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Scattering of electrons by phasons, the collective excitations of an incommensurate charge-density wave (CDW), is

presented as a new mechanism in the low-temperature resistivity of potassium. It is shown to provide an explanation
for recent precision measurements in potassium between 0.38 and 1.3 K., where conventional mechanisms, such as
electron-electron scattering, fail. With this theory, it is possible to explain the shape of the measured resistivity

curves, the magnitude of the temperature-dependent part of the resistivity, and the sample dependence. The sample
dependence is explained since the measured electron-phason resistivity, which is much larger along the COW wave

vector g than perpendicular to it, depends on the g-domain structure of a particular sample, Fitting this theory to
these experiments yields the value for the phason temperature 0& ——3.25 I and an approximate range of the

anisotropy of the phason spectrum, 7.7 I1/y) 9.7. Further resistivity measurements at ultralow temperatures are
needed to test the hypothesis of electron-phason scattering, and, if this mechanism continues to show promise, to
provide more accurate estimates for the phason parameters.

I. INTRODUCTION

Results of recent measurements of the low-tem-
perature electrical resistivity of several simple
metals have rejuvenated interest in the basic scat-
tering mechanisms of electrons. One of the mo-
tivations for performing these experiments was
the desire to find evidence for electron-electron
scattering, which was predi. cted to produce a T'
term in the resistivity, independent of the resi-
dual resistivity p, . Therefore, reports of approx-
imate T' variations of electrical 'resistivity be-
low 2 K ln potassLumy aluminum~ ' sliver~ and

copper' have sparked considerable excitement.
However, the interpretation of these data in terms
of electron-electron scattering is, in some cases.
open to question. Basic discrepancies exist, for
example in potassium, between the experiments
and the theory in terms of electron-electron scat-
tering.

Only in aluminum has it been shown that. the T'
term is independent of p, .' In fact, in K, the
temperature-dependent part of the resistivity in-
creases rapidly with increasing po. . In addition, in

K, a T' behavior is actually inconsistent with the
data. A pure power-law fit' produces T", but the
dependence is probably more complicated. No

conventional mechanism can reconcile the ob-
served behavior. For this reason, we suggest
that a new scattering mechanism must be invoked, '
namely, the scattering of electrons from phasons, '
excitations associated with phase fluctuations of a
charge-density wave (CDW).

The objectives of this paper are to show that all
conventional mechanisms fail to explain existing

data in K and to demonstrate that the theory of
electron-phason scattering can explain both the
shape and magnitude of the resistivity anomaly.
Previously, in Ref. 8, we presented a limiting
case of this theory and illustrated its ability to fit
the shape of the measured curves. The paper is
organized as follows. In Sec. II, we analyze ex-
isting experiments in potassium and discuss con-
ventional resistivity mechanisms. In Sec. III,
we review the properties of charge-density waves
and phasons and of the electron-phason interac-
tion. In addition, we calculate the resulting tran-
sition matrix elements. We present in Sec. IV a
derivation of the expressi'ons used in calculations
of the electron-phason resistivity and in Sec. V
the results of numerical evaluations of these ex-
pressions. Finally, in Sec. VI, we state the con-
clusions.

II. ANALYSIS OF EXPERIMENTS

In order to understand the recent measurements
of the low-temperature resistivity of potassium,
let us first consider the conventional theoretical
ideas about the contributions to the resistivity
p(f ) of a simple metal at iow temperatures, "

p(T) = p, +AT" +BT~exp( h(e, /ksr)+CT'-, (2.&)

where p, is the residual resistivity, a tempera-
ture-independent part of the resistivity due to scat-
tering of electrons from impurities and other im-
perfections in the crystal. The term AT' is the
low-temperature limiting behavior of the resis-
tivity resulting from normal electron-phonon scat-
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tering. If phonon-drag effects are important, i.e.,
if the phonons drift with the electrons, then the
magnitude of this term can be greatly reduced.
Electron-phonon umklapp scattering, which is un-
affected by phonon drag, contributes a term of the
form BT~ exp(-ff &u, /%AT), where &v, is the frequen-
cy of the phonon with the minimum wave vector
that allows the electrons to scatter via an umklapp
process. Electron-electron scattering adds a term
CT' at all temperatures. The assumption that each
of these contributions can be added independently
is known as Matthiessen's rule.

The determination of the relative importance of
each of the above mechanisms has been the object
of considerable experimental study. The first of
the temperature-dependent terms in Eg. (2.1) to be
verified was the exponential decay of the electron-
phonon umklapp scattering with decreasing tem-
perature below 4 K." Later, theoretical predic-
tions" "of the possibility of detecting the effects
of phonon drag at temperatures below 2 K encour-
aged further low-temperature work. An additional
incentive was that if phonon drag diminished the
g' of normal electron-phonon processes, the only
significant remaining temperature-dependent con-
tribution to the resistivity below 2 K might be that
of the CT' term in Eg. (2.1) due to electron-elec-
tron scattering. "

Van Kempen et a/. ' measured the temperature-
dependent resistivity of potassium between 1.1 and
4.2 K and found evidence for the presence of pho-
non drag. The magnitude of the resistivity dipped
well below the predicted magnitude for the A.7' that
would be present in the absence of phonon drag.
Below 2 K, an anomalous sample-dependent com-
ponent of the resistivity appeared. Since the varia-
tion of this new term was consistent with g',
van Kempen et aL suggested that this might be
due to electron-electron scattering. Unfortunately,
this contribution to the resistivity was sample de-
pendent, in contradiction to conventional theories
of electron-electron scattering. '" In addition, the
presence of the exponential tail due to electron-
phonon umklapp scattering causes some difficulty
in determining the exact temperature dependence
of this newly observed feature in the resistivity.
Ideally, the umklapp scattering portion of the re-
sistivity should be subtracted from the data before
analyzing any new contribution. Unfortunately,
difficulties arise because of a lack of knowledge of
the exact form of this function below 2 K. While
van Kempen et NE. were able to fit their data well
with the exponential term given in Eg. (2.1) with
p=1andO=S+, /k~ =19.9, Kaveh, Leavens, and Wis-
er" point out that the validity of extending this form
below 2 K is questionable. One may avoid this
difficulty by considering only data below which

electron-phonon umklapp scattering is negligible
compared with the new component of the low-tem-
perature resistivity„ i.e. , below about 1.3 K.
Clearly, then, the remaining temperature range
between 1.1 and 1.3 K is too narrow to confirm or
deny a 7' dependence.

This uncertainty prompted Rowlands„Duvvury,
and Woods' to extend the low-temperature resis-
tivity measurements of potassium down to 0.4 K.
Between 4 and 2 K, their data agreed with the pre-
vious results. However, they found that, with the
extended range of temperatures, the data below
1.3 K were inconsistent with a T' dependence, and
that the best pure power law that would fit the data
was actually g ' '. Qn the other hand, this data
need not be fitted to a pure power law. In fact, in
a previous paper, ' we showed that the shape of the
curve, as well as its sample dependence, could
be explained by the scattering of electrons from
phasons, the phase fluctuations of a charge-den-
sity wave, and this theory yielded Bloch-GrGn-
eisen functions rather than a pure power law.

The sample dependence of the new component in
the temperature-dependent resistivity impelled
Levy et ai.' to study this aspect further. They
measured a variety of samples, with p(T) —p,
ranging from 8x1o "to 4.2&&10 "0 cm at 1.2 K,
where p, was guessed in order to obtain a T' fit.
This range of magnitudes was comparable to what
was seen in other measurements. ' Although they
ascribed a T' dependence to the anomalous re-
sistivity, their measurements, which did not ex-
tend below 1.1 K, could not determine that be-
havior. They suggested that the data could be ex-
plained by a theory of Kaveh and Wiser, "in which
normal electron-electron processes contribute to
the resistivity as the result of anisotropic elec-
tron-dislocation scattering, in a breakdown of
Matthiessen's rule.

Essentially, the idea is that when electrons
scatter from the anisotropic dislocation lines, the
steady-state distribution function in the presence
of an electric field is distorted in shape from that
of the equilibrium distribution function, i.e., a
"dimple" forms in the direction of the field. Nor-
mal electron-electron scattering can be thought of
as a diffusion of electrons on the Fermi surface,
and this diffusion "heals" the "dimple" in such a
way as to restore the shape of the equilibrium dis-
tribution function. In this way, a resistivity aris-
es that is dependent on the density of dislocations
and on the normal electron-electron scattering,
which varies as T'.

In order to explain their data in terms of this
theory, Levy et ai.' imposed two major assump-
tions. First, they assumed that the anomalous
temperature-dependent resistivity varies as g"',
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p,~ =4x10 "nD, (2.2)

where p, D is in Q cm and nD is in cm . This re-
lation was extracted from measurements of the
resistivity as a function of strain and of strain as
a function of applied stress. " In obtaining Eq.
(2.2), the assumption was made that the relation
for dislocation density as a function of applied
stress, which was determined in the noble metals
by electron microscopy and etch pit experiments,
may be applied to alkali metals. Thus the value
chosen by Levy et al. for p» corresponds to a
dislocation density of 10' cm '.

Kaveh and Wiser extended the above analysis
of low-temperature resistivity measurements in
K in terms of their theory by including the data of
van Kempen et a/. ' and of Rowlands et a/. ,' in
addition to that of Levy et a/. ' They assumed re-
sistivities due to electron-dislocation scattering
of p»- 0.53-1.8 nQ cm for van Kempen et a/. and

p,D- 1.5-4.8 nQ cm for Rowlands et a/. , corre-
sponding to dislocation densities of nD- 1.3
@10'-4.5x10' cm ' and nD-1.8x10' —1.2@10"
cm ', respectively.

The magnitudes of dislocation densities pre-
sumed to exist in unstressed samples of K by
Levy et a/. ' and Kaveh and Wiser" is unreason-
ably large compared with values obtained from
direct measurements. In neutron diffraction ex-
periments of potassium by Overhauser' and by
Stetter et a/. ," it was determined from the rocking
curve that the angular mosaic spread was about
0.1 degrees and from primary extinction measure-
ments that the mosaic block was of the order of
1 mm. This corresponds to a dislocation density
of less than 10' cm '. In addition, it was found
that dislocations produced by thermal stress an-
neal out in less than an hour. ' These numbers
are then at least 3 orders of magnitude smaller
than those assumed by Levy et al. ' and by Kaveh
and Wiser" in order to explain the data in terms
of electron-electron scattering enhanced by elec-
tron-dislocation scattering.

In fact, high dislocation densities imply that
samples are strained by a significant amount. As
given in Eq. (2.2), the dislocation density n~ of a

in contradiction to the measurements of Rowlands
et al. ' Second, they supposed that all their sam-
ples had a resistivity, p,~=0.4 nQ cm, due to
electron-dislocation scattering, independent of im-
purity concentration or annealing time. (Some
samples annealed for more than a month. ) No di-
rect measurement was done of the dislocation den-
sity or impurity concentration.

The validity of assuming such a large value for
p,~ is questionable. It i.sknown that p» is related,
in K, to the dislocation density n~ by""

sample is related to the resistivity caused by those
dislocations. Basinski et a/. " found that large
resistivities due. to dislocations p, D or high dis-
location densities n~ were actually difficult to
achieve. They found that, for small strains, the
resistivity increases -1.3% per percent strain,
which was also found by Jones. " However, large
external stresses were required to produce even
small strains. For instance, for the dislocation
resistivity p» suggested by Levy et a/ pop
= 0.4 nQ cm, the strain required would be about
3.5/~, which is attained when the sample is under
an external stress of 0.75 kg/mm'. The largest
strain that was achieved in any sample before the
wire broke was about 16%, under a stress of
nearly 1 kg/mm', which corresponds to a disloca-
tion density of n~ - VX10' cm '. This is consider-
ably smaller than the largest dislocation density
assumed by Kaveh and Wiser, "p» = 1.2&10"
cm ', in presumably stress-free samples.

Further difficulties with assuming arrays of
oriented dislocations to be responsible for ano-
malous results in potassium come from other
experiments. For example, the resistivity tensor
of a single crystal of potassium has been measured
to be a cigar-shaped ellipsoid with an anisotropy
of 4 or 5 to 1."'" If oriented arrays of disloca-
tions were responsible for this effect, the resis-
tivity tensor would have to be a pancake-shaped
ellipsoid, . since dislocation lines can be thought of
as cylindrically-shaped scattering centers that
only scatter electrons that travel perpendicular to
the axis of the cylinder.

We now turn our attention to a closer examination
of the temperature dependence of the new component
in the resistivity. We point out that the best way to
analyze the temperature dependence is to employ a
procedure that does not depend on the subtraction of
the residual resistivity po from the data. For in-
stance, a logarithmic plot of the data requires
this subtraction, and the extracted temperature
dependence of the data can depend on the guess one
makes for the magnitude of the residual resistiv-
ity. Bowl. ands et al. avoided this difficulty by
plotting the total resistivity versus 7."" and choos-
ing the value of n that gave a straight line. Here,
we plot the data on a linear-linear plot to avoid
the problem. In Fig. 1, we plot with circles the
data of sample K2c of Rowlands et al. , ' where the
zero of resistivity was set at the lowest data
point. The two points above 1.3 K are displayed
to illustrate the residual contribution of electron-
phonon umklapp scattering to these points. The
dashed arrows indicate the magnitudes one would
subtract from the data if the exponential term in
Eg. (2.1) were used with the parameters of van
Kempen et a/. ' for fitting the data in the region



THEORY OF ELECTRON-PHASON SCATTERING AND THE. ..

IO

E
l50—

E

D
l00—

0
I-
V)
v) 50
IX

O

O
tO
C3

CL

I

0—

0.0
I

0.5
I

I.O

TEMPERATURE (K)

I

l.5
IO I

0.4 0.6 0.8
I

I.O
I

l.2 1.4
FIG.1. Plot of resistivity versus temperature for the data

of sample K2c ofRowlands, D~rvury, and Woods (Ref.
1) indicated by circles. The curve and arrows are de-
scribed in the text.

between 2 and 4 K. A solid curve has been drawn
through all but the two highest data points. We
call this curve p(phason), since it is actually the
result of the theory of electron-phason scatter-
ing, which is presented in this paper.

There is no evidence of a 7.' dependence, which
is consistent with the existence of phonon drag.
A T' curve is also the wrong shape to fit the data.
This is more obvious in Fig. 2, where we show
directly the difference between a 7' curve and a
smooth curve through the data. The horizontal
line is p(phason), the smooth curve through the
data in Fig. 1, which we use as a reference, and

we plot p —p(phason), where p is given either by
the data (circles) or by the power laws in g,
T' ' and T', that pass through the first and last
data points below 1.3 K. Clearly the P' curve
is the wrong shape to describe the data. In fact,
that fit is as poor as a straight line through the
data (the curve labeled T) If one require. s the
best-fit pure power law, one obtains T", as was
first illustrated by Rowlands et a/. ' The estima-
ted error in the data' was +10 "Q cm, which is
about the same as the scatter of the data about
the horizontal line. The temperature dependence
of this data thus rules out electron-electron scat-
tering, at least as the principal mechanism, as
an explanation of the data. As we will shorn in the

T {K)
FIG. 2. Plot of resistivity subtracted from p(phason),

the smooth curve through the data in Fig. 1. The data
of Fig. 1 are shown as circles scattered about the hori-
zontal line pQhason). Curves labeled T, T~. , and T
are the corresponding pure power laws that pass through
the first and last data points below 1.3 K.

following sections, the scattering of electrons
from phasons, the collective excitations corre-
sponding to phase modulation of a charge-density
wave, can explain the shape, ' as well as the mag-
nitude, of this new anomalous component in the
low-temperature resistivity of potassium.

III. PHASONS AND THE ELECTRON-PHASON
INTERACTION

A charge-density wave (CDW) is characterized
by a static sinusoidal modulation of the electronic
charge density,

p(r) = p, [l+p cos(g ~ r+ y)],
where p, is the average density, p is the fraction-
al modulation, and P is the phase. The magnitude
of the CDW wave vector g is approximately the
diameter of the Fermi surface. It has been shown
that, within the deformable jellium model, such a
structure lowers the exchange and correlation en-
ergies with respect to those of the state character-
ized by a uniform charge density. " However,
large static electric fieMs will develop in the
metal unless the lattice undergoes a compensating
distortion in order to ensure macroscopic charge
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neutrality,

u(L) =X sin(Q ~ L+ y), (3.2)

where u(L) is the displacement of the ion from its
original site L, and A is the maximum amplitude
of that displacement. Theoretically, it has been
shown that, in the alkali metals, the lattice pro-
vides almost a complete screening of the electric
fields produced by the electronic density p(r)."

Considerable experimental evidence supports
the existence of a CDW ground state in the alkali
metals, especially in potassium. The experi-
mental situation in potassium was reviewed re-
cently. " Even more recently, the observation of
anomalies in the de Haas-van Alphen effect un-
der pressure" and of open orbits" by the induced
torque method have further strengthened the case
of the CDW ground state in potassium. Although
the predicted CDW diffraction satellites"" have
not yet been observed, "neutron diffraction ex-
periments have not been performed with sufficient
sensitivity to detect the estimated intensities. "

In the alkali metals, the CDW is incommensur-
ate, since the CDW wave vector Q, which spans
the Fer'mi surface, is not related to any recipro-
cal-lattice vector by a small integer. For this
reason, for very pure samples, the energy of the
system does not depend on the value of the phase

This invariance of the energy leads to low-
frequency collective excitations called phasons
whose frequency spectrum goes to zero at the
point g in% space. The phase P(r, t) of the elec-
tronic charge density is modulated slowly in space
and time, and the phase P(L, t) of the lattice fol-
lows, so as to screen out the electron density,

the calculation of the electron-phason resistivity,
referring to earlier work for details.

A phason is a coherent linear combination of
two "old" phonons, i.e. , phonons of the undistort-
ed lattice, , of wave vectors q+ Q and q -g.' The
orthogonal linear combination of these same two
"old" phonons is an amplitude mode, "a collective
oscillation of the amplitude A in Eq. (3.2), which
occurs at high frequency. The situation is illu-
strated schematically in Fig. 3. Away from the
points g and -g, the phason and amplitude modes
merge quickly into the phonon spectrum, so that
these new excitations exist only in a very small.
volume of phase space. For simplicity, we will
assume that at some frequency cutoff co&, the
phasons transform into phonons, and for the pur-
poses of this paper we will neglect the contribu-
tions of the phonons and amplitude modes in the
calculation of the resistivity. q& is the corre-
sponding wave-vector cutoff along Q. We should
comment that Fig. 3 has only an approximate
meaning, since, in the presence of an incommen-
surate CDW, the system no longer has transla-
tional symmetry along Q. (Actually, Q is longer
than half the reciprocal-lattice vector along it. )

As illustrated in Fig. 4, this phason spectrum
is expected to be highly anisotropic, such that

(cq+cq)c(q'+q2q2)ll2(34a)
where

Q(T, f) =Q Q~ sin(q L —or~ t), (3.3)

where q and ~ are the wave vector and frequency
of the phason, and P~ is its amplitude. Thus a
phason is actually a normal mode of the lattice
whose frequency vanishes at the point Q and var-
ies linearly with q away from that point.

Although we are concerned in this paper with

the influence of phasons on the electrical resis-
tivity, it is interesting to note that these low-fre-
quency excitations can also affect a number of
other physical properties. For example, they can
produce an anomaly in the low-temperature heat
capacity, "an effect that was first observed in
I aoe„a three-dimensional system, by Sawada
and Satoh. '4 There is even evidence supporting
such an anomaly in rubidium, one of the alkali
metals. "'" Since extensive theoretical studies
have been done investigating the general proper-
ties of phasons, ' " "'"we will confine our at-
tention here to those aspects that are required in

-Amplitude
modes

I

-Old phonons Ii
I

-Q 0
K

FIG. 3. Schematic illustration of the vibrational modes
in a metal having a CDW structure. The frequency of
the phason branch goes to zero at + Q. A phason is a
linear superposition of two "old" phonons, and the amp-
litude modes are the orthogonal linear combination.
Phason and amplitude modes quickly merge into the new

phonon spectrum, as indicated. co@ andy& are the fre-
quency and wave-vector cutoffs for the phason that are
used in this paper.
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FIG. 4. Anisotropic cone of the phason spectrum,
showing the longitudinal and transverse phason veloci-
ties c„and c~. (d &

is the frequency cutoff of the phason
spectrum and q ~ is the wave-vector cutoff along Q.

Tf
= Cilcii (3.4b)

and where q„and q~ are the components of q
parallel and perpendicular to the CDW' wave vec-
tor g. Correspondingly, c~~ and c~ are the phason
velocities parallel and perpendicular to g, or the
longitudinal and transverse phason velocities. A
characteristic phason temperature e & can now be
identified with the frequency and wave vector cut-
offs (dy and gy as

e~-=W(u~/us=ac, ~q~/ks . (3.5)

This phason temperature can now be determined
by the shape of the measured resistivity curve.
The value of 8 determined from the resistivity
will not necessarily be the same as that relevant
for the specific heat, since the two measurements
probe different properties of the phasons. In the
calculation of the specific heat, one must include
contributions from all modes (phasons, ampli-
tude modes, phonons). The resistivity, however,
depends not only on the modes themselves but on
the interaction of electrons with them.

For small q, the longitudinal phason represents
a lengthening and shortening of g, while the
transverse phason represents a rotation of Q about

p(L) =Q + (a e'"' "—a* e~q ")
2i

q

(3 6)

For small Q, we may rewrite u(L) from Eg. (3.2)
as

u(L) =I[sing ~ L+ y(L) cosg ~ L]. (3.7)

The kinetic energy,

T='~g( "
dt ]

can be written in terms of P(L) if we recognize
that ik(du/dt) = [u,R], where R=S+

q (aqaq+-,').
Thus, we have

(3.S)

d u(L) = -Xcos(Q L)dt
(d q (~&$q ~ L+s+ & iq L)

q q

(3.9)

(3.10)

where p is the mass density of the crystal, and
the volume of a unit cell i.s set equal to unity. In
obtaining this result, Eg, (3.10), we have written
cos'(g. L) = —,'+ —,

' cos(2g ~ L). The second term

its static value. In the alkali metals, the magni-
tude of Q is related to the same many-electron
effects of exchange and correlation that initially
gave rise to the CDW instability. The direction of
Q, on the other hand, depends only on the elastic
anisotropy of potassium, "since the many-electron
effects are essentially isotropic. In fact, a calcu-
lation of the transverse phason velocity based on
this idea has recently been performed" and it was
found that c~ is of the order of the acoustic phonon
velocities. The magnitude of the longitudinal vel-
ocity c~~ is not known, but it is expected to be much
larger than the transverse velocity c~, since it de-
pends on many-electron interactions. Therefore,
q will be much less than unity. In Sec. V, we will
show that the low-temperature resistivity mea-
surements limit the acceptable range of values for

Although the transverse phason spectrum is
also anisotropic, we use here the average trans-
verse phason velocity for c .

Since a phason is a harmonic oscillator, its
amplitude &fq in Eg. (3.3) can be related to its
frequency su~. In order to determine that rela-
tion, we, follow a procedure similar to that for
phonons. We first write P(L, t) of Eg. (3.3) in
the Heisenberg picture in terms of the creation
and annihilation operators a~& and aq of the har-
monic oscillator,
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yields zero, since we average over the long wave-
length q of the phason.

For a harmonic oscillator, T = —,W, where Wis
the total energy given by

W=ke- (a-a-+-)= —'k~- (a-a-+a a-) .
(3.11)

W'e thus obtain the phason amplitude in terms of
(al q~

2 I 5 )'/

The property of phasons of most interest in
calculating their effect on the low-temperature
resistivity is the form of the electron-phason
interaction. This may be written formally as

p, & =Gcos(Q r+(((() -Gcos(Q r}, (3.13}

where G cos(Q r} is the static self-consistent
one-electron potential of the CDW and G cos(g. r
+ p) is the corresponding potential in the presence
of weak phase modulation. For small P, we may
rewrite this as

p', &= —GQ(r) sing r

a-„-a*-)(e'& 'O" -e" ~"}, (3.14)

where P(r) is the continuum analog of y(L) in Eq.
(3.6). Note that the wave vector that appears in
this expression is not the small wave vector q
(long wavelength} but the large wave vector q+ Q
(short wavelength).

In calculating the electron-phason resistivity,
we will employ this interaction V',

& in Eq. (3.14)
through the "golden rule" transition rate of an
electron scattering from a state labeled% to a
state labeled k':

2g tot tot
ii'u-X = —lkfryt'6+r —&re )f-(1 —fr, },

(3.15)
tot

where $„ is the total energy of the initial state
(including phasons) and gP is the total energy of
the final state. f& is the' electron distribution
function. Here, the scattering matrix element is

racccu r)r„(rl=z(c-„(rl. (3.1V)

The potential G cosg r deforms both the wave
functions and the energy spectrum by mixing the
plane wave state% with the plane wave state%+Q
and produces the modulated electron density given
in Eq. (3.1). This in turn produces energy gaps
of magnitude G at R =+ //2 and distorts the spheri-
cal Fermi surface in the same region. In addition,
the scattering of electrons by phasons is the most
intense in this region. Therefore, for simplicity,
we translate our coordinate system in% space
by g/2, so that our new k is measured with re-
spect to the point Q/2.

For small G, the plane wave state k+-,'Q and
'k- —', Q in the new coordinate system are nearly
degenerate. We therefore treat the coupling
between these two states exactly by solving the
following secular equation, which is written in the
basis of these two plane wives:

(((r -', C)
' -z () gG

(&-k@)'-&g
f

(cosg-„)
x

I
—sing-„)

(3.18}

where EI, is the energy of a state and cos g & and

sing& are the coefficients of the corresponding
wave function. The energy below the gap is given
by

,

&/2
(k2+ ( Q2}2 ($ c Q) + G2

27Ã 2 m
(3.19}

Above the gap, the energy is given by Eq. (3.19},
with a plus sign between the two terms. In calcu-
lating the resistivity, the electron scatters be-
tween states near the Fermi surface, and this,
in the present case, includes states only below
the gap. We may write Eq. (3.19) in a simpler
form if we assume that Q is along the k, axis and
if we define the following dimensionless units,

g=(k +k )' /Q, w=k /Q, c(=mG/I'Q . (3.20)

M g g. = (4(,r, n qi, n „r, . . .
~
V )4(, ,n q, n q, . . .),f 1 1

(3.16)

where n-„ is the number of phasons of wave vector
q„n + is the number of phasons of wave vector q„
etc. , and +k and 4&. are wave functions corre-
sponding to solutions of the one-electron Schrodin-
ger equation in the presence of a static CDW,

With these definitions, Eq. (3.19) becomes

52n2" [(I('+w'+-'} —(w'+(r') ~1.
2

The corresponding wave function is given by

COS $ Qcfk+(Q /2)7 1 Sin ~ ~iJ k-(Q/2 )]~ r
k ~k

where

(3.21)

(3 22}
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cos n v2
(~24 ~2}1/4[ + ( 2+~2)1/2]l/2 I (3.23}

and the phase is chosen for the state below the

gap such that

Qsin2t %=,
(% +Q

(3.24)

Note that the system is cylindrically symmetric
and that the wave-function coefficients are inde-
pendent of z. Also, for 20=0, sing-„=cos&-„=1/W2.
InFig. 5, weplotin(a) theenergy spectrum (below
the gap), in (b) the corresponding wave-function
coefficients, and in (c) the Fermi surface cen-
tered in our new coordinate system with its origin

at the gap. For the Fermi surface, we have
assumed the case of critical contact at the gap. '4

The equation for this Fermi surface is given by

[(~2+~ 2)1/2 ~ ~ 2]l/2 (3.25)

Qnly in the conical regions of the Fermi surface,
which result from the CDW, are the energy spec-
trum and wave functions severely distorted from
the plane-wave state. For this reason, it is only
in this region that electron-phason scattering is
intense, as we will see below.

We now turn to a calculation of the matrix ele-
ment of Eq. (3.16). We use the wave functions
defined by Eq. (3.22) and the interaction V,& given
by Eq. (3.14) to obtain

Mf p = —
~
~ p;[&ep, n-, —1, . Is~(e""~"-e"' o"}l@r;~22;~

~
'

) ~ q
q

(3.26)

(3.27)

as the only nonvanishing terms. When we evaluate this expression explicitly, we may write the transition
rate directly as

Wg gi «H(%, %')f t, (1 -f
1 i)[22 &6(Ef -EP +I(g)&)+ (22 &+1)5~ Egi -@(-0&)],

f
where

(3.28)

C„p = (cosg sing@ —cosg; singp)', (3.29)

with q=%' -%. Note that ff(%,Tc'} is symmetric
with respect to interchange of % and'R'.

In writing Eqs. (3.2V)-(3.29), we have neglected
the scattering just at the center of the belly of
the Fermi surface. For the geometry we have
chosen in Fig. 5, these belly-to-belly transitions
would be considered "umklapp" scattering, while
the conical-point-to-conical-point transitions
would be considered normq, l transitions. However,
in a conventional geometry (centered at the left-
hand edge of Fig. 5), these belly-to-belly transi-
tions would be seen to be no different than transi-
tions within each belly, which are negligible in
magnitude compared with the scattering within the
conical-point regions.

In fact, the overwhelming contribution to the
electron-phason scattering is concentrated in the
conical-point regions of the Fermi surface. This
can be seen most easily by an examination of Fig.
5, with the help of Eq. (3.29). The wave-function
coefficients enter the scattering rate in the form
cosgy sing. From Figs. 5(b) and 5(c), it is clear
that cosgg and sining are both appreciable only in
the conical-point regions of the Fermi surface.

COB(
I

/
, /

(c}-I/2 0

sin(

I/2

FIG. 5. (a) Electron energy band Ep [Eq. (3.21)], (b)
coefficients of the wave function cos Pg and sin fP tEqs.
(3.22-(3.24)j, and (c) Fermi surface for a CD% system
with the origin at the CD% gap.
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Since phasons are confined to a very small region
of % space, as is indicated in Figs. 3 and 4,
|I=%' -% is always small. Therefore, % is nearly
the same as %', and cos~ sin@ is large in the
same regions as cosksin&, mhich is in the coni-
cal-point regions. This can also be seen from
Eqs. (3.23) and (3.24). For this reason, it is pos-
sible to neglect belly scattering compared with
conical-point scattering.

Since the only appreciable scattering is in the
conical-point regions of the Fermi surface, me
can simplify the problem at hand by assuming
that the Fermi surface consists of two intersecting
cones, which can be obtained from Eq. (3.25) by
assuming that (gy(«1. The new Fermi surface
is then written as

f (&) =fo«-»=f3 -~&p~~p
sf' (4.1)

tion function. We then balance the total momentum
of the electrons arising from an external electric
field with the total momentum due to collisions
of electrons with phasons. This is equivalent to
a variational solution of the Boltzmann transport
equation. A detailed discussion of this method
is given in Ref. 24, where it was used in the calcu-
lation of the residual resistivity anisotropy in
potassium assuming the electrons to be in a CDW
ground state.

The rigidly shifted electron distribution function
is given by"

~ =p(co(,

where.

(3.30)
where fp is the equilibrium distribution and the
electric field g is assumed to be in the p. direction
such that

(3.31)

Similarly, we approximate the velocities of the
electron to be consistent with this new Fermi sur-
face,

(3.32)

8~ — K cosgy (3.33)

with ~ given by Eq. (3.30) and 8 the polar angle
of cylindrical coordinates. Since the system is
cylindrically symmetric, we need only consider
the g and g components of velocity.

In Sec. IV, we will employ the transition rate
in Eq. (3.27) in order to derive expressions for
the resistivity. In doing so, we mill employ the
simplified Fermi surface of two intersecting cones.

(4.2)

s 0 d'k'
-e(vf Z)ez" = &, (Wt;„1 -Wt-k, ), (4.3)

8Eg Bm'

3„= eS„7.„+-,
where vp„= (I/@)BEg /sk„ is the g component of
the velocity of an electron in the state ~@g). In
the absence of collisions, electrons under the

0
influence of h would be accelerated such that f k

would translate at a constant rate in% space.
Then 7-„would simply be the length of time after

0f„was centered at % = 0. When collisions are
included, 5& is independent of time once the sys-
tem has reached a steady state, and z„ is the
relaxation time.

We begin the derivation of the electron phason
resistivity4' with the Boltzmann transport equa-
tion, which equates the rate of change of the elec-
tron distribution function fp due to the electric
field g mith that due to collisions,

IV. DERIVATION OF THE ELECTRON-PHASON
RESISTIVITY

The residual resistivity in potassium in the tem-
perature region of interest here is at least 3 or-
ders of magnitude larger than the temperature-
dependent resistivity. That is, the scattering
of electrons from impurities and other imperfec-
tions in the crystal dominates over the scattering
of any temperature-dependent mechanism. For
this reason, this scattering mill determine the
shape of the steady-state electron distribution
function. Therefore, we will make the same as-
sumption that we made in a calculation of the re-
sidual resistivity for a CDW model of K, '~ name-
ly, that the steady-state electron distribution
function (relevant for electron-phason scattering)
is that of the rigidly shifted equilibrium distribu-

where

0
d'k 2 Bfg
4 3 ~Ps~ (4.5)

where Wg z, , given by Eq. (3.27) of Sec. III, is
the transition rate for electrons leaving the state
% by scattering to the state%', and Wy & is the
rate for electrons entering the state % from%'.

We can transform Eq. (4.3) into the equation
for the balance of the total momentum of the elec-
trons by multiplying both sides of the equation
by g» and integrating over d'k. Then, if the elec-
tric field is in the p, direction, the left-hand side
of the equation vanishes unless p, = p„Thus,

(4.4)
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d'k
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I„can be evaluated explicitly, yielding,

I„=L„=nejm,

L, = neE/m,

where g is the electron density, with

(4.6)

(4.7a)

(4.7b)

to evaluate L,,
The jtL component of the current density in the

metal is given by

J = —e vk fg=-h5 I = —g . (4.10)
d'k
4g3 kP 0 0 I

The resistivity tensor is diagonal in this coordi-
nate system and is given formally by

E - 3 +kg d&y (4.8) ~E m
I ' ne'v

P P

(4.11)

pe — dgd~ d gg (4.9)

where we have used the variables Eg, gg, and 0
of Sec. III in Eqs. (3.20), (3.21), and (3.33) toge-
ther with the transformation

The remaining problem is to calculate I„. First,
we note that if we invoke the identity,

n ff(1-fk)={n +»fk {1-ff) (4.12)

we may write the transition rates, from Eq. (3.27),
mol e simply as

(4.14)

to obtain

(W-„. -„-W~ -„)=8'(&,&')IIfk (I-fk) -fk (I-fk)lRn +1)6(Ek -«+@&q)+nq~{Ek -« -~&q))

-lf;(I-fk)-fk(1-4)) In;5(«-E-' ~~;)+{.;+1)5(Ek -« -8~;)~
Then we use the relation Eq. (4.1) for the rigidly displaced electron distribution function fk together with
the identity

0 0 0
sf&

&a~

(~k k
—II k k ) = —j

(vi))-vs)))&(&P&')nial

fk (I fu)~(&l E k'+~~%) fk'{1 fk)5(Ek & k' +~q)).

(4.15)

If we multiply Eq. (4.15) by v-„„, integrate over d'k and d'k', and then interchange % and%' in the term
containing 5(E„-Ek -Rap-) we can write a simplified form for I„,

dk dk 0 0a(& &')(v- -v-. )'n-f-(I -fy)5(Z--Zy+fl~-).
p y y 4&» 8&» kg k' p q k k (4.16)

Since the system has cylindrical symmetry, we transform from% and%' to the coordinates of energies
E k, Z k, and the cylindrical coordinates ~+, ', 8, and 8' of Sec. III. In doing so, we make use cf Eq. (4.9).
We also write explicitly the expression for If(%,% ) from Eq. {3.28) of Sec. III. The scattering integral I„
then becomes

X ding dm de d8 dEg' dE~r 5f&-5+& Ck'P -

k ~ —
k~ ~ k-E'P+@+q ~ (4.17)

where, as in Eqs. (3.27)-(3.29), q=Tr' -~. f k0
x (1 —fk, ) is nearly a delta function of energy at
the Fermi surface. By comparison, the quantities
(v k„-vy &)' and Cg k are slowly varying in energy
in this region, so that it is reasonable to replace
them by their values at the Fermi surface in the
evaluation of the integrals over energy. Vfith this

0 0
~~ & & k -& k +@(dq

0 &'F ~ o f++& ~ (4.18)

Vifith the definitions,

assumption, the energy-dependent part of I„ is
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(4.19)

(4.20)

U may be evaluated as

(4.22)

In obtaining Eq. (4.21), we have used the fact that
since (E~/AT) is large and at the lower limit of
the integral the integrand is nearly zero, the in-
tegral is essentially unchanged if we replace the
lower limit by -~.

In the angular integrations of Eq. (4.17), over 8

and 8', we first transform to the new angles
/=8 —8' and g' = —,'(8+8'), so that d8d8' =dpdg'.
Then the only factor that depends on g' is (v &
-vy„)'. lf we define

-2 m'1
(v -v')'= —— dg'(vt; -v- )' (4.23)

kq 2v

then, with the help of Eqs. (3.32) and (3.33),
where the approximate forms of g„- are given,
we ~ay write

(v„-v„')'=-,' («'+ «")—««' cosg,

(v, -v,')'=P'(I —w')'.
(4.24a)

(4.24b)

At this point, since the integrand is even in the vari-
ables g and w, we agree to integrate only over
the positive part of the integration regions of both
variables and to multiply the result by 4. (That
is, we integrate over the allowed part of t/ be-
tween 0 and n' and over the allowed part of se be-
tween 0 and & .)

Next we make a change of variables to center of
mass and relative coordinates,

-z —
~

~
~

(1+ q'P')'~'8] 2Q]
(4.29)

where we ensure that zu ~ 0 by choosing j,~ 0.
'The two regions su~ 0, ~'(0 and I=- 0, x'~ 0 are
separated by s(T/8 )(q /2Q)/(1+ q'P')'~'. For &

greater than this value, the scattering is within a
single conical region.

The maximum value P „for g is determined by
ri.quiring that q,'~ 0. Also, P ~ is never greater
than r. The integration is then divided most, sim-
ply into two regions. The first is

dwdko' = d$dq,

d$(ada) T '~~ ' 1

q, 8~ 2Q [1 +~rpp'(I+ cosg)] '

(4.28)

where the phason temperature 8~ =1&v~/AT, with
cf)g Q

and the wave -vector cutoff q~ of the
phason spectrum in the k, direction were defined
in Eq (3..5) and indicated in Figs. 3 and 4. With
the assumption of this frequency cutoff for the
phason spectrum, the range of integration for z
is from 0 to (8~/T).

The other limits of integration are found simply
if we assume the model of two intersecting cones
described at the end of Sec. III and defined in Eq.
(3.30). The maximum value $ for f is actually
approximately the average of the maximum values
of zv and se', which is &. However, the integrand
becomes negligibly small before that, so that for
the purposes of numerical integration, this is set
at a convenient value. In fact, j.t is this same lo-
calization of the electron-phason scattering near
the conical points that allows us to use such a
simple approximation for the Fermi surface.

In order to determine the lower limit on g,
we recall that we agreed to integrate only overI~ 0. The integration is then divided into two re-
gions, x+ 0, m'& 0, or f'& —,'q'„or scattering of
electrons within a single conical point, and zv ~ 0,
m'& 0, or $'&-,'q,', or scattering of electrons
from conical point to conical point. 'The condition
$ '=-,'q,' then enables us to determine the lower
liinit on f, so that

g= ~ (so+ so'), (4,25)

q, =q, /Q = ~ -w', (4.2

so that d$dq, =dwdkv'. We then change from the
variable q, to z, which was defined in Eq. (4.20).
The relation between q, and z is

g jl+ 4g2p2 $/8 (
0~( p~('g

and the second is

(4.30)

g'- — — ' 1 -cos
(4.27)g 2P2

1+ (1+ cosg)
2

0- ip-cos' 4-(—,, —,)(—)(& ) . (4.44)
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A further approximation that we will make con-
cerns the part of the square of the scattering ma-
trix element C„- „-, that is defined in Eq. (3.29).
The cutoff q~ of q in the z direction is only about
10 ' of the distance from the conical point to the
belly of the Fermi surface, so that q, is always a
small quantity. For this reason, we write C~ ~,
in terms of g and q„and expand in powers of q„
keeping only the lowest-order term. Then C- „-

becomes

(4.32)

Q2 ) (P+ ~R)2 (4.33)

(4.34)

where

(4.35)

Combining all these integrations, approximations,
and transformations of variables, we can finally
write Eq. (4.6) in the form

where

(4.36)

where

, ' r l' &

S„(z,f, g}=2P'
~

(~
~

z'(1+cosQ)
. GO& PQi

+ P(l -cosg)

(4.37a)

(4.37b)

of the electron. For very low temperatures, as
the temperature decreases, the effective size of
the phonon sphere decreases, giving rise to a T'
dependence- in the low-temperature limit. For
electron-phason scattering, we have an analogous
situation, which is shown in Fig. 6. 'The phason
spectrum is anisotropic, and we assume a fre-

where the endpoints g „,g, P ~, are determined
by Egs. (4.30) and (4.31).

'The components of the temperature-dependent
resistivity tensor due to electron-phason scatter-
ing may now be written, from Egs. (4.6), (4.11)
and (4.34}, as

(4.38a)

(4.38b)

I, and I, of Eqs. (4.36}and (4.37) must be obtained
in general by three-dimensional numerical inte-
gration, which will be discussed in Sec. V.

The calculation of the contribution to the low-
temperature resistivity can be understood in terms
of a very simple picture. When one derives the
Bloch-Griineisen formula for the electron-phonon
resistivity one assumes that the phonon spectrum
is isotropic and that the Fermi surface is spheri-
cal. One than pictures the center of a phonon
sphere moving along the surface of the Fermi
sphere. The position of the center of this phonon
sphere marks the initial state k of an electron and
any point within the phonon sphere, but on the
Fermi surface, is an allowed scattered state k'

FEG. 6. Phason "pancake" riding along the surface of
the Fermi-surface "cones."



MARILYN F. BISHOP AND A. %. OVERHAUSER

quency cutoff, so that the phonon sphere, for the
ease of the Bloch-Gruneisen formula, becomes
here a phason "pancake, " an ellipsoid of revolu-
tion, where the ratio of the width to the diameter
of the "pancake" is the anisotropy parameter g,
defined in Eq. (3.4). Since we have assumed the
Fermi surface to be two intersecting cones, we
can now picture, as in Fig. 6, the center of the
phason "pancake" riding along the surface of the
Fermi-surface "cones." An electron in the state
k at the center of the phason "pancake" may
scatter to any state k' on the Fermi surface that

is within the phason "pancake. " As in the case of
phonons, for very low temperatures the phason
"pancake" decreases in size, leading again to a
T' dependence in the low-temperature limit, as
long'as the anisotropy parameter is not too small.

In order to understand what happens in the case
of an extremely anisotropic phason spectrum,
let us consider the limit of infinite anisotropy,
i.e., g-0. In this case, the integrals reduce
simply to Bloch-Gruneisen functions, 8„(x), as
was pointed out in Ref. 8. If we keep O~ ahd q~
finite as g-0, then I„and I, become

8 ~ ++ Lk. 8 + M 8

I,=8rP~A. L~ (T
8 0, q. T 8(O

(4.39a)

(4.39b)

with

&mph' ( ~4@ &max

dq -. . .j,
(4.40)

plus small terms of order (qo/2Q)'(T/O~)'8, (04/T).
'The Bloch-Gruneisen functions are defined as

e 'dz
8 (x)

( )2
(4.41)

V. NUMERICAL RESULTS

In this section, we will present the results of the
numerical evaluations of the three-dimensional in-

The factor of v 2 that appeared in Ref. 8 in the 8,
term was incorrect.

We note that, in this limiting case, the low-tem-
perature limiting dependence is no longer T'. In
fact, the 8, term varies as T' and the 84 term as
T'. This is due to the fact that, in the limit q 0,
the diameter of the phason "pancake" becomes in-
finite so that the allowed scattering is from an in-
itial state located on the Fermi surface at se

(along the z direction) to a point ~' that is located
within the region on the Fermi surface between
zo +q~. Thus, - there is no restriction in the x and

y directions. This means that, as the tempera-
ture decreases, the effective volume of the phason
"pancake" that encloses the Fermi surface does
not decrease as rapidly as if the "pancake" were
not so anisotropic.

In Sec. V, we will present the results of numer-
ical integration of I„ in Eq. (4.36) with q4 0. In
addition, we will show that comparing the mag-
nitude of the reaistivity predicted by this theory
with that of existing data enables us to determine
an allowed range for the anisotropy parameter g.

x= j/(a+ $), (5.1)

and used x as the integration variable. If equal
intervals are chosen for x, then intervals for $
will be close together for small f and far apart
for large $. This is useful, since the function de-
cays in this region as f increases. a is chosen to
optimize the procedure. In the integration over z,
we use the same type of transformation as for $

in Eq. (5.1), since the largest part of the inte-
grand is located where z is small. If one tries to
perform the integrations over f and z with a uni-
form grid of points, a much larger amount of
computer time is needed than with the procedures
described here.

The magnitude of the calculated electron-phason
resistivity agrees very well with the range of ex-
perimentally observed values, for reasonable
values of the parameters in the theory. In addi-
tion, the resistivity tensor due to electron-phason
scattering is highly anisotropic, which can ex-
plain the sample dependence of the data. 'The re-
sistivity p„along Q is much larger than the re-

tegrals X„and I in Eqs. (4.36) and (4.37) in the
form of the components of the electron-phason
resistivity tensor given by Eq. (4.38). Since these
numerical computations presented considerable
difficulties, it is worthwhile to discuss briefly
the procedure used to calculate the integrals.
The integral over g caused no difficulty. However,
in the integral over t, the integrand varies rapidly
in parts of the integration region and must be
handled carefully. We used a Gauss-Legendre
iterative scheme that divides the regions more
finely where the function is rapidly varying and
more coarsely where it is slowly varying. Also,
in the integration region of Eq. (4.31), we em-
ployed the transformation
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sistivity p„„or p» perpendicular to g. Since there
are 24 equally preferred directions for Q in K,'
one would expect that most samples would not con-
sist of a single domain, i.e., Q pointing in the
same direction throughout the sample. Rather,
many Q domains would exist. The domain struc-
ture would vary from sample to sample and from
run to run on the same sample, depending, per-
haps in some uncontrolled way, on the experi-
mental procedures. The effects of these Q do-
mains on the residual resistivity were discussed
in Ref. 24. Since the residual resistivity is aniso-
tropic by a factor of 4 or 5 to 1, the residual re-
sistivity can change by as much as this factor,
with no change in the number of impurities or
other imperfections in the sample. Similarly,
since the electron-phason resistivity is highly
anisotropic, this part of the resistivity can also
change if the domain structure changes. In addi-
tion, the magnitude of the electron phason resistivity
will be correlated with the residual resistivity in such
a way as to produce an apparent breakdown of
Matthiessen's rule. In fact, Matthiessen's rule
need not be violated in order to explain the data.
That is, one can add the contributions from the
residual resistivity and from the electron-phason
resistivity independently and still find a correla-
tion between the residual resisitivity and the tem-
perature-dependent electron-phason resistivity,
as is observed in experiments.

The parameters in Eqs. (4.35)-(4.3V) that we
adjust in order to fit the data are the phason tem-
perature 9~, which determines the shape of the
resistivity curve, and the anisotropy parameter
q, which determines the magnitude of the tempera-
ture-dependent part of the data. In order to take into
account the/-domain structure, we write the total
resistivity p(T) in the temperature range of the data
points in Fig. 1 below 1.3 K as,

(5.2)

where x is between 0 and 1 and where the electron-
phason resistivities p„and p„„are given by Eq.
(4.38). This means that a fraction x of the domains
are along Q and a fraction (1-x) are perpendicular
to Q. The procedure is to determine a value of e~
[Eq. (3.5)] that fits the shape of the data, and for
a given value of g [Eq. (3.4)], determine x for a
paxticulax sample. The result of such a proce-
dure, with 8~= 3.25 K, is the smooth curve through
the data in Fi.g. 1, or the horizontal line p (phason)
in Fig. 2. We recall that, in Fig. 1, the resistivity
was set at 0 for the lowest data point, fox experi-
mental convenience, so that the residual resis-
tivity should actually be added to all the data
points.

In Fig. 7, we plot the magnitudes of the compon-

E
l.5

a
N

Q
I.O

C$

CL

0.5

ents of the electx on-phason resistivity tensor,
p„„and p„, as a function of the anisotropy of the
phason spectrum (1/q). As can be seen from the
figure, the resistivity increases rapidly with in-
creasing isotropy. For the phason temperature,
we have used the value e~

= 3.25 K, which pro-
duced the fit to the data in Fig. 1. 'The other val-
ues of constants used in the calculations displayed
in Fig. 7 are as follows. We employ the average
transvex se-phason velocity, which was calculated
by Giuliani and Overhauser" to be c~ = 1.40 x 10'
cm/sec, where c~ is defined in Eq. (3.4a). The
phason wave-vector cutoff q~ along Q is given,
from Eq. (3.5), by

q, = use, q/c, . (5.3)

We choose a value for the CDW gap energy ( /Ez'
= 0.35 that is within the range determined by pre-
vious experiments, "where the Fermi energy in
the absence of a CD% is E„'=2.12 eV. For the
CDW wave vector Q, we choose a magnitude con-
sistent with Ref. 24, so that for this value of 6,
Q/kz = 2.149, where E~o =g'k„'/2m. The dimension-
less constant n = 0.0379 is obtained from Eq.
(3.20), and then P is given by Eq. (3.31). The

l l l

6 7 8 9 IO II l2
Anisotropy I/v)

FIG. 7. Plot of the electron phason resistivities p„„
and p~g [Eq. (4.38)] as a function of anisotropy (1/g).
The range of anisotropies consistent with the data of
Refs. 1-4 is shown by the double-headed arrow. On
the right-hand vertical scale, A is the coefficient of the
Bloch-Gruneisen function ( T/B &) Qr(BJT) that fits the
calculated values of the electron-phason resistivity.
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maximum amplitude /l [Eq. (3.7)] of the ions
from their equilibrium positions has been calcu-
lated by Giuliani and Overhauser" to be 4=—0.03 A.
The electron density is &=1.402x 10"em ', and
the mass density is p = 0.910.

An examination of Fig. 7, together with the mag-
nitudes of the temperature-dependent part of the
resistivity found in experiments, ' ' permits us to
identify a range of values of the anisotropy 1/q
that are consistent with the data. For simplicity,
we compare all values for T = 1 K. While not all
sets of data included this temperature, this is the
simplest way of comparing the measurements,
since Refs. 1 and 3 quote their results in terms
of the coefficient a of ar'that was used in an at-
tempt to fit the temperature-dependent part of
the data. For the data that did not include T = 1 K,
we simply use the value of that coefficient as the
extrapolated value. This gives essentially p —p„
where po is guessed to fit the data. Although this
is admittedly a crude procedure, it gives a rea-
sonable idea of the range of magnitudes of the re-
sistivity. This range extends from about 0.05 to
0.29 nQcm at T=1 K.

If we assume that the largest value observed,
p —p, =—0.29 nO cm, corresponded to all the Q do-
mains in the sample lying parallel to the length
of the wire, i.e., x=1, then we obtain the maxi-
mum possible value of the anisotropy, 1/@= 9.7,
that fits the data. For the smallest value ob-
served, p-p, = 0.05 nrem, we suppose that all
the domains were perpendicular to the length of the
wire, i.e., x= 0. Then we obtain the smallest
anisotropy, 1/g= 7.7, that is consistent with the
data. The actual anisotropy probably lies some-
where between these two extreme values, as is
indicated in Fig. V.

An interesting result of the numerical calcula-
tions is that the shape of the resistivity curve re-
sulting from these evaluations is very nearly the
same shape as the Bloch-Gruneisen function
8,(e/T) of Eq. (4.41), multiplied by T'. This is
exactly the same function that appears in the
simple Bloch-Gruneisen formula for electron-pho-
non scattering. 'The shapes of p„„and p„agree
with (T/Oo)'8, (eo/T) to within 1%%uo in the region of
the data in Fig. 1, although the extrapolation at
zero temperature is slightly lower for this calcu-
lation. 'The 8, function extrapolates to -11.5 on
the vertical scale of Fig. 1, while the true function
extrapolates to -12.0. For the purposes of an-
alyzing the data, therefore, it might be useful to
use the relation

P(T)= &0+ ~"'4,+ (1-~W,](T/8~) ~,(e+/T) (5.4)

in order to determine parameters of this theory
consistent with the data, where the values of 4„
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FIG. 8. Plot of the electron-phason resistivities p,
and p» as a function of the transverse-phason velocity
c~. A has the same meaning as in Fig. 7.

and 4, for a given anisotropy can be read from
the right-hand vertical scale of Fig. 7, for e~
= 3.25 K. This procedure could save considerable
computation time. A, is determined from our
calculation by setting x = 1, while A„ is determined
by setting x= 0.

Although we have determined an allowable range
of values of the anisotropy that are consistent
with the data, as shown in Fig. V, there is some
flexibility in that range. For instance, we have
chosen an average value of the transverse-phason
velocity. Giuliani and Overhauser" found that
the transverse-phason spectrum is actually quite
anisotropic, with velocities along the two princi-
pal transverse directions given by c,= 2.08x 10'
cm/sec and c,= 0.94 x 10' cm/sec, where the val-
ue we have used ip Fig. 7 is the geometric mean,
c~= 1.40x 10' cm/sec. Assuming that some other
average for e~ might be more appropriate, we plot
in Fig. 8 the magnitudes of p„„and o„as a func-
tion of c, that ranges between these two extreme

. values. %e see that bothp„„and p„increase rapidly
with decreasing c,. A smaller value of c, would thus
move the allowed range of anisotropies in Fig. 7
to higher values of (1/q). Again, we have labeled
the right-hand vertical scale with the magnitude of
the coefficient A of the Bloch-Gruneisen function,
as in Eg. (5.4).

Another factor in the magnitude of the resistivity
is the phason temperature e~. Both p„„and p„
increase rapidly with increasing e~. 'The depen-
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dences of the electron-phason resistivity on the
parameters e~, c„and g can be understood qual-
itatively by considering the effects of each of
these parameters on the total phase space occu-
pied by the phasons. 'This can be seen by examin-
ing Fig. 4. Since increasing Q~ is the same as in-
creasing co@, the frequency cutoff, this enlarges
the phase space occupied by phasons and therefore
increases the resistivity. As c, decreases, the
volume of the anisotropic cone of the phason
spectrum increases, so that the resistivity in-
creases. If the phason spectrum becomes more
isotropic while e~ is kept fixed, this is the same
as decreasing the longitudinal phason velocity c„,
so that the phase space increases and so does
the resistivity.

VI. CONCLUSIONS

We have found that the theory of electron-phason
scattering can explain the shape, the magnitude,
as well as the sample dependence of the anomalous
temperature-dependent resistivity in potassium
below 1.3 K. In addition, we have ruled out all
other explanations that have been proposed to ex-
plain the data. A comparison of our theory with
the data determines parameters of phasons that
enter the theory. The phason temperature that
gives the best fit to the data is e~ = 3.25 K, and
the approximate range of acceptable values of the
anisotropy of the phason spectrum is V.VS (1/g)
4 9.'7. Thi, s is the same order of magnitude as
the anisotropy in rubidium, (i/q)= ll, which was
determined by attributing to phasons the anomaly
in the specific heat of Rb." Another feature is
that we find the shape of the resistivity curve to
be almost the same as that of the famous Bloch-
Gruneisen formula for the temperature-dependent
resistivity due to normal electron-phonon scatter-
ing. Of course, that formula uses instead the
phonon Debye temperature OD-9o K.

In this calculation, we have assumed that the

CDW in K produces only one gap, which is located
at g, at the conical points of the Fermi surface.
(See Fig. 5.) However, many orientations of open
orbits have been observed in K,"suggesting that
other gaps, resulting from the multiple period-
icity of the lattice and the CDW are also impor-
tant. Electron-phason scattering would probably
be intense near each of these gaps on the Fermi
surface and couM increase the resistivity above
what is calculated here. 'That would have the re-
sult of translating the range of allowed aniso-
tropies to higher values of (l/q).

It would be useful to have further sensitive mea-
surements on high-purity samples of the tempera-
ture-dependent resistivity of K. Measurements
should be done that extend from 1.3 K to the lowest
possible temperatures in order to test the theory
presented here. However, since the electron-
phason resistivity should decrease very rapidly
below the temperature range of existing data,
with a low-temperature limit of T, it is likely
that the contribution of electron-electron scatter-
ing, with its T' temperature dependence, would

appear before the electron-phason T' dependence
is actually achieved. In fact, electron-electron
scattering should be enhanced in the presence of
a CDW by umklapp scattering from conical point
to conical point on the Fermi surface. 'This would
make the electron-electron scattering anisotropic,
depending on the direction of the CDW wave vector
g with respect to the electric field. Then, if the
Q-domain structure changed from sample to
sample, the electron-electron scattering would
a,iso be sample dependent.
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