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Results of 6rst-principles (parameter-free) equation-of-state calculations are reported for sixteen alkali halides. The
theory adopts the methods of Gordon and Kim for computing pair potentials for closed-shell systems. Specifically,
the electronic ground-state energy is assumed to be that of an electron gas with the total charge density obtained by
rigidly overlapping the free-ion charge densities. A number of properties are treated within this framework: lattice
dynamics, dastic behavior, structure determination, thermal expansion, compressibility, and the overall stability of
the lattice as a function of temperature and pressure. At high temperatures a lattice instability develops in which

above a certain critical temperature (T, ) the vibrational and static pressures cannot balance each other at any
volume. It is argued that this instabihty plays a role in causing solids to melt. An attempt is made to ascribe trends
in the discrepancies between theory and experiment to particular approximations of the theory. From this analysis it

appears that (a) the pair-potential approximation is in greatest need of improvement, {b)anharmonic corrections tend

to raise T, by about 20%, and (c) lattice imperfections are not an important factor for temperatures up to about 90%
of the melting temperature.

I. INTRODUCTION

Several years ago Gordon and Kim~ developed a
theory from which reliable pair potentials for
closed-shell systems couM be readily calculated
from the charge densities of the free-atom (ion)
constituents. To accomplish this they assumed
that the ground-state energy could be expressed
in terms of the charge density of the system, as
though it were a free-electron gas, with the total
charge density approximated by rigidly overlapping
the free atoms (ions). Following their initial suc-
cess there has been a considerable effort to both
refine the method and apply the potentials in the
calculation of various physical properties. " The
most significant aspect of this work, in my view,
is that the method is truly parameter free, or
first prlnclples ln the sense that no e2g)eriment-

al quantities (other than Planck's constant, Boltz-
mann's constant, the charge of the electron, the
mass of the electron, the mass of the nuclei, and
the atomic number) are required as input. Hecent-
ly I reported some results of equation-of-state
calculations for two alkali halides~ based on the
potentials of Gordon. and IQm. There I attempted
to stress the importance of the first-principles
nature of the calculation.

In this paper I report results of similar calcula-
tions of the equations of state for sixteen alkali
halides (XY whereÃ=Li, Na, K, and Hb, and F
= F, Cl, Br, and I) in both the NaCI and the CsCl
structures. Due to the simplifying approximations
and the parameter-free nature of the theory, the
results are generally less accurate than those de-
rived from parametrized models of the solid. On
the other hand, a first-principles approach, how-
ever approximate, has certain advantages over

model calculations. First of all, any discrepan-
cies between quantities calculated from first prin-
ciples and the corresponding measured values re-
sult from the breakdown of certain well defined
approximations rather than, from any real or imag-
ined flaw in a model. The procedure for improving
a first-principles calculation is obviously to use
better approximations without compromising its
first-principles character. %bile this may not be
the easiest way to obtain more accurate results it
necessarily leads to the correct physics. Another
advantage of a first-principles approach is of
course that the results have a genuine predictive
capability, while model calculations are usually
limited to the role of interpreting existing experi-
mental results. The equations of state for the
alkali halides are already well characterized ex-
perimentally, and as such, provide an ideal sys-
tem for assessing the overall accuracy of the the-
ory. This is precisely what I have striven to ac-
complish in this work. Also, by studying an entire
class of compounds it is possible to see trends in
the discrepancies between theory and experiment
which suggest which approximations may be in.

greatest need of improvement. Finally I note that
the success of the theory in agreeing with observa-
tions on, well characterized materials generates
confidence in applying the same approaches in a
predictive manner for less well understood sys-
tems.

Previous efforts to determine equations of state
for solids from first principles have focused main-
ly on rare-gas crystals. ' For these materials the
basic forces involved are the van der %aals type,
which are relatively well understood. However,
the explicit form of the interatomic potential still
contains parameters derived from experimentally
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determined properties of the solid. That is, they
are not truly first principles. There has also been
a considerable effort to compute equation-of-state
properties for alkali halides using models of
varying degrees of sophistication. ' ' Of these,
Decker's' model holds special significance due
to its use in calibrating high-pressure mea-
surements.

The key ingredient fox. an equation-of-state cal-
culation is an expression for the "interatomic
forces"; that is, the electronic ground-state ener-
gy as a function of the positions of the nuclei. The
electrons are assumed to stay in their ground state
as the nuclei move (adiabatic approximation). The
method for computing the interatomic forces
adopts, in the spirit of the Hohenberg-Kohn~o the-
orem, the appxoximations employed by Gordon and
Kim for expressing the ground-state energy solely
in terms of the charge density. Specifically, I
have used the computer program of Green and
Gordon" to calculate pair potentials from free-ion
Hartree-Pock wave functions. ' The interatomic
forces for the two crystal structures discussed
were then expressed as a sum of these pairwise
interactions. Two additional approximations were
made in. the calculation of the equation of state
from the interatomic forces; the quasiharmonie
approximation and the assumption that the sol'id
remains free of lattice imperfections. All these
approximations are discussed in Sec. II. The nu-
merical methods of the calculations are discussed
in See. III.

The results are presented and compaxed with ex-
perimental data in Sec. IV. In this section the re-
sults are classified, somewhat arbitrarily, as (a)
lattice-dynamical properties, (b) properties direct-
ly related to the equation of state, or (c) proper-
ties pertaining to the stability of the lattice (melt-
ing and polymorphism) In fac.t, these properties
are, of course, interrelated. Of particular inter-
est is the relationship between a thermodynamic
instability of the lattice and the phenomenon of
melting. Upon comparing the calculated results
with experimental data we are led to believe that
a perfect crystal would melt when the repulsive
pressure due to the phonons becomes too large to
be canceled by the static pressure. This aspect
of the results has been discussed earlier" and is
further elucidated here and elsewhere. ~~

In Sec. V the overall accuracy of the xesults is
assessed in the light of the approximations which
enter the theory. In general, the results are re-
markably accurate for a first-principles, param-
eter-free, theory. At the same time, trends in
the departures from the experimental results are
evident which single out the approximations in
greatest need of improvement.

II. APPROXIMATIONS

A. Adiabatic approximation

The adiabatic approximation results from assum-
ing that the free energy of the system of electrons
and nuclei does not involve excited states of the
electrons. That is, the free energy depends solely
on. the electronic ground-state energy as a function
of the positions of the nuclei. This is an excellent
approximation for the alkali halides at all temper-
atures of interest because the band gaps in these
materials are about two orders of magnitude high-
er than their melting temperatures and several
orders of magnitude larger than their phonon fre-
quencies.

8. Electronic ground-state energy

Three approximations have been used to expxess
the electronic ground-state energy, U, as a func-
tion of the positions of the nuclei. The first two,
the electron gas approximation (EGA) and the rig-
id-ion approximation (RIA) were used by Gordon
and Kim' to calculate pair potentials for closed-
shell atom (ion) pairs The.third approximation is
obtained by writing U for the solid as a sum of
these calculated pair potentials (PPA). The theo-
rem of Hohenberg and Kohn" states that the elec-
tronic ground-state energy is a universal function-
al of the charge density. The EGA is obtained by
choosing this functional, which is not known exact-
ly, to be that of a free-electron gas. In the BIA
the total charge density of the system of ions is
that obtained by simply summing up the charge
densities of the free ions. Here I have used fxee-
ion eha, rge densities obtained from the Hartree-
Fock approximation. ~3 The PPA treats every ion
pair as though it were isolated from the rest of th&

solid. Then the total contribution is obtained by
summing over the pairwise interactions.

C. Perfect-crystal approximation

The solid is assumed to be i n the form of an in-
finitely extended perfect crystal. The present cal-
culations do not aeeount for thermally induced lat-
tice imperfections such as vacancies, dislocations,
or surfaces. Such defects may have some impor-
tant effects on the thermodynamic properties of
the system at high temperatures.

D. Quasiharmonic approximation

For ease of discussion, consider a crystal whose
structure is given by a single parameter, V', its
volume; or think of V as a set of structure param-
eters. Given the interatomic forces one can cal-
culate the normal mode frequencies, v, (V), using
the well known theory of lattice dynamics in the
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harmonic approximation. ""The v,. (V) are the
classical frequencies of small amplitude oscilla-
tions about the configuration given by V. At this
point we are not concerned whether the crystal
structure is stable or not. %e simply note that
once the interatomic forces are known, meaning-
ful harmonic lattice-dynamics calculations can be
performed for any volume we choose.

Let V, be the volume for which static equilibrium
is achieved at zero pressure. The dynamical ma-
trix for V, has some special properties. It is ro-
tationally invariant because the conditions for ro-
tational invariance are identical to those obtained
by requiring the crystal to exert zero stress on its
surroundings. " Also, at V, the Cauchy relations
are satisfied for central pairwise forces. Lattice-
dynamics calculations are normally done for V
near V, because of the availability of experimental
data from which model parameters may be deter-
mined. Thus, such models may be unreliable if
the external conditions force V too far from V,.
On the other hand, a first-principles lattice-dy-
namics calculation can be done for any volume,
within the limits of the approximations used to de-
rive the interatomic forces, with equal confidence
in the values of v, (V).

If we assume that the vibrational energy levels
of the system are those of independent harmonic
oscillators with frequencies v, (V), then the free
energy takes the simple form (Sec. IV of Ref. 15):

E(V, T) = U(V) + —,
' g h v, (V)

+kT g ln(1 —exp[-h v, (V)/kT]'f,

where T is the temperature, h is I'lanck's con-
stant, and k is Boltzmann's constant. Oddly enough
this assumption is referred to as the quasiharmon-
ic approximation (@HA) rather than the harmonic
approximation, and we will also adopt this defini-
tion. Others use the term in a vague way to refer
to the volume dependence of the frequencies, ' in
spite of the fact that the volume dependence can be
obtained from a sequence of harmonic lattice-dy-
namics calculations at selected volumes. In the
discussion that follows I will occasionally refer to
these frequencies as phonon frequencies, but it
should be remembered that they are only such to
the extent that the QHA is valid.

The volume dependence of I" is implicit in the
volume dependence of U and v, . For quasiharmon-
ic model calculations it is convenient to extract an
explicit dependence of I" on V by expanding in a
power series relative to some reference volume
near V,.' The order of the expansion is limited by
the experimental data available. For a first-prin-
ciples calculation it is more convenient to simply

evaluate Eq. (1) for a sufficiently large number of
selected volumes. In principle, one could deter-
mine the free energy from a single fully anhar-
monic calculation for an arbitrarily chosen V.
However, except perhaps for diatomic molecules,
this is not practical. The simpler approach is to
obtain harmonic results as a function of volume
and add any needed anharmonic corrections to the
quasiharmonic results.

From Eq. (1) and the fact that pressure is given
by P = (BE/-BV), we obtain the following equation
of state:

P+—= f(V, T),
dU

where

f(V, T) =—V ' g y,.(—,
' 0 v, +h v,./[exp(h v, /k T) —.1]]

and

y, = (-V/v, .) dv,./dV. (4)

In the above expressions, v, , y, , and dU/dV are
functions of volume. In Eq. (2), P is the externally
applied pressure, f(V, T) is a pressure due to the
vibration of the nuclei (vibrational pressure), and
dU/d V is a pressure due to volume dependence of
the electronic ground-state energy (static pres-
sure).

III. NUMERICAL METHODS

In my earlier work I used the published tables'
of potential values for the Na'-Cl and K'-Cl in-
teractions to determine an. equation of state for
NaC1 and KC1. The first (second) derivatives of
the short-range part of the potentials were ob-
tained numerically by (a) taking the first (second)
differences from the tabulated values and (b) using
polynomial interpolation to obtain values for an
arbitrary separation. This is not the best method
for getting accurate values for these derivatives
unless one has very accurate values for the poten-
tials at small intervals of separation. Inaccura-
cies in the values for the potential can cause spu-
rious structure in the volume dependence of the vi-
brational pressure as a result of this method. The
appearance of slight shoulders in the higher-tem-
perature curves in Fig. 1 of Ref. 4 near a = 5.8 A
is such an effect. A transcription error" in Table
IV of Ref. 1 was easily discovered because it pro-
duced a large oscillation in f(V, T).

For this work I have adopted a least-squares-
fitting procedure which avoids the difficulties
posed by small inaccuracies in the computed val-
ues of the potential. The total interaction for an
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ion pair is the sum of a long-range part ( ]/r) and
a short-range part. The short-range part has con-
tributions from the electrostatic, kinetic, ex-
change, and correlation enexgies of the overlap-
ping electrons. Each of these short-range contri-
butions has an approximately exponential behavior
in the range of separations of interest here. I
used an exponential form

to fit each of the short-range contributions. The
values for C and P were obtained by least-squares
fittlllg to about 12 vallles of Q obtallled fl'oII1 pl'0-
gram PO'I'LSU&F- ~~ The resultant values are listed
in Table I, along with the range of separations, r,
used for theix determination. The following x atio-
nale was used selecting the ranges ~, to r, given
in Table I. For the alkali-halide interactions the
range was chosen to correspond. to that for mhich
the material in the rocksalt structure is intxinsi-
cally stable, or possesses only real phonon fre-
quencies. In all cases it was found that the intrin-
sically stable region was bounded below (above) at
a value of r for which C~=O (C„-C»=0).These
two conditions determine approximately the range
of r values fox the alkali-haMe interactions shown

in Table I. The range used for fitting a particular
intex'Rctlon between like ions vER8 selected to cox'-
respond to the lattice constants for the four com-
pounds in which it is found. For example, the
minimum value of x used in the fit to the Cl -Cl
interaction is roughly that found in LiCt, , while the
maximum is that fox BbCl. However, somewhat
smaller values of r mere used to fit the short-
range part of the electrostatic intex action bebveen
alka1i ion pairs because it is difficult to calcu1ate
the short-range electrostatic contribution aeeu-
rately when the intex action is weak.

The accuracy of this method of fitting the numex--

ical potential to an analytic form mas checked by
varying the number and range of the fitted points
and by adding an x2 term in the exponential of Eq.
(5). Variations in the results due to the different
fitting techniques wex e found to be small corg-
pax ed to discrepancies with experiment; that is
small compared to ex rors which result from the
essential approximations outlined in Sec. II.

The volume dependence of the quantities entering
EIls. (l)-(4) were obtained by simply doing the
requisite computations for a sufficiently large
number of volumes in the range of interest. Typi-
cally, about j.5 different lattice constants, c, on a

TABLE I. Values obtained for C' and P by fitting the exponential from t"e ~" to calculated
values of the short-range Coulomb (SHC), kinetic (KE), exchange (EX), and correlation
(COBB) contributions to the indicated pair potentials in the range ~, to ~„.Besults are in
atomic units with energy in hartrees.

EX EX . COBB rg r„
LiF
LiCI
I iBr
LB
NaF
NaCl
NaBr
NaI
KF
KCl
Kar
IQ
81F
BbCl
BbBr
HbI
LlLi
NaNa
KK
818b
FF
ClCl
BrBr
II

1.140
4.044
5.197
4.785

-8.949
—8.069
-9.234

-12.08
-36.47
-44.35
-49.54
-47.10
-59.92
-76.78
-85.88
-74.88
-20.91

-191.5
-828.4

—5663
-18.97
-85.21

-122.1
-138.4

14.48
14.63
1.4.77
16.12
42.70
48.78
52.47
52.88
85.03
97.07

102.37
102.19
115.19
134.79
143.82
139.02
74.96

355.3
3422
3391

23.03
60.85
87.00
98.98

-1.920
-2.158
-2.227
-2.474
-5.196
-6.374
-6.386
-7.281
-9.201

-11.77
-12.55
-13.42
-11.22
-14.57
-15.61
-16.60
-4.723.

-16.82
-144.1
-151.5

~2 y721
-7.016
-9.078

—10,90

-0.051
-0.063
—0.067
—0.076
-0.130
—0.174
-0.190
-0.212
-0.229
-0.316
-0.344
—0.381
-0.274
—0.384
-0.422
-0.468
—0.421
-1.443
-18.81
-18.92
-0.127
-0.310
-0.398
-0.479

1.692
1.581
1.Ml
1.346
1.869
1.569
1.525
1.508
1.788
1.557
1.504
1.404
1.756
1.544
1.492
1.378
4.512
3.389
2.586
2.621
1.568
1.399
1.336
1,202

1.882
1.565
1.485
1.397
1.776
1.521
1.459
1.362
1.672
1.460
1.403
1.315
1.629
1.435
1.383
1.293
3.791
2.956
2.433
2.173
1.388
1.210
1.166
1.063

1.583
1.341
1.277
1.207
1.509
1.312
1.261
1.188
1.373
1.220
1.176
1.114
1.323
1.18$
1.145
1.085
3.019
2.339
1.942
1.734
1.092
0,955
0.915
0.841

1.184
1.024
0.982
0.936
1.146
1.017
0.983
0.934
1.037
0.937
0.908
0.865
0.997
0.908
0.882
0.841
2.753
2 ~133
1.833
1.631
0.859
0.756
0.726
0.666

3.1 3.9
4.0 5.1
4.3 5.4
4.8 6.0
3.8 4.7
4.7 5.8
5.0 6.2
5.5 6.8

5.1 6.3
5.4 6.6
5.8 7.1
4.7 5.7
5.4 6.6
5.7 6.9
6.1 7.4
4.8 6.0
6.2 8.6
7.0 9.2
7.4 9.8
5.4 7.4
6.8 8.8
7.4 9.2
8.0 9.8
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grid with La=0.1 a.u. was found to be adequate.
I found no advantage in evaluating Eg. (3) for the
vibrational pressure as opposed to numerically
differentiating the ciuantities in Eq. (1), except as
a check on the results.

The summation over i in Eqs. (1) and (3) includes
all normal modes in a crystal with volume V.
Periodic boundary conditions were invoked in the
usual way by replacing V by &v, where v is the
volume per primitive cell, and+, by g&g, where

j is the branch index of the phonon dispersion
curves (j =1, 2, ...6 for the alkali halides) and g,
includes N regularly spaced points, q, in the Bril-
louin zone. The summation over q was found to be
adequately converged for N-1000.

The frequencies for a particular q are obtained
by diagonalizing the dynamical matrix for that q.
General expressions for the dynamical matrix of
an ionic crystal with pairwise short-range forces
are listed in Ref. 1V. It is worthwhile to note how
the volume dependence enters these expressions.
The long-r@nge Coulomb part is independent of v

except for a multiplicative factor of 1/v. The vol-
ume dependence of the short-range part enters
solely through changes in the force constants. The
total short-range part may be written as a sum of
the contributions from each force constant, and the
force constant may be factored from each term.
For the NaCl structure I included short-range con-
tributions to the dynamical matrix from nearest-
neighbor alkali-alkali, halide-halide. and alkali-
halide interactions. This yields six terms which
contribute to the short-range part of the dynamical
matrix due to the first and second derivatives of
the potentials for each type of interaction. Thus,
seven matrices for each q (the seventh coming
from the long-range part) can be computed one
time and used for all volumes and all materials
with the appropriate structure. For the CsCl
structure an additional shell of halide-halide inter-
actions were included.

The static energy per unit cell, u = U/Jq, is given
by

u=6y~(a/2)+6y„„(v2a/2)

+6/„„(v2a/2) —3.4952 e /a

for the NaCl structure, and

u = 8$„„(v3a/2) + 3$„„(a)+ 3$ss (a)

+ 6pns (v 2a) —2.0354 e2/a

for the CsC1 structure, where a is the correspond-
ing lattice constant and e is the electronic charge.
The static pressure is given by du/dv where v
= (a'/4)(v =a') for the NaCl (CsCl) structure. As
with the vibrational pressure, there is no real ad-
vantage in formally (as opposed to numerically)

differentiating Eqs. (6) and (f).
Once the potentials are specified the main com-

putational problem in an automated determination
of the equation of state is clearly the calculation
of the vibrational pressure. However, this part
of the calculation is not particularly time consum-
ing for either human or computer. I found that a
table of about 500 values on a suitable temperature
and volume grid was sufficient for later use in an
automated determination of equation-of -state prop-
erties, such as thermal expansion. The computa-
tion of the vibrational pressure table for a given
material was accomplished by a single run re-
quiring less than one minute of CP time using a
Texas Instruments Advanced Scientific Computer.

IV. RESULTS

Many properties of materials can be calculated
once the interatomic potentials are known. Here I
report results for a number of properties of alkali
halides which illustrate the kind of accuracy that
can be achieved, given the approximations of Sec.
II. In the analysis of these results we will be par-
ticularly concerned about any systematic discrep-
ancies that may suggest the breakdown of one or
more of the key approximations. Several proper-
ties will be considered: phonon frequencies and
elastic constants, temperature and pressure de-
pendence of the lattice constant, i.e., thermal ex-
pansion and compressibility, and the overall sta-
bility of the crystal (melting and polymorphism).

The previous work of Cohen and Gordon" exam-
ines various static lattice properties of the alkali
halides, with particular attention given to the poly-
morphism. Basu and Sengupta' have also em-
ployed Gordon-Kim potentials in harmonic lattice-
dynamics calculations on alkali halides. The lat-
ter work does not consider temperature and pres-
sure effects, but they offer a first-principles
method for removing the rigid-ion approximation.

A. Lattice dynamics

The calculated phonon frequencies for NaC1 at
the symmetry points F, X, and I- of the Brillouin
zone are listed in Table II for comparison with ex-
perimental values. Also listed are the corre-
sponding values of y. for comparison with the de-
formation dipole model calculations of Hardy and
Karo. ' The results in Table II are for a = 10.6 a.u.
which is approximately the lattice constant pre-
dicted for 0 K (see below). While the results show
some significant discrepancies (-25Vo) the overall
accuracy is reasonably good and representative of
the rest of the alkali halides as well. However,
the Li compounds and some of the heavier halides
have larger discrepancies, like that seen for the
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TABLE II. Phonon frequencies (v&) and mode Grun-
eisen parameters (y&) for NaC1 at selected symmetry
points in the Brillouin zone.

12 6 z+
~

%AH+ 2 (AHH+AAA)

(ass+ 4~) I

Wave
vector

v(cm-')
Calc. ~ ExptP Calc. Model'

r
r
X
X
X
X
L
L
L
L

175
332
95

185
188
227
120
144
204
249

172
264

87
142
180
192
120
142
178
230

2.4
1.0

-0.1
2.1
2.4
0.7
2.2
2.2
1.2
1.0

2.4
0.9
0.1
2.4
2.5
0.4
2.3
2.1 .

1.6
0,9

Present results for a =10.6 a.u. or T-0 K.
"Experimental results for 7'=80 K (Ref. 22).

Deformation dipole model (Ref. 8).

elastic constants (below). These results differ
slightly from those reported earlier~ for two rea-
sons: (1) there are small differences in alkali-
halide potentials owing to improvements in the
charge densities ' and interpolation procedures,
and (2) alkali-alkali and halide-halide interactions,
included in this work, were not included in the
earlier work.

Expressions for the elastic constants are ob-
tained by comparing the long-wavelength limit of
the dynamical matrix with the corresponding re-
sults from elasticity theory. " For the NaCl struc-
ture this yields

2

C~, = -1.2780 —
4 +—

I yZ~+ egjg+ 4AAy y ( AH

+ —(yss+yaA) ~,
1

r2 )'

2

«.= 0 6290~ + ——4A's+ -''(Ass+ AAa)

+g ~NHH+4A ~)2r2
(10)

where the derivatives of the P~ potential are eval-
uated at r, =a/2, and the derivatives of PAA and

f„sat r, =V 2a/2. Since these expressions give the
elastic behavior of the static lattice as a function
of volume we shall refer to them as the static
elastic constants. Experimentally the elastic be-
havior can. be determined dynamically, which gives
the elastic response in an adiabatic environment,
or through a static measurement in an isothermal
environment, which of course gives the isothermal
response. The distinction between the static and
isothermal bulk modulus wiQ be clarified below.
At low temperatures (here T& 300 K) such distinc-
tions are not significant compared to limitations
in accuracy imposed by the fundamental approxi-
mations. It is convenient to express the elastic
properties in terms of the bulk modulus and the
two shear elastic constants. They are, respec-
tiveIy, I/EC= (C,~+2C~s)/2, C»-C,2, and C«,
where E is the compressibility. The room-tem-
perature bulk and shear elastic constants, obtained
by substituting the room-temperature calculated
value of a (see below) into the expressions above,
are listed and compared with experimental values
in Table III. Except for the (lithium) compounds,
and also the iodides, the calculated values for

TABLE III. Comparison of the calculated (static values) and measured bulk moduli (1/g) and shear elastic constants
(Ctg —Cf2 and C44) for the alkali halides at zero pressure and room temperature in units of 10 dynes/om2.

Br
Cgg- C)2

Cl Br
C44

Li 7.01
Na 4.35
K 331
Hb 2.82

3.41
2.29
1.96
1.72

2.81
1.92
1.70
1.50

2,32
1.53
1.41
1.25

3.05
6.06
6.14
5.58

4.26
4.16
4.12
3.80

3.92
3,70
3.70
3.43

5.42
3.67
3,54
3.18

7.01
3.08
1.82
1.44

2.59 2,00
1.30 1.01
0.92 0.75
0.74 0.60

0.88
0.56
0.46
0.39

Li

Expt.
Na

Rb

6.96
4.85
3.16
2.77

3.17
2.50
1.82
1,62

2.56
2.06
1.54
1.38

1.88
1.59
1.22
1.11

6.59
7.27
5.10
4.13

2.66
3.65
3.39
3.02

2.07
2.92
2.91
2.66

1.45
2.14
2.31
2.21

6.35
2.81
1.25
0.92

2.46 1.93
1.26 0.99
0.63 0.51
0.46 0.38

1.35
0.74
0.37
0.28

Li-
Na

% dev.

Rb

1
-10

5
2

8
-8

8
6

10
~7
10

9

23

16
13

-54
-17

20
35

60
14
22
26

89
27
27
29

274
71
53
44

10
10
46
57

5
3

46
61

4

47
58

-35
-24

24
39

~ Reference 23.
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TABLE IV. Comparison of the calculated (static values) and measured temperature deriva-
tive of the elastic constants {units of 108 dyne/cml K).

-d g./Z)/dT
F Cl Br I

-d (Cgg
—Cg2)/d7.

'

F Cl Br I F

Calc.

3.9 1.4
2.0 1.2
1.5 1.0
1.4 0.9

1e2 Oo7

1.0 0.7
0.9 0.7
0.8 0.6

4.6
3.6
3.2
3,0

2.4 2.0 1.7 0.8
2.4 2.1 1.7 - 0.0
2.2 1.9 1.6 -O.l
2.0 1.8 1,6 -0.1

0.1
0.0

-0.1
-0.1

0.1
0.0

-O.l
-0.1

-0.1
-0.1
-0.1
-0.1

Expt.

2.5
1.8
1.3
1.3

1.8 1.5
1.2 1.1
0.9 0.7
0.8 0.7

7.5
0.9 6,6
0.6 5.1
0.6 4.5

4.3 3.8
4.2 3.5
3.8 3.4
3.5 3.1

1.8
2.9 0.6
2.9 0.3
2.7 0.2

1.0
0.3
0.1
0.1

0.9
0.2
0.1
0.1

0.2
0.1
0.1

~ Heference 23.

I/A and C„-C» are in rather good agreement
with the experimental values. A substantial por-
tion. of the di.screpaney for the lithium compounds
can be blamed on the pair-potential approximation
(see discussion below). The calculated values fol'
C«are in good agreement with experimental re-
sults for the sodium compounds, but progressively
worse agreement is seen for the potassium and
rubidium compounds. These disci epancies may
also result from the breakdown of the pair-poten-
tial approximation because the errors are largest
for those materials which show the greatest viola. -
tion of the Cauchy relation, C»= C«. The calcu-
lated elastic constants only satisfy the Cauchy
condition at V= V, the static equilibrium volume,
but the experimentally observed violations of the
Cauehy relation are too large to be explained as a
volume effect. This is especially true for the ru-
bidium compounds for which we find the largest
errors in C«. %e are therefore led to suspect the
breakdown of the pair-potential approximation as
the source of the large errors in C« for the Bb
compounds, and to a lesser extent, for the K com-
pounds. However, errors in C«do not affect very
much the equation of state because C« is only
weakly temperature dependent (Table IV).

The most significant volume dependence of the
phonon frequencies, in so far as the equation of
state is concerned, can be understood by looking
at the volume dependence of C» —C» and C«.
Generally speaking, the frequencies decrease with
increasing volume, but for sufficiently small r,
the p„'„/r,' term in Eq. (10), which is negative, be-
gins to dominate and pull the corresponding acous-
tic bra, nch to zero. The signs of the Coulomb and

P~s terms are reversed for the C» -C» branch;
thus, for a sufficiently large volume C» —C»=0.
Approximate values of x, where C4~ and C» —C»
are Eel'o are given in Table I (see discussion in
Sec. III). The temperature dependence of the pho-
non frequencies is, within the QHA, given implic-

itly through the temperature dependence of the
volume. Above room temperature the elastic con-
stants are essentially linear in T for both theory
(see I"ig. 3 of Ref. 4) and experiment. " The com-
puted gradients are compared with experimental
results in Table 0?. %e find the agreement is
similar to that found for the elastic constants
themselves.

B. The equation of state

The lattice constant and its dependence on pres-
sure and temperature is obtained from the equa-
tion of state [Eq. (2)], which may be shown graph-
ically by plotting both d U/d V and the family of
curves f(V, T) as a function of lattice constant [a
= (4g)'~' for the rocksalt structure ]. Alternatively
I'(V, T) may be plotted, as in Ref. 4, but I believe
it is more instructive to see the separate contri-
butions. Figure I shows the static and vibrational
pressure contributions to the equation of state for
N'aCI. Qualitatively similar results are obtained
for the rest of the alkali halides. The temperature
dependence of the I' =0 lattice constant is given by

40

30
CO

~~ 20

LLj [0

V) O
(A
I~)
~-&o

L Jc ~ 1~52 S4 56 58 6 O. 6 2
LRTTICE CLjNSTRNT (R)

FIG. 1. Plot of the electron pressure and phonon
pressure (for selected temperatures) for NaCl as a
function of lattice constant. The arrows on the abscissa
indicate the measured volumes of the solid at 0 K and

T (Bef. 24) and of the liquid at T (Ref. 25).



the points on the abscissa where the static pxes-
sure cgrve intersects the vibrational pressure
curves. The I'& 0 values are obtained in the same
way after first shifting the static pressure curve
by the amountI'. We note that for P=0 the lattice
becomes unstable at about 1090 K. Above this
critical temperature, T„the magnitude of the
vibrational pressure is larger than the static pres-
sure for all volumes. In terms of the free energy,
the critical temperature is defined as that temper-
ature above which there is no longer a minimum
as a function of volume. Below E, a given mbra-
tional-pressure curve intersects the static-px'es-
sure curve in two places; the first corresponds to
a minimum inI", and the second, a maximum.

We note that as T- T, the isothermal bulk mod-
ulus t)r, goes to zero Pr.is not to be confused with
1/X above; the latter is just the slope of the static
pressure curve while Pr is l/K minus the slope of
the vibrational-pressure curve. The reason fox
the sharp increase in the vibrational-pressure

0
curves above a = 5.8 & is due to the onset of the
intrinsic shear instability C» —C» -—0, which oc-
curs at a =6.25 A. The actual solid can never
reach the volume where &,, —&» =0 because Pr
necessarily goes to zero first' as the temperature
is increased.

The accuracy of the equation-of-state calcula-
tions can be assessed from the results in Tables
V-VII and Fig. 2. The computed values of the lat-
tice constant at zero pressure and temperatures

4. 0

3.5

(A
g 0

CE

LLI

2. 0

1.5

1.Q

cl: 0.5

0. 0

-0.5

200 400 GQQ BOO 1000
T (K)

FIG. 2. Comparison of calculated thermal expansion
for NaCl (solid curve) with selected experimental data
(Q Bef. 31, x—Bef. 32, +—Bef. 33,O —Hef. 34,
Q—Bef, 35, and 6—Bef. 36) as tabulated in Bef. 24.

T=0, 300, 500, and 800 K, are compared with ex-
perimental values zn Table V. The thermal-ex-
pansion coefficients, o'= (l/a)(sa/sT), are given
in Table VI for T=300 K and P=O. The pressure
dependence of the lattice constant is shown in
terms of the T = 300 K volume ratios V~/ Vo in
Table VH. The measux ed critical pressures were
used to compute the volume ratios for the com-
pounds undergoing txansformations to the CsCl
structure. Figure 2 shows the temperature de-

TABLE V. Comparison of the calculated and measured lattice constants„a, for the alkali
halides at 7'=-0, 300, 500, andi 800 K. Measured results are from Bef. 26 unless other@rise
speci fied.

g(300 K)
Calc. Expt.

[ha/a(300 K)](10 ~)

500 K
Calc. Expt.

800 K
Expt.

Lir
LiCI
LiBr
LiI
Nar
NaCl
NaBr
NaI
KF
KCl
Ear
Ia
Bbr
Hb Cl
BbBr
HbI

4.062
4.960
5.290
5,564
4.706
5,666
5.991
6.381,
5.221
6.060
6.342
6.716
5.534
6.347
6.626
7.006

4.028
5.140
5.502
6,000
4.634
5.640
5.978
6.474
5.348
6.294
6.596
7.066
5.630
6.582
6.890
7.342

—623
-450"

-347"
-557
-670
-546b
-677
-451~
-660
-714
-692
-614
-701
-762
-749

777
962"

1056

712
900
896m

945'
701~
829
851
942

2160
2080
1510
2170
2240
2260
2030
1970
2090
2110
1946
1990
2150
2150
2040

2242
2361
2602

2248c
2158
2321c

~ Beference 27.
"Values for 123 K.' Beference 28.

~ Beference 24.' Beference 29.
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TABLE VI. Comparison of the calculated and measured thermal-expansion coefficients for
zero pressure and room temperature in units of 10 6 K-'. Measured results are from Ref.
26 unless specified otherwise.

LiF LiCl LiBr LiI NaI

Calc.
Expt.
% dev

40.5
33.2
22

KF

31.1
43.2

-28

KC1

31.2
49.8

-37

26.8
59.4

-55

31.4
31.7

34.5
39.7

~13

RbC1

34.7
42.3~

-18
RbBr

31.7
45.5

-30
RbI

Calc. 30.1
Expt. 31.7
% dev -5

32 «2

37.1
~13

33.1
38.7

-14

31.3
40.8

—23

30.9
34.O"

—9

32.8
361
-9

34.0
37.8~

-10

32.5
38.0

-15

~ Reference 24.
"Reference 30.

pendence of a for NaCl. Overall, these results
constitute a reasonably accurate prediction of
a(P, T) considering that they were derived from
first principles.

C. Melting

In a proper theory of melting the melting tem-
perature is defined by the equabty of the free en-
ergies of the liquid and solid phases. However,

TABLE VII. Boom-temperature volume ratios,
V~/Vo, for selected alkali haiides (Vz is the volume at
pressure P and Vt) the volume at zero pressure).

NaCl NaI
P (kbar) Calc. Expt. Calc. Expt. ~

this does not exclude the possibility that melting
may be controlled or conditioned by an instability
in one of the separate phases. It can be argued
that the instability described above, which has p~-0 as T- T, plays an important role in causing
solids to melt. "'&~' '4 First of all, we note
from the results in Tables V, VI, and VIII that the
calculated values for T, are in good agreement
with the corresponding melting temperatures (T )
for those compounds that have similarly good
agreement with thermal-expansion data. In other
words, if the interatomic forces are predicted
accurately by the present theory then 1', is close
to T . This point will be further discussed and
refined to include qualitatively the effect of anhar-
monic corrections in the next section. Also, from

5 0.981
10 0.964
20 0.934
50 0.867

100 0.793

0.980 0.972 0.970
0.962 0.948 0.944
0.932 0.909 0.902
0.864 0.825 0.813
0.788

KC1 KBr KI

Calc. Expt. ~ Calc. Expt. ~ Calc. Expt.

5 0.978 0.974 0.975 0.970 0.970
10 0.958 0.951 0.953 0.944 0.945

2O
'

O.V9Sb O.SOO O.V6Vb
o.so5b o.sov

50 0.750 0.737 0.738 0.724 0.705
100 0.690 0.678 0.674 0.663 0.640

0.965
0.935

0.802

0.718
0.650

10
20
50

100

0.975
0.835b
0.819
0.794
0.738
0.677

0.970
0.830
0.811
0.780
0.706
0.635

0.972
0.830b
0.813
0.784
0.724
0.660

0.967
0.834
0.811
0.780
0.704
0.635

0.966
O.SOsb

0.789
0.759
0.695
0.630

0.965
0.839
0.807
0.762
0.672
0.600

RbCl RbBr RbI
Calc. Expt. ~ Calc. Expt. a Gale. Expt. a

Compound 7'
(K/kbar)

dTJ'dP dTI/dP

LiF
LiCl
LiBr
LiI
NaF
NaC1
NaBr
NaI
KF
KCl
KBr
IQ
RbF
RbC1
RbBr
RbI

630 1143~
1060 887a 878b
1130 820
1600 719~
1030 1265 'b'

1O9O 1073~b'
1110 1028~1014b,e

924& 928b &

1150 1153~1124d
1150 1063alp43b~d
1170 1003 1006d
1270 996~ 957d
1160 1033 1071e
114P 1018 990 '

1140 955 950
122O 915' 913'

7.5
21
24
35
17
29
34
51
22
36
42
53
27
43
48
58

15.1bl8 Oe

23.6b24.1e
28 vb27 lc
33.2b35.6'

22.6d

29.1"26.5d

37.8d

64.2d

15 1'
25 pb25 6e

32.29

32.46

TABLE VIII. Comparison of T with 7' and dT /dP
with d TgdP at P = 0.

~ Reference 26.
" Transition to the CsC1 structure.

~ Reference 26.
b Reference 37.' Reference 38.

d Reference 39.' Reference 40.
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the results in Table VIII we see that the pressure
derivatives of T, and T are in favorable agree-
ment with each other.

Others have noted the proximity of T, to T for
rare-gas solids but prefer not to make any causal
connection between the P&- 0 instability and melt-
ing. Dobbs and Jones, ' in reviewing the work of
Kane4' and Herzfeld and Goeppert-Mayer, ' dis-
miss the correlation as a "defect" in the theory
because it predicts T, & T„and (consequently) gives
too rapid an increase in thermal expansion at high
temperatures. For the reasons stated below, I
claim that the "defect" is quantitative in nature,
owing mainly to the quasiharmonic approximation
and not because of anything essentially wrong with
the basic idea. Using self-consistent phonon the-
ory and Green's-function techniques, Plakida and
Slklas" obtain the Pr - 0 instability for a simple
model'of an fcc lattice. While they note that T,
must be an upper bound to T they dO not suggest
that any real connection exists between melting
and the Pr - 0 instability. Here I argue that the
onset of the Pr - 0 instability is important in ex-
plaining why solids melt, with any difference be-
tween the anharmonically corrected T, and T
ascribed to lattice imperfections.

It is natural to associate the volume for which
C„-C»=0to that of the liquid because in either
case there is no resistance to elastic shear; some
theories of melting are based entirely on this con-
nection. "" When this is done we find that not
only does the present theory give a reasonably ac-
curate prediction of thermal expansion up to the
melting temperature (for those compounds with

T,= T), but the —volume discontinuity that occurs
upon melting is also accurately predicted. This is
illustrated by the three small arrows on the
abscissa in Fig. f; they mark the measured vol-
ume of the solid at T=O and T=T, and the liquid
at T=T .

Further evidence that the Pr - 0 instability plays
a role in melting can be seen in high-temperature
thermal-expansion data for the alkali halides.
Specifically, the greater-than-linear increase in
0' seen at high temperatures, can be satisfactorily
interpreted as the onset of the P~ -0 instability.
This idea has been quantified for NaCl, "for which
an abundance of high-temperature thermal-expan-
sion data exists. In the high-temperature limit
(T- T,) the present theory gives

a(T) =ao+a, (T, —T)'~

This follows by expanding the static and vibrational
pressure curves to second order in a and noting
that in the high-temperature limit the phonon pres-
sure is linear in T. When a„a„andT, are

treated as adjustable parameters Eq. (11) gives a
substantially better fit to the high-temperature
thermal-expansion data than can be achieved by the
usual polynomial fits. For NaCl the optimum value
of T, is found to be within 10% of the melting tern
perature (T„&T,&1.1T„),but accurate data are
needed to fix T, within this range.

Collectively the above results show, rather con-
vincingly I believe, that the Pr - 0 instability plays
a role in melting. Yet, it would be misleading to
say that it is the cause of melting. Remember that
the Pr-0 instability is itself caused by the de-
creasing value of &yy » with increasing volume.
It is reasonable to expect the properties of the
solid very near T to be largely controlled by lat-
tice imperfections (e.g. , vacancies, dislocations,
and surfaces). In fact, theories of melting have
been constructed based on lattice imperfec-
tions. "" The increasingly important role for lat-
tice imperfections, as T- T, would be enhanced
by the diminishing value of P~ because the thermal
generation of such defects would be made easier by
the low value of Pr. The question of how near the
temperature must be to the melting temperature
before lattice imperfections play a dominant role
is therefore indicated by the value of T,- T . As
was mentioned above, when T, is deduced from
thermal-expansion data within the present theory
we find T, —T &0.1 T . Anharmonic corrections
to T, could be included in the manner described
below (Sec. V), but greater accuracy in the high-
temperature data would still be required to draw
more quantitative conclusions about the value of

1S

With increasing pressure the theoretical results
for dT, /dP are nearly constant within the quasi-
harmonic approximation. If, as argued below, an-
harmonic corrections tend to compress the phonon
pressure curves at high temperatures, then the
anharmonically corrected dT, /dP may even in-
crease with increasing pressure. However, ex-
perimental results show a gradual decrease in
dT /dP with increasing pressure. Together these
trends suggest that T, moves to a relatively higher
value above T as pressure increases, which in
turn implies a more dominant role for lattice im-
perfections in describing the properties of the
solid near melting at elevated pressures.

D. Polymorphism

Cohen and Gordon" have previously treated the
problem of polymorphism in the alkali halides
within the statj. c lattice approximation. They cal-
cu»ted critical pressures (P,) above which the
crystal transforms to the CsCl structure, by eval-
uating the static Gibbs energy, ~=U+PV, for
both structures. To justify the static lattice ap-
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proximation they noted that experiments show that
P, has little temperature dependence. I have per-
formed similar calculations of P, with the vibra-
tional contributions to the Gibbs energy included
(G =E+PV), and find P, to be essentially indepen-
dent of temperature, confirming the static lattice
approximation in this case. This is illustrated in
Fig. 3 where 6 for KC1 is plotted for selected tem-
peratures as a function of pressure. The results
for the rest of the alkali halides are qualitatively
similar.

The calculated and measured values of P, are
compared in Table IX. The calculated values dif-
fer somewhat from those of Cohen and Gordon,
primarily because they used a scaled electron-gas
approximation for computing pair potentials while
I have retained the original coefficients in the
electron-gas formulas. The comparison with ex-
periment is not as good as one might expect from
the equation-of-state results. The wrong P =0
structure is predicted in some cases (P, & 0) and

P, for NaCl (for which a quite accurate equation
of state is obtained) is much too low. Using the
scaled EGA improves this situation somewhat, "
but large discrepancies still remain. On the other
hand, certain trends in P, for these compounds
are correctly predicted; compounds with light
alkali. ions show a marked preference for the rock-
salt structure, and similarly for the fluorides.
Below I argue that the large errors in the values
predicted for P, are likely caused by a breakdown
in the pair-potential approximation.

V. DISCUSSION

In this section I offer an analysis of the discrep-
ancies between theory and experiment, which is
mostly qualitative, but nevertheless seems to

-7. 2

)
a) -7. 4

cL -7.6
LLj

LLI

u-) -7 ~ 8
CD
CD

L"-) —8.0

-8. 2

0 5 10 15 20 25
PRESSURE (kbar )

FIG. 3. Calculated pressure dependence of the Gibbs
free energy for KCl, at T = 0 arid 600 K, in the NaCl
(solid line) and Cs Cl (dashed line) structures.

TABLE IX. Critical pressures (P,) for polymor-
phism in the alkali halides.

Compound Gale.
P (kbar)

Lip
LiCl
LiBr
LiI
Nap
NaCl
NaBr
NaI
KF
KC1
KBr
KI
RbF
Rb Cl
RbBr
RbI

&200
&200

96
-27

&200
46
30

7
75
12

7
-10

61
4
0

-9

&100
&100
&100
&100
&200

300
&100
&100
&100

20
19
19

&100
5
5

4

As tabulated in Ref. 19.

point out which approximations are in greatest
need of improvement. First let us consider the
EGA. Naldman and Gordon have recently modi-
fied the EGA by scaling the kinetic, exchange,
and correlation energies to match the correct
atomic values. I have investigated the effect of
using the scaled EGA on the equation of state for
selected alkali halides. In some cases there is a
modest improvement, but for others the agree-
ment is worsened. For example for NaI the EGA
yields a value for the thermal-expansion coeffi-
cient that is 30% too low while the scaled EGA im
proves this discrepancy to 18%%uo (still too low).
However, for NaF the EGA value for is in rath-
er good agreement with experiment but the scaled
EGA is about 20/o too high. The scaled EGA re-
sults for polymorphic critical pressures" offer
a modest improvement over the EGA results
(Table IX) but still large discrepancies remain.
In short, we must look to other approximations to
correct the larger discrepancies between theory
and experiment.

The main effect of non-rigid-ion-type behavior
on the lattice dynamics of alkali halides is known
from model calculations to be a lowering of the
LO branch of the phonon dispersion curves. "
While this substantially improves the agreement
for the phonon frequencies, its effect on the equa-
tion of state mould be small because the LO branch
is only weakly volume dependent. Thus, the BIA
does not appear to be responsible for the larger
dis crepancies either.

The greatest error made by the present theory,
at least at low temperature, seems to come from



the PPA. This can be seen by noting that the mag-
nitudes of the errors are related to the relative
sizes of the ions. Large errors are found for
those compounds with a big difference between the
sizes of the constituent ions. This is most evident
in the thermal expansion results (see Tab1e VI).
For example, the predicted values of & for the
iodides are in all cases considerably too small,
with progressively worse agreement going from
Hb to Li. The reason why a large size difference
between constituent ions produces large errors in
the PPA can be understood from a simple geomet-
rical argument. In the calculation of a pair poten-
tial the largest contribution comes from the region
where there is greatest overlap of the two charge
densities. However, in a solid a substantial por-
tion of the total charge density in the overlap re-
gion of a given ion pair can come from neighboring
ions as well. This is especially true if one ion is
much smaller than the other. The fact that this
simple picture correlates well with the major dis-
crepancies between theory and experiment points
to the PPA as the main source of error in the
present theory.

The generally poorer agreement between theory
and experiment for the polymorphic critical pres-
sures is also an indication of a breakdown in the
PPA. Here the values obtained for P, depend on a
comparison of energies computed for two different
crystal structures with different coordination num-
bers. Thus, zeroth-order corrections to the PPA
energies are important in the calculation of P„
but do not contribute to the equation of state for a
single structure because the latter requires only
derivatives of energy.

As discussed above, the amount by which the
Cauchy relation is violated can be used as a mea-
sure of the validity of the PPA. The present the-
ory predicts that at room temperature &~ will be
about 10%%uo larger than C», owing to the more rap-
id decrease in C,'2 with increasing volume. Indeed,
we find best results for materials with &y2

(e.g., NaF and NaC1). However, we also find rea-
sonably good equations of state for the lighter po-
tassium and rubidium compounds, for which C~4 is
10 to 30%%uo less than C». Since the error made by
the PPA in this case is primarily in overestimat-
ing C«, and since C« is relatively volume inde-
pendent (both theoretically and experimentally), it
introduces little error in the equation of state.

In the previous section we noted that a good pre-
diction of the thermal expansion is obtained over
the entire temperature range (0 K to melting) for
those compounds which have T,= T„(seeFig. 2—).
If T, is much larger than T, as is the case for
the iodides, then the thermal expansion is too low.
If T, is much smaller than T, as it is for LiF,

then the thermal expansion is too high. On closer
scrutiny, however, we see that if T, is very near
T, as it is for NaCl, then the thermal expansion
is predicted a little too low at low temperatures
and a little too high at high temperatures. If the
thermal expansion is more accurately predicted at
low temperatures, as for NaF, then T, falls some-
what below T . This can be interpreted as a grad-
ual worsening of the QHA with increasing tempera-
ture. (A good low-temperature result is an indica-
tion that the interatomic forces are accurately pre-
dicted. ) Including anharmonic corrections to the
QHA would therefore (in order to bring agreement
at high temperatures) reduce the vibrational pres-
sure at high temperatures and thus postpone the
Pr-0 instability to a value of T, near or somewhat
greater than T . This anharmonic lowering of the
vibrational pressure at high temperatures is con-
sistent with the results of Feldman et al. ' who
showed that anharmonic corrections for rare-gas
solids effectively reduce p. This type of anhar-
monic effect has a simple physical interpretation.
As the temperature and vibrational amplitude in-
creases, so does the anharmonic part of the re-
storing force. This prohibits the phonon frequen-
cies from decreasing with temperature as fast as
they would in the QHA which, in turn, lowers the
effective y.

One could incorporate anharmonic effects in the
analytic form of a(T) near T, [Eg. (11)]by replac-
ing T by a more slowly varying function of T, say
T' with p& l. However, this would not alter sig-
nificantly the qualitative features of the thermal
expansion at high temperatures [a(T) would still
attain an infinite slope (o'- ~) at T= T,]. It might
lead to a better estimate of the proximity of T, to
T if the uncertainties in the high-temperature
thermal-expansion data can be resolved. But cur-
rently the QHA result for NaCl (T„& T& 1.1 T )
is about as good as one can do given these uncer-
tainties.

The amount by which T, lies above T is an indi-
cation of the influence of lattice imperfections on
the properties of the solid at high temperatures.
The present results suggest that lattice imperfec-
tions are not an important factor for temperatures
up to at least 0.9 T„.However, the fact that dTJ
M decreases with pressure, contrary to the pre-
diction for dT, /dI', implies an increasingly im-.
portant role for lattice imperfections near T at
high pressures.
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