in the criterion given by Eq. (5) and also used
in the RMTA [see Eq. (7) below] is not determined
from the phase-shift parametrization of the
Fermi surface and does not change as the MTZ
is moved. In terms of an gb Azitio KKB hand-
structure calculation the density of states depends
on the structure constants and also on the gradient

ith respect to energy of the phase shifts This
latter quantity is entirely undetermined by the
procedure of fitting the Fermi surface and con-
versely any value of N(Ez) can be made consistent
with the parametrized Fermi surface. The view
taken here is that a reliable value of E(Ez) (unen-
hanced) be chosen and the values used are listed
in Table I. These represent average values based
on band-structure calculations" "and experi-
mental estimates from cyclotron masses" "or
electronic specific-heat coefficients" and mea-
sured val. ues of X'~".

12—
5 ~7 I'&2~ms»22&x3)

TABLE I. Parameters used in rigid-muffin-tin calcu-
lation. The pseudoatom value of Ez is defined by
E&p-Z/2N(E&). Sources are given in the text.

~(Ez)
(states/By
atom spin)

(~2)1/2

(K)

74
305
245
196

Pseudoatom
value of E+

p

(By) (Expt.)

0.15
0.45
0.13

5.20
2.75
1.78
9.84

0.0597
0.319
0.239

K 0.1559
Al 0.8641
Cu 0.5202
Nb

III. CALCULATION OF X

The electron-phonon coupling parameter X is
calculated using the BlVlT expression

X= 'g /M(&u2), (6)
where M is the ionic mass, (~') an average phonon
frequency squared, and the electronic factor q
is given by

q = 2N(E~)-' g (I+ I) V'. .., 2'„2',.„„,
l=o 1)2

+ ~V,'AT, ,b, T„
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wllel'e V1 1 } = stn(51 —51 1) a11d t.2

AI

(sP}=.ftda*t(td}dv cv 0 E((0)d(0 .
For potassium, published values" of n'E(a&) have
been integrated approximately, for aluminum and
copper the approximation (-,' C) has been used,
where 8~ is the Debye temperature deduced from
electronic specific-beat measurements" and for
niobium the value is taken from BPA.'

IV. RESULTS

Potassium. The phase shifts used in the par-
ametrlzatlon were intel'polated fx'onl published
values'~" using formulas due to Andersen. '
The calculated values of X shown in Fig. 2 vary
by a faetox' of at least 20 ovex' the range consid-
ered. At E~ = 0.159 By, the band-structure
value, the present calculation finds X=0.02
compared with the simple BMT calcul. ation4 which
obtained X= 0.04. The discrepancy can be traced
to the calculated phase shifts being approximately
40% larger than the corresponding fitted values.
At tbe value of E~ that satisfies the screening

&&33= &33 —3T'33+ 2&33 ~

The density matrix coefficients T,', are conven-
iently calculated as (a jv) (Imx~~. /Stn'5, ), where

Xz~. is the Bx'illouin-zone integral of the recipro-
cal KKR matrix. For potassium the integrals
were performed using the special directions tech-
nique" and for the other metals tbe tetrahedron
technique was employed" using 32, 768 basic
tetrahedra in the irreducible 4', th of the Brillouin
zone for Al and Cu, 4096 tetrahedra for Nb.
Quadratic interpolation and an extrapolation pro-
cedure were also used. It should be noted that
except for the density of states N(Er) and the
phonon part M(&u'), all terms in X are determined
without ad]ustment by a phase-shift parametriza-
tion of the Fermi surface, -. so, provided the same
values of N(E~) and (uP) are used, the variation
of X as a function of the MTZ will depend only on
the fit to the Fermi surface with an error depen-
dent on the qual. ity of the fit. Because the intent
of this paper is to study this variation rather than
attempt a best g priori calculation, N(Er) and
{&o') will be considered as parameters to be ob-
tained from accurate, convenient sources. The
value of N(Ez) listed in Table I are discussed
above. The average phonon frequency (~')'~'
given in Table I is defined bys

0+—

O. l—

0- ( l i

0 O. t 0.2 0.3 0.4 0.5 0.6 0.7

EF (rydbergs)

FIG. 2. Values of the electron-phonon coupling con-
stant X calculated using the RMTA for various choices
of the Fermi-energy parameter. The open circle shows
the results of Nowak (Ref. 13) and the crosses indicate
the experimental values of A, and pseudoatom value of
Eg.

limit (see Table I), X is 0.1V which may be com-
pared wi.tb 0.18 calculated by Allen and Lee"
using 1 AP%, a value of -0.15 deduced from
measured effective masses" and (0.13+.03)
deduced from point-contact tunneling. '0 In view
of tbe extreme variation of the calculated values
of & as the MTZ is changed, the agreement is
quite gratifying.

Almn&gum. For values of the Fermi-energy
parameter between approximately 0.25 and O.V

By, a KKB phase-shift parametrization" with

l~ = 2 pxovided a good fit to the Fermi-surface
data with an rms error of less than 0.4%. The
calculated values of X are shown in Fig. 2, com-
putational errors are estimated to be leis than
2%, and errors from neglect of the I = 3 phase
shifts axe estimated, in the worst case, to be
less tllall 107@. As tll potassium, tile 1Ilost obvious
feature is the variation of X over the range of en-
ergy used. At EF = 0.618 By, the present calcula-
tion finds &=0.19, compared with tbe HMT cal-
culation using a self-consistent muffin-tin poten-
tial~ which gave X=0.13 using 1~=3 (0.13 with
I „=3). The discrepancy can be traced to the

p and d-phase shifts; the term stn'(f}„- f},) is
approximately 80% larger for the phase shifts
derived fxom the fit to the Fex'mi surface than
for those derived from the calculated potential. .
Experimental estimates of X are about 0.44 from
effective masses ' and 0.5+ 0.1 from tunneling
data." This may be compared with the calculated
value, at X~=0.32 By, of 0.46 which shows a very
satisfactory agreement.
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Copper'. There exist several phase-shif t par-
ametrizations of the Fermi surface of copper.
For convenience the results of Shaw, Ketterson,
and Windmiller" which have been parametrized
using Andersen's formula' are used. At a Fermi
energy of 0.598 By where, except for the f-phase
shift which is unimportant in this context, the
fitted and calculated phase shifts are in good
agreement, the calculation agrees well with the
BMT calculation in Bef. 4. At 0.27 By the cal-
culated value of X (0.126) is in good agreement
with the APW calculation of Nowak (0.12+0.02)
and at E~= 0.24 By, the pseudoatom choice, X = 0.13.

Experimental estimates of & include values of
0.11 deduced from cyclotron-mass data, "0.13
+0.03 deduced from proximity-effect tunneling
data, "and 0.16 deduced from superconducting
alloys. " The calculated value of X is not as strong
a function of the Fermi-energy parameter as for
potassium and aluminum, but there is a change of
about a factor of two between the values calculated
using the band-structure and pseudoatom choices
of MTZ. In the former case, approximately equal
contributions to X comes from the p-d and d-f
terms; in the latter case approximately 809&

comes from the p dter-m and the d-f term is the
smallest (see also Table II).

lV'iobium. The Fermi surface of niobium has
been parametrized by Crabtree et al.' Their
best fit, at a Fermi-energy parameter of 0.683
Ry, required a crystal field splitting of the /= 2
phase shifts. From this fit 18 radius vectors
were calculated (6 on each of the 3 sheets of
Fermi surface) and used to derive further phase-
shift parameters as a function of Fermi energy.
Over a range of 0.29 to 0.65 Ry the radii coul.d be
fitted with an rms error of less than 2%, outside
this range the quality of fit deteriorated rapidly
with energy. The calculation reproduced pub-
lished values' of Tf, to about 2% and at Ez = 0.623
the calculated value of X agrees with BPA.' In
BPA the phase shifts were also adjusted, inde-
pendently, to fit the shape of the Fermi surface,
so the agreement gives some confidence in the
whole computational procedure.

The calculated values of X, Fig. 2, are only
weakly dependent on the choice of MTZ. Com-
parison with experimental values is not easy.
The results of tunneLing experiments are some-
what controversial" but a recent analysis of
Al:Nb data" suggests that the calculated value
of X - 1.12 is not unreasonable although with an
acceptable choice of the McMillan p, * this leads
to an overestimate of the superconducting transi-
tion temperature. This vat. ue is, however, sig-
nificantly lower than the average of 1.33 deduced
by comparing a band structure adjusted to fit the

+ corresponding nonspherical terms,

where the density matrix is decomposed into
contributions T';, from each sheet of the surface
and N, (Ez) is the density of states for each
sheet with values taken from BPA. Calculated
values of g, are shown in Fig. 3.

It is apparent that as E~ is reduced from the
band-structure value the anisotropy of p moves
closer to that measured. In particular, the
ellipsoids are reduced from having the largest
value of g' to the lowest. Using (anisotropic)
values of (&u') taken from BPA, the average
values of &, at our pseudoatom choice of E~
(0.32 By) are 0.99, 1.25, and 1.27 for the ellip-

0.3
I

0.4 0.5

EF (r'ydbergs)

I

0.7

FIG. 3. Values of the electronic factor g averaged
over each of the three sheets of Fermi surface in niob-
ium. The solid symbols are the values calculated in
Bef. 4.

Fermi surface with de Haas-van Alphen cyclotron
masses or with the electronic specific heat. ' An
explanation of the discrepancy has been advanced
by Bietschel and Winter. " They suggest that the
measured enhancement factor of 1.33 includes a
contribution of about 0.21 from paramagnons which
enWnces the measured cyclotron masses and
el.ectronic specific heat but depresses the super-
conducting transition temperature.

While this provides a reasonable explanation of
the average value of A. it does not explain the
measured anisotropy. Experimentally, the ellip-
soids are found to have the lowest enhancement
factor (1.1) and the octahedron the largest (1.7)
while BPA and the present calculation find a very
small anisotropy in the reverse sense. Average
values of rf were, therefore, obtained for each
sheet of Fermi surface using a expression of the
form
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soids, the octahedron, and the jungle gym, re-
spectively, compared with experimental values
of 1 10, 1.V1, and1.43. If an isotropic paramagnon
contribution of 0.20 is added to RB values the
agreement with experiment, although not perfect,
is substantiaBy better than for the simple BMT
calculation.

In the four examples considered the results
show clearly that modifying the HMTA by shifting
the MTZ to pxoduce a pseudoatoxn muffin-tin
potential produces a marked improvement in the
agreement with experiment. It is also interesting
to note that in the case of potassium and aluminum
there is a significant difference between the values
of A calculated at the same Fermi energy with
phase shifts obtained from a self-consistent band-
structure potential and with phase shifts fitted
to the Fermi surface.

Fox simple metals and copper the criterion of
setting

E, Eo= -s/mr{E-)
appears to be quite satisfactory, and for niobium
and copper the somewhat arbitrary choice of
half the band-structure value would appear to be
reasonable. In fact, for the reasons given by
Gaspari and Gyorffy, the basic RMTA provides
a reasonable average value for the electron-
phonon interaction and the changes to the aniso-
tropy produced by shifting the MTZ are a rela-
tively small portion (»25$) of the total value of
X (see Table II).

The results presented above can be compared
with those obtained using the proceduFe suggested
by Butler ln which he argues that a muffin-hn
form of pseudoatom potential can be constructed
by using the atomic sphere approximation (ASA).
Andersen hRS pointed out that the logarithmic
derivatives of the wave functions, evaluated at.
the signer-Seitz radius, are approximately in-
dependent of the choice of MTZ Rnd cRn therefore
be used to obtain new phase shifts 6»* at any new
Fermi energy S~+. Butler then noted that near
wave-function coefficients T,',* can be obtained by
setting

T', ,*= T,', (E )(R, /R, )',

R, =j,(if&p Rv ) cos(5g) -n, (/&~R~)sin(5, )

R~=j,QE~~Rw, )cos(5f) -n, tiEr*R~ ) sin(5,*) .
In practice the results of phase-shift parametri-

zations of Fermi surfaces show that focusing
radii exist and are indeed close to R~, e.g., for
the meMs considered hexe. the maximum deviation,
in copper, "is about I5%.

This approach has been applied here using both
the focusing radii and the Vfigner-Seitm radh
and the results, shown in Table II, are compared
with those fI om the fitting procedure. The phase
shifts and values of T,'» are taken from the fit
near a band-structure choice of E~ which is used
as the basis of the calculation, and S~~ is chosen
neax the pseudoatom vaIue. The nonspherical
correction terms have been ignored (with little
error in the calculated value of X) and the various
contributions from the s-p, p-g and d fscatte-r-
ing teFms RI"8 shown sepRI'Rtely Rs Rn i1xlication
of the extent to which the electron-phonon interac-
tion exhibits Rnisotropy over the Fermi surface.
In Rll four cases the ASA values agree rather well

Potassium 0.155 fit
0.057 fit

+focus

expt

Alu~I~um 0.653 fit
0.328 fit
0 328 R focus
0.328 R~s

' expt

0.010 0.001
0.098 0.082
0.069 0.060
0.141 0.059.

0.014 0.164
0.008 0.455
0.008 0.356
0.001 0.508

0.01
0.18
0.13
0.20
0.15

0.18
0.46
0.36
0.51
0.45

Copper

Niobium

0.588
0.255
0.255
0.255

0.623
0.323
0.323
0.323

0.365
0.119

fit
fit
+focus

%S
expt

fit
Gt

focus

&~S
GXPt

BS
%8

expt

0.002 0.039 0.021
0.019 0.095 0.011
0.013 0.069 0.008
O.03O 0.OS7 0.016

0.026 0.321 0.763
0.001 0.062 1.082
0.001 0.051 0.955
0.000 0.058 1.049

0.06
0.13
0.09
0.13
0.13

1.11
1.14
1.01
1.11
1.12

0.096 0.740
0.011 1.505

0.000 0.84
0.016 1.53

1.55

TABLE H. Values of A. and angular momentum decom-
position calculated using the RMTA |nega.ecting non-
spherical terms) for values of Ez near the "band-struc-
ture" value and near the pseudoatom value. "Fit"de-
notes phase shifts and density nmtrix coemcients T &~&

derived from a Fermi-surface fit. Scaled values of T»»*
are derived using Butler's procedure vrith either "focus-
ing" radii (i.e., with the same phase shifts as for the fit
at the saddle value of Ey) or vAOl %igner&eitK radii.
Values of N (EJ,), t,'~2), and experimental values of A, are
taken from Table I except for lead where aH parameters
are taken from Ref. 19.
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with the result obtained from a Fermi-surface
fit at the same Fermi energy. Using the focusing
radii, i.e., with the fitted phase shifts but scaled
values of T', f, leads to values of X of order 10%
different. Comparison of the angular momentum
decomposition shows that agreement between the
two methods of calculation is best in the transition
metals (niobium and copper) and worst in the
simplest metal (potassium). It is also quite ap-
parent in the transition metals that though the
average value of A changes by a relatively small
amount as the MTZ is shifted from the band-
strueture value to the pseudoatom value the rela-
tive contribution of the various angular momentum
components changes quite markedly.

The approach of Butler was also applied to the
case of lead using the band-structure vat. ues
quoted by Papaconstantopoulous et al." The
criterion of setting —Z/2N(Ez)=Ez -E~ fixes
E~* at 0.119 By which yields a calculated value
of X=1.53 using the ASA version of Butler' s
theory. This is in good agreement with the quoted
experimental value of 1.55. It should be noted
that using the alternative criterion of E~*=Ezp/3
gives X about 20% low, a result following the
same trend as those in Fig. 2.

It is possible to get an idea of how properties
calculated using the RMTA are affected by moving
the MTZ to the pseudoatom value from. the band-
structure value. In all metals it appears that the
relative contribution of the various angular mo-
mentum components will be changed and any

property sensitive to the anisotropy of the elec-
tron-phonon interaction wil. l therefore be modified.
Two obvious examples are the anisotropy of X,

as is indeed observed in Nb, and the anisotropy
of the low-temperature electron-phonon scattering
rate (see, e.g., the calculation of Nowak which
uses essentially the same procedure) As anoth. er
example, in niobium there is a strong coupling
to [100) and [110]phonons that can be traced to
transitions between fairly localized regions of
the Fermi surface' so the strength of this coupling
will be modified when the MTZ is shifted.

In simple metals, the value of X is dominated
by the low-q part of the pseudopotential which
changes markedly as E~ is reduced, and this is
reflected in a large change of X. There will also
be a large change in the low-temperature scat-
tering rate and resistivity but the high-temper-
ature resistivity which is more uniform Fermi-
surface average will be much less effected. In tran-
sition metals the highly nonlocal nature of the pseudo-

potential explains why X is only weakly affected
but the low-temperature resistivity should still be
changed and indeed the simple RMTA tends to give
an incorrect value for the resistivity at low tem-
peratures although it is approximately correct at
high' temperatures. 4'

VI. CONCLUSIONS

Using several examples it has been demonstrated
that a rigid-muffin-tin version of a pseudoatom
potential can be constructed which yields accurate
(within 10%) values of the electron-phonon coupling
parameter. In simple metals the value of X is
rather sensitive to the choice of the Fermi-energy
parameter and so the criterion used for making
that choice, i.e., to take

E~ —E~p = —Z/2N(E~),

is confirmed rather sensitively. In transition
metals this criterion cannot be used, if only
because the values of Z and E~o are not we1.1

defined, but the average value of X is much
less sensitive to the value of E~ and the choice of
one half of the band-structure value appears to be
satisfactory. In the intermediate case of copper
the two criteria are rather closely equivalent.

When the pseudoatom choice of E~ has been
established the phase shifts and wave-function
coefficients can be established in two ways, by
fitting the experimentally determined shape of the
Fermi surface with a KKR calculation or by using
the approach suggested by Butler and based on the
atomic-sphere approximation. In simple metals
the two approaches give slightly different results
but in transition metals they appear to be essen-
tially equivalent. Either technique can be applied,
not only to the calculation of the coupling constant
X and its anisotropy over the Fermi surface, but
to any property involving the electron-phonon
matrix element and they can be used with param-
eters obtained either by fitting the Fermi surface
or from gb initio band-structure calculations.
Although the exact value for the choice of muffin-
tin zero is sometimes slightly arbitrary, the
modified form of the RMTA glwgys gives values
that are in better agreement with experiment than
those obtained using the simple RMTA.
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