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Phonon-mediated electron-electron interaction in real space
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%'e have calculated the phonon-mediated interaction between two s-band electrons as a function of their relative

separation in real space. %e consider the two cases of acoustic phonons in a nonpolar crystal and of optic phonons

in an ionic crystal, and present specific results for electrons at the bottom of the band, using parameters of
aluminum and hthium chloride, respectively. In the acoustic-phonon case, even when the Coulomb repulsion

between the two electrons is not included, the interaction has a wide repulsive core, which extends to a separation of
0

about 200 A and afterwards oscillates between attractive and repulsive regions as the distance between the electrons

increases. Classically, i.e., when the electrons are infinitely heavy, this potential is attractive when the electrons are

less than a few angstroms apart and oscillates at greater distances. For ionic crystals one anticipates that the

phonon-mediated interaction causes merely the optic-phonon screening of the Coulomb repulsion; i.e., e /e„r is,

converted to e /eor. However, we find that this mechanism produces a striking oscillation Iversus r) about the

expected result. Consequently, in LiC1, for example, the total potential —the direct Coulomb repulsion plus the

phonon-mediated interaction —has deep, attractive potential wells, the first and largest of which has a depth of 28
0

meV, with its minimum occurring when the electrons are 33 A apart.

I. INTRODUCTION

An eleetx'on ln R 1Rttice lnterRets with tl16 ions
about it through the electron-phonon interaction
to produce a distortion of the lattice. This dis-
tortion, or virtual-phonon cloud, follows the elec-
tron during its motion in the lattice. In an ionic
crystal, this clothed electron is known as a polar-
on. %Shen two clothed electrons are in the lattice,
an effective electron-electron interaction develops
through phonon mediation. Each electron experi. -
ences the polarization field produced by the other
electron. This happens even in the classical limit,
i.e., when the elections are considered to be in-
finitely heavy. Quantum mechanically, each elec-
tron develops a virtual recoil kinetic energy by
interacting with phonons, and this effect modi-
fies dramatically the electron-electron intex'ac-
tion. The resulting interaction has been studied
extensively and provides a 'basis for the Bardeen-
Cooper-Schrieffer (BCS) theory of superconduc-
tivity T116 lmpox'tRnt feRtux'6 of tllls lnterRctlon
for superconductivity is that it provides an attrac-
tive potential between two electrons, so that bound
states, or Cooper pairs, may form. Usually this
electx'on-electron potential is studied in recipro-
cal space, as a function of the wave vector q of
a phonon that is exchanged between the two elee-
tx'ons. Howevex', Do lnvestlgRtloQ I1Rs been made
of this potential in real space, i.e., as a function
of the relative separation between the two elec-
trons. Such a study is the purpose Of this paper.

%6 begin oux' discussion here by calculating

in Sec. II the distortion created in a lattice by
one electron as a function of distance from that
electro@. This provides physical background for
following discussions and illustrates the method
to be used in Sec. III to derive the electron-elec-
tron potential. In Sec. IIIA, we produce a general
derivation of the effective electron-electron po-
tential for s-band electrons in real space, and
apply it in Sec. IGB to the ease of acoustic pho-
nons in a nonpolar crystal, and in Sec. ID C to
optic phonons in a polar crystal. Vfe evaluate
resulting expressions explicitly for electrons at
the bottom of the s band, which yield spherically
symmetric potentials. Plots are shown of these
potentials for aluminum in Sec. IIIB and for LiC1
in Sec. III C. Finally, in Sec. IV we present the
conclusions.

II. LATTICE DISTORTION PRODUCED BY ONE
ELECTRON INTERACTING VfITH ACOUSTIC

PHONONS

Suppose we have one free s-band electron in a
harmonic lattice. The Hamiltonian of the system
can be written as

+ Q I &d ~q (g ~ 0~ + g ),2'
is the Hamiltonian for the noninteracting system
and

&, = QA-(a-e'~'~ —a*e '"'&)
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is the electron-phonon interaction at some posi-
tion r, . For longitudinal acoustic yhonons, within
the Debye model,

( kq )'+
I, 2pu &

Here, - = uq is the acoustic-phonon frequency,
with u and q the phonon velocity and wave vector,
respectively. C = E~ is the electron-phonon cou-
pling constant, where E~ is the Fermi energy.
m and p are the mass and momentum of the elec-
tron, e* and a are the yhonon creation and anni-
hilation operators, and p is the mass density of
the crystale

As the electron moves through the crystal, it
produces a distortion of the lattice by polarizing
the ions around it, and this virtual-yhonon cloud
or phonon clothing accompanies the electron in
its travels. B~~ is the operator that creates this
clothed electron, or polaron, where

F+ I ~%-a+a
a&(%) w=„(k)

which corresponds to first-order perturbation
theory. B-„ is the corresponding annihilation
operator. Here,

(5a}

I'(k+q}'
q 2m 2nt, (5b)

Since we want to know the nature of the lattice
distortion about the electron, we might ask what
the expectation value of this displacement is
between clothed electron states. But this yields
only zero because, when one averages'over all
the electron and phonon coordinates, all contri-
butions cancel. That is, on the average, for a11
positions of the electron in the lattice, there is
no net lattice displacment. The mean-square dis-

and b& and b~ are the creation and annihilation
operators for a bare (plane-wave} electron of
wave vector k. The second of the terms within
the summation over q in Eq. (5a) creates the
electron's clothing by emitting virtual phonons,
while the first term absorbs phonons that are al-
ready present. At zero temperature, the absorp-
tion term has no effect if only one electron is pre-
sent in the lattice.

Vfe wish to ask now what the detailed nature
of the phonon c1oud about the electron is. Suppose
the electron is located at r„ i.e., that the bare-
electron wave function is e'~'~. Consider then the
lattice-displacement operator for longitudinal
acoustic phonons at some position r2:

IA ~~ g ~ ~'
qu(r, )= (s sl'Q f2~ ~ ~ 4 Q t2)

2p

tlat

0 & q

placement, or the square root of the expectation
value of u (r,) taken between clothed-electron
states, gives one only a measure of the average
distortion caused by the electron.

In order to ealeulate the magnitude and shape.
of this distortion in exact microscopic detail,
one must employ a somewhat different approach.
We ask what the instantaneous distortion of the
lattice is at a position s relative to the electron's
position r „whatever that may be. Thus we may
write

u('f~} = u (r „s)

s =r —r ~2 Z
~ (8)

This operator in Eq. (V) is now perfectly corre-
lated with the position of the electron, so that one
could imagine that if s is fixed, the distortion
wouM follow the electron around the lattice. For
this reason, we calculate a restricted expectation
value of this lattice-displacement operator, be-
tween clothed electron states, in which we keep the
vector s fixed, i.e., we integrate over all coor-
dinates except s.

For simplicity, we will assume here that the
system is at zero temperature. A similar analy-
sis follows at finite temperature, with slightly
more complicated results, for the restricted
expectation value of the lattice displacement, but
the identical result emerges at finite temperature
for the effective electron-electron interaction,
which will be derived in Sec. III. Thus we write
the restricted expectation value (u (s)}-as

S

(u(s))- =(y-„Iu(r„s)I&g)-, ~ (9)

where

ls-„) =~*,I0),
is the clothed-electron state, I 0) is the vacuum
state, and R$ is defined in Eq. (5}. The notation
( } indicates that all integrations except those
over s are to be carried out. Explicitly, we have

(u(s))- =(Olagu(r„s)B~@IQ)-

(10)

2 5 )'+ sin(q. s) qA
2puq

&
a=(k) q

'
(ll)

where b, =(k) is defined in Eq. (5b) and A- in Eq.
(4). We now assume that the electron is at the
bottom of the s band, or that its initial velocity

) 1/h
8 4 q (rz+ s) + s +e -q (r&+ s)) qk

2pQg j q
(f)

for the lattice displacement operator, where
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before interacting with phonons is nearly zero,
so that k -0. Converting the sum over q to an
integral and imposing the Debye cutoff q~ yield

(~(~) 2, 1 .d q sinful' s Q

pun, (, Bs q[(lq/2mg) + 1] q

'Drain (qs) —(qs) cos (qs)] dq»'ps's, q[a(q jqD) + 1]
( )

where s is a unit vector in the direction of s and

is the "phonon" Compton wavelength in units of
4w/qD that results when an electron scatters
from a phonon of velocity u. The integral in Eq.
{12)may be written in closed form in terms of
the sine and cosine integral functions Si(z) and

Ci(r) as

2 2

(u(s))- = -s,D, Si(qDs) -cos D (Si [qDs(1+ 1/a)]-Si(qDs/a)}
3% pQ $~8

+ q
— (Ci[qDs(1+ 1/a)] —Ci(qDs/s) j

Q

+ sin Ci q~s 1+ 1 a —Ci q~s a

)]Hi [@,s(1+ 1/a)] —si (tiy s/a}} I, (14)

Si(s)-=t -- =-dt,
I;

' cost -1
Ci (z ) = }i + ln z + dt

&
(16b)

and y is Euler's constant. ' (u (s )); is in the ra-
dial direction and varies as (- s }for small s and
as —s/s' for large s, with weak oscillations about
these dependences. In the classical limit, where
the electron is considered to be infinitely massive,
l.e.q

ts~'oo so that 0 ~0~ this expression simplifies
considerably and may be written as

(u ~, (s )&- = -s;, ,— [Si (qD s) —sin (qD s)] .
Sm pcs

(16)

Vfhen an electron deforms the lattice, one often
thinks of ihe analogy of an electron producing a

t

depression in a mattress. Extending this analogy,
one expects that if a second electron were in the
lattice, it would feel the strain field produced by
the first electron. As the two electrons. would
approach one another, they would both fall into the
same depression in the mattress and would thus
attract one another at short distances. Indeed,
for acoustic phonons, the electron-phonon inter-
action at a position r, may be written simply as
the strain field at that point,

2e,~= -', C divu(r, ),

as can be seen from Eels. (2), (4), and (6). Then
the restricted expectation value of this operator
between the clothed electron states of an electron
at r, may be considered to be the magnitude of
the strain produced at r 2 by an electron located
at r, . This can be expressed as

V, 1 ' 'D qsin(qs)dq
((~~3e,~)y~&

= -', C div(u(s)&- = —
(

'), —
( / )-

~ [1-cos (qDs)] — D cos D' (Si[qDs(1+ 1/a)] —Si (qDs/a))
aug)8

'
Q 0

—sin D (Ci[qDs(1+ 1/a)] —Ci (qDs/a)J6

$3
l/ (2 C}2 D

2m2pV2
'

This function is negative (attractive) for small s
and achieves its maximum magnitude as s-0,
and thus describes well the pi.cture of two elec-

I

trons faning into the same depression of a phonon
"mattress" as they approach one another. In the
classical limit, i.e., when' ~ and a-0, this be-
comes

&0 g l2e.& I tg&-, = —:«tv&u (s}&-, = —l/.j,(qDs)/qDs,

(20)
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where j,(z) = (sinz -z cosz)/z' is the first-order
spherical Bessel function.

As we will see in Sec. IDB, the electxon-elec-
tron potential is given exa,ctly by the expression
in Eq. (20) in the classical limit. However, in the
quantum case, the virtual recoil kinetic energies
of the two electrons play a major role in deter-
mining the interaction, which is qualitatively and

quantitatively different from that given by Eq. (18).
This will be discussed in detail in See. III B.

III. PHONON-MEDIATED EI.ECTRON-EI. ECTRON
INTERACTION

A. General derivation in real space

In this section, we consider two electrons in the
lattice together. We will assume that the first
electron, located at r „has its spin up and that
its momentum and wave vector are p& andk&.
Similarly, we assume that the second electron,
located at r2, has spin down and that its momen-
tum and wave vector are p& and k&. We trea, t the
case of opposite spins in order to avoid anti. sym-
metrizing the wave functions and separating the
effects of exchange from the pure phonon-mediated
electron-electron interaction. With these restric-
tions we write the Hamiltonian

X =- %~+ 3e,p,

Xo= + —+ QA'fd (8 8 + g)q2' 2Pl
q

is the Hamiltonian for the system with no inter-
actions and

fective electron-electron potential V(s). We ac-
complish this by first taking the restricted expec-
tation value of the Hamiltonian [Eqs. (21)-(28)],
keeping s fixed, between states of a pair of clothed
electrons. That is, in the expectation value, we
integrate over all coordinates except s. Then we
subtract all terms that would be present if the two
electrons had been in the lattice one at a time
and not together. The remainder is the effective
electron-electron interaction V(s ) in real space.
As we will see, it is also the only term in the
restricted expectation value of the Hamiltonian
that depends on s .

The creation operator g& g&
for the pair of

electrons with wave vectors k& and k& is given by

(24)

with the annihilation operator for the pair given
by $&i g&. Here Bf is defined in Eq. (5) and N
is the normalization defined below'. We take the
(anti) symmetrlzed product of the 'two single-
electron operators, since there is no preference
as to which electron is created first. This opera-
tor creates the state for a pair of electrons, which
we will denote as

(25)
) yk$ k fgk$

where l0) is the vacuum state. These states are
orthogonal in the restricted inner product where
we integrate over all variables except s, and the
normalization is determined with the same type
of product. Thus,

ei q~r&+ &4q~r2
q

-a*(e '~'~+ e '"'2)] (28)

is the electron-phonon interaction. We note that
the only difference in the Hamiltonian between the
ca,se of acoustic phonons in a nonpolar crystal and
of optic phonons in a polar crystal is in the defini-
tion of A, the coefficient in the electron-phonon
interaction, Eq. (23). Therefore, in this section,
we will derive a general form for the eleetxon-
electron interaction in terms of A- and later, in

q
Secs. IIIB and III C, apply the appropriate speci-
fic forms for the cases of interest.

The derivation that we will present here of the
electron-electron interaction follows the same
philosophy as the calculation of the shape of the
lattice distortion about the electron calculated
in Sec. II. Suppose that s = r, -r„as in Eq. (8),
with the two electrons at r, and r, . If we keep
the relative positions s of the two electrons fixed,
then we can determine an expression for the ef-

The integrations that are performed here are the
integrations over the center-of-mass coordinate
H = —,

' (r, + r.), while the relative coordinate s re-
mains fixed. Equation (26) now determines N,
which is a function of s, because Ã appears in
Eq. (24). N is of the form N=- I -O(lA~l'). Since
we retain only terms of order lA~ P or lower, we
need not write an explicit expression for N since,
in the calculation of the restricted expectation
value of X, it either cancels exactly in some terms
or multiplies terms already proportional to lAq P.

We can see from Eqs. (5) and (24) that each
electron is clothed to first order (in perturbation
theory) in the electron-phonon interaction and, in
addition, each electron has a first-order term
that permits it to strip clothing from the other
electron. In the product in Eq. (24), some terms
appear that are second order in the electron-
phonon coupling Aq, but these are precisely the
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terms that are needed to assure the proper ortho-
normalization in E(I. (26).

We now calculate the restricted expectation
value of the Hamiltonian with the electrons fixed
at some separation s. As in Sec. II, we will
consider the system to 'be at zero temperature.
We have also calculated the phonon-mediated elec-
tron-electron interaction for finite temperature

and have obtained the same result. Since at finite
temperature the intermediate steps are much
more complicated, with many cancellations, one
can understand better the origin of various con-
tributions to the potential if we display only the
zero-temperature calculation.

The restricted expectation value of the elec-
trons kinetic encl gles KKp ls given by

O'X,X IXKzl@X,X& = 0 X, T 2
+

2i ~
1 I

1' 1 2sss 2Bl i' $ s

(
q ~2) Q ~~ p

n q(ki)+R(dq Aq(Q)+8& q

2m ' ' - ' . [n, =, (&,)]' [a~q(&,)]'

xq(s&)+s~-, —,'[aq(s~)+s-, (f~)])
a =(k,) n.=(k, ) n.-'„(k,) a=(k1)

(2V)

(ss, ,s[se.olss. s)-. =(() s)s,s Es~-. (s;"~-, +-.')ss, ,s o

n, q(k)) +5(uq —,
' [a-q(ki) + a q(k)}]

n, =„(k,) a=(k, ) a-(ki) a'-(k, )

The terms multlPIying both 8 q and 8 " that contain h, q(ki} Rnd b, q(ki} in their denomillators Rre the
only terms in the entire restricted expectation value of the Hamiltonian that result froxn having the strip-
ping operator, i.e., the term in Eq.. (5a) with a-q, included in the clothed-electron operator. This means
that these are also the only terms that contain the type of denominator b;q(k). It is these terms that pro-
duce a dramatic modification from what one would expect from the "mattress" picture discussed in Sec.
II.

The restricted expectation value of the harmonic oscillator part of the Hamiltonian X„„is

2cos(g ~ s } (28)

Combining Eqs. (2V) and (28), we obtain the restricted expectation value for K, [E(I. (22)]:

I'
(+l(1,'f113 ol+%),%1} s

=
2~ (&i+&1)+ Z 2~~ q

s=, (s,) ~=(s,) () =, (s, ) . s [[ (ti, ) ~=(p)'-)

1
a=(s, ) s a (s,) s=(E))'-JI' (29)

Finally, the restricted expectatlon value of the electron-phonon interaction, X s [E([I (23)] 18

Note that the contributions to the restricted expectation value of 3',~ do not contain any terms resulting
from the stripping operator in Eg. (5a}, i.e., the term containing a q. Only denominators of the type
a=(k) from E(I. (5b) appear here.

By combining E(ls.. (29) and (30), we can now write the restricted expectation value of the total Hamil-
tonian X [E(I. (21)]:
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(~&+Il)+ Z-'g".

(31)

The first two terms in Eq. (31) represent the kine-
tic energies of the two electrons and the energy of
ihe phonons in the absence of the electron-phonon
interaction. The third and fourth terms (the first
two terms in the summation over g} are the self-
energies of the first and second electrons, respec-
tively These ax'e the energies that would x'esult
if the two electrons were present in the crystal
one at a time and not together. In fact, these
terms appear if one takes the restricted expecta-
tion value of the Hamiltonian with one electron
present between the states of each clothed electron
separately. The remaining terms are then the
electron-electron interaction. These are also the
only tex'ms that depend on s, the x elative separa-
tion between the two electrons. Thus, the electron-
electron potential is

)'(sl= l K!A;)'a'3 (~), ( )}
1 I

j~~--, (k,) ~';(i,)

(32)
where we have replaced q by —q in the third and
fourth terms in the sum over q, and where b, '-(k)
are defined in Eq. {Sb). [Although V{I)' in Eq. (32)
is complex for finite values of k& and k&, it can be
shown that the actual phonon-mediated electron-

I

el.ectron interaction is just the real. part of this
expression. ]

Ne note that, although this calculation was done
for the case of zero temperature, the same re-
sult, Eq. (32), obtains for V(s) at finite tempera-
ture. Indeed, it is well known that the phonon-
mediated electron-electron potential can be thought
to result from the exchange of virtual phonons be-
tween two electrons and is therefoxe independent
of the number of phonons present initially in the
system. In fact, this result, Eq. (32), withe-„de-
fined. by Eq. (4), is just the Fourier transform of
the usual phonon-mediated inteaction that is de-
rived by other techniques en route to the BCS
theory of superconductivity. " One could have
derived the electron-electron potential in q space
V(q }and then Fourier-transformed it to obtain
Eq. (32}. For example, one can derive V(q) by
calculating the off-diagonal or scattering matrix
elements of the Hamiltonian, i.e.,

V{q}= &+);,~; 13elq'X, .t;&
where one integrates over all coordinates. Then
V(s }18 tl1e Fourier traIlsfol'111 of V(q). II1 otllel
words, the scattering matrix element of two
clothed electrons of the potential V(%) is just
P(q }, the Fourier transform of that potential.
Vfe feel, however, that one gains more insight
with the method presented in this section.

B. Acoustic phonons in a nonpolar crystal

For the case of two electrons that interact with one another in a nonpolar crystal via acoustic phonons,
the phonon-mediated electron-electron interaction becomes

V(s) =(-C)'~ — — I~-e "1 ——k1 q+ ——(I~-) +2 2% Sl (".8 )I ~ I 2l

2pQ ppg 2m

52 h 2q2

nz
3y 3+ — —(3(u-)'

I
. (33)

2m a

At this point, for simplicity, and in the spirit of
Sec. II, we assume that the initial velocities of the
two electrons are very small, i.e., that A~, k ~-0.
In this way, the potential only depends on the mag-
nitude of s and not its direction and is thus spher-
ically symmetric. In general, V(s) will depend on

the direction of s relative to kt and k&. As in Sec.
II, we convert the summation over q to an integral
and perform the angular integrations to obtain

t' 1 2 ')D q sin(qs)dq
q~s )qs 0 8 (q/qg))

where a is defined in Eq. (13) and V, in Eq. (19).

Consider fi~st the classical limit of Eq. (34),
i.e., m —~ and a-O. This constitutes neglecting
the virtual recoil kinetic energies of the two elec-
trons. The potential thus becomes

V(s) =-V,j,{qDs)/qDs (a-0), (35)

which is identical to Eq. (20}. That is, in the
classical limit, the picture of two electrons on a
"mattress" attracting one another at shoxt dis-
tances works quite well. This can be seen explic-
itly from the plot of Eq. (35) in Fig. 1. The para-
meters used here, except for g, are those appro-



PHONON-MEDIATED ELECTRON-ELECTRON INTERACTION IN. . .

priate to aluminum. With a lattice constant a,
=4.04 A, the Debye wave vector is qa=1.53
x 10' cm '. With the elastic constant C» = 1.14
x 10"dyn/cm' and the mass density of Al, p = 2. 13
g/cm', the longitudinal acoustic velocity is u,
=6.4V x 10' cm/sec. Thus, the coefficient in front
of the interaction in Eq. (35), and defined in Eq.
(19), is V, =15.4 eV. The inset of Fig. 1 shows
the depth of the attractive potential mell for s =0,
that is V(s = 0) = —V/3 = -5 eV. As shown in the
large drawing, the potential becomes repulsive
within the length of one lattice spacing and then
oscillates with a period of 2v/qD, the envelope
falling off as 1/s'.

When the phonon C;ompton wavelength a = Aq+2mu
[Eq. (13)] is finite, we see that the integral in Eq.
(34) is qualitatively different for a&1 compared
with a&1. (a is always positive. ) For a&1, a
pole appears in the integrand that is not present
for g&1. For realistic materials, g is usually
much larger than 1, e.g. , for Al, g=13V. At this
point, since the case g& 1 is qualitatively similar
to the classical limit, we mil. l concentrate our at-
tention on the more realistic case here. For g
&1, we evaluate the integral in Eq. (34) in the
principal-value sense, and then it is expressible
in closed form in terms of the sine and cosine in-
tegral functions Si(z) and Ci(z) defined in Eq. (15):

- 0.4
Acoustic Phonons
Classica( Limit
g~Q - 0.2

0

O —]

V)
2

P4
C3

3

-4-

-O.1 '

)

0 Ul

--0.4
-2 )~

Eh

4 ) --06

--08

-6
0

I

)0
I

20

FIG. 1. Plot of the classical limit of the acoustic-
phonon-mediated electron-electron interaction p(g )
from Eq. (35). Here, rn —~, so that g—0, where a is
given by Eq. (13). BED=15.4 eV is defined by Eq. (19).
The inset shows the attractive core of the interaction.
Parameters are given in the text.

V(s) =, ' cos~ ~(Si[q~s(1+1/a)]+Si[q~s(l —1/a)])V, /q~s)
g qDS It g ]

-sin — Ci q&s 1+1 g —Cl q&s 1 —1 g g&1 (36)

One obtains the g&1 result by taking the absolute
values of all the arguments of Si(s) and Ci(z) and
changing the + sign in front of Si[q~s(l —1/a)] to

sign.
The function in Eq. (36) is, for realistic para-

meters, strikingly different from what one mould
expect for a model of two electrons on a "mat-
tress" attracting one another at short distance.
We have plotted this potential in Fig. 2 for Al
with g =137. Other parameters are the same as
for Fig. 1. The remarkable feature of this curve
is the repulsive core. One must remember that
the Coulomb repulsion between the two electrons
has not been included here, and this is only the
phonon-mediated electron- electron interaction.
The repulsive core consists of two parts. The
first, a short-range part, is only a few angstroms
wide, so that it is about the same width as the at-
tractive core in the classical case (Fig. 1). The
second is very long ranged, such that V(s) first
becomes attractive only for q~s-g, or for s-130

0
A. In addition, the asymptotic behavior for large
s is qualitatively different than in the classical
case. The period of oscillation is much longer
here, since it is determined by the phonon Comp-
ton wavelength g, and the envelope falls off as
1/s rather than as 1/s' as in the classical case.
For g&1, one finds a behavior similar to the
classical case, with the asymptotic dependence
of the envelope of oscillations falling off as 1/s'.

The repulsive core of the interaction in Fig. 2
and Eq. (36) results from the virtual recoil kinetic
energies of the two electrons. In the classical
case, where these kinetic energies are neglected,
the core is attractive, corresponding to the pic-
ture of two electrons on a mattress falling into a
common depression as they approach one another.
Quantum mechanically, this simple picture does
not work and, indeed, the first attractive potential
well has its minimum only when the two electrons
are a fern hundred angstroms apart. The origin of
this repulsive core comes from the kinetic energy
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Also, we will cut off the phonon spectrum at qD,
the Debye wave vector. With these assumptions,
the electron-phonon interaction at a position r be-
comes (for one electron)
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Acoustic Phonons
Aluminum
0 "-137

0 5 10 15 20 25
FIG. 2. Plot of the acoustic-phonon-mediated elec-

tron-electron interaction V(g ) from Eq. (36) for alum- ~

inurn, with a=kq&/2mu =137 [Eq. (133]. V0=15.4 eV is
defined by Eq. (19). Other parameters are the same as
in Fig. 1. The inset shows the repulsive core of the
interaction, the remarkable feature of this quantum
case.

terms, Eq. (27). The terms that produce this repul-
sive core are those that contain the denominators
6;-(k~) and 6',.(kl). These terms remain unaltered
in the final expression for V(s), Eq. (32), and
thus arise solely from the kinetic energies. It is
the neglect of this contribution that causes the
mattress model, discussed in Sec. II, to fail.

C. Optic phonons in a polar crystal

Consider the longitudinal optic phonon in a crys-
tal with the rocksalt structure. The displacement
operators u, (R) and u (R) of the positive and nega-
tive ions, respectively, are4

where &„is the high-frequency, optical dielectric
constant and go is the l.attice constant of the rock-
salt structure.

Thus, in order to use the results of Sec. ILIA
directly, i.e., Eq. (32), we set

A-=—ip
q

(40)

From Eq. (32}, we then obtain the phonon-medi-
ated electron-electron interaction in the form

where

2 V~ 'D 1 sin(qs)dq
mqDs, q b4(q/qD)' —1 ' (41)

and

Pq~
2p@coLQ

(42)

(43)

In achieving the form of Eq. (41), we have made
the same assumptions as for Eq (34) in .Sec. IIIB.
In particular, we have assumed that k &, k &

-0,
which makes V(s) spherically symmetric and only
dependent on the magnitude s of the separation be-
tween the two electrons.

Consider for a moment the classical limit, i.e.,
nz-~, so that b-0. In this case, the electron-
electron interaction mediated by optic phonons
becomes simply

(37a)
j./2

u (R)=g (a-e" +a&e "'" ' (-~-),
2p&& ' ' M

(37b)

where p is the mass density- of the crystal, (d;
and q are the frequency and wave vector of the
longitudinal optic phonon, and M, and M are the
masses of the positive and negative ions, respec-
tively. For simpl. icity, we will. assume an Ein-
stein model for the optic phonons j so that Nq

(44)

( )
V(s) V,
-e eq s (45)

This is the same result that one would obtain by
taking the expectation value of 30, /(-e), R,~ giv-

where Si(z) is the sine integral function defined in
Eq. (15a). In the limit as s -~, the electrostatic
potential P«(s) due to the optic phonons would
then become
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/tot(S ) + Q~o(S)8 60S
(46)

where &, is the low-frequency static dielectric
constant. This means that the coefficient V, in
front of the interaction in Eqs. (41) and (44) may
be written in a simple form in terms of q, and

(47)

en by Eq. (38), between the clothed-electron states
of one electron. The total electrostatic potential
of the two-electron system Q„,(s) is obtained by
adding to Eq. (45) the electrostatic repulsion be-
tween the two electrons in the absence of the pho-
nons:

The actual function for finite s, Eq. (44), contains
mild oscillations about the curve Vo/qos, which
are due to the sharp qD cutoff. This illustrates
the well known idea that the virtual optic-phonon
clothing of an electron, at least in the classical
limit, is nothing more than the ionic distortion
that modifies the electron screening from that of
the optical dielectric constant to that of the static
dielectric constant. '

In the case of finite b LEq. (43)], there are two
alternatives (b (1 or b )1).as in the discussion
for acoustic phonons discussed in Sec. IIIB. We
consider only the ease with b )1 and evaluate th' e
principal part of the integral in cl.osed form in
terms of sine and cosine integral functions Si(z)
and Ci(z), defined in Eq. (15), and in terms of the
exponential integral function E,(z):

+ —,
' sin Ci qDs 1+1 b —Ci. qDs 1 —1 b

——' Im(e'o'/~E (~qDs(1 /&+i '}~a(&D'/~E, (q s( 1/b+i))) (b)]) (48a)

where

(48b)

and Im indicates that the imaginary part of the
function must be taken.

In studying the nature of this interaction, Eq.
(48), we will apply it to the case of LiC1, an ionic
crystal that has the rocksalt structure. For this
case, we neglect the effects of acoustic phonons
on the phonon- mediated electron- electron interac-
tion, since they are very small compared with the
optic-phonon effects. In LiCl, the lattice constant
is go = 5.14 A, which gives q D= 1.20 x 10' cm '.
(d«&=7.5x10" sec ' so that b=(hq'/2m'& )"'
=10.6. Since &0 =12.0 and e„=2.7, we have that
V, =4.98 eV. With these parameters, we then
plot with a solid curve the phonon-mediated elec-
tron-electron interaction V(s) in Fig. 3. As can
be seen, large quantum oscillations appear about
the expected (e'/s)(1/qo —1/g ) behavior that is
shown by the dashed curve. These oscillations
have the same origin as did the repulsive core of
the interaction of Sec. IIIB, shown in Fig. 2 and
given by Eq. (36). That is, the virtual-recoil kin-
etic energies of the two electrons are responsible
for this effect.

Now suppose that we add the Coulomb repulsion
between the two electrons to the phonon-mediated

0
0

50
s(A)

100 I50
0

-0.01 "0.05

0.02 -O.IO

-O.I5 0
OP

-0.04 -0.20

0.05 -0.25

-o.os
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I

IOO

qos

I50
-0.50

FIG. 3. The solid curve is a plot of the optic-phonon-
mediated electron-electron interaction V(s ) from Eq.
(48) for LlCl with Q (g'qD/2m~L o) ~ 10~6' Vp=4~98
eV and is given in Eq. (47). The dashed curve gives the
expected, classical, behavior of the screening by optic
phonons, (e2/s)(1/&0-1/& ) ~
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P'(s) r — u l —a cositquS
q~s & b

(49)

Actually, even by the time the electxons are suf-
ficiently separated to be in the first attractive well
in Fig. 4, this function is fairly well. satisfied.
[The depth of the first minimum is about 31 meV
for Eq. (49) and 28 meV for Eq. (48).j This means
that this expxession can be used to determine the
approximate values of &0 and &„that are necessary
to produce Rn RttrRctlve potent. lRl ln Flg. 4. The
total potential in this limit is then:

0.06—

o.os-

o.oe-

0.03-
4)

0.02, -'

O.OI-
+

O.OO

-O.OI—

"0.02—

-0.05-
l50

FIG. 4. The solid curve gives the total interaction be-
tween two electrons in LiCl, including the contributions
from Coulomb repulsion and optic phonons, (e le s )

2

+ V(s ), with V(s ) shown in Fig. 3. Classically, the two
electx'ons shouM x'epel one another as e /&Os, as shown

by the dashed curve. The potential well of 28 meV in
depth for s -33 L opens the possibility of bound states,
or electx'on-pair bubbles.

electron-electron interaction, Eq. (48), shown in
Fig. 3. That is, we plot (e'je„s)+ V(s) in Fig. 4.
The dashed curve shows the expected, classical
xesult, while the smooth cuxve i.s the quantum xe-
sult for Libel. Note that this potential has stxong
oscillations that produce deep potential wells.
The first such well occurs when the electrons are
about 33 A apart, and its depth is about 28 meV.
This provides the possibility of having bound states
of two electrons in an ionic crystal.

In order to understand better the results pre-
sented in Eq. (48) and in Figs. 3 and 4, it is use-
ful to write the leading terms for large s of Eq.
(48):

(50)
It is easy to see now that the requirement for this
to become negRtlve ls that 60 &36

IV. CONCLUSIONS

In oux' calculation of the phonon-xnediated elec-
tron-electron interaction we have found interesting
and surprising results. For the case of acoustic
phonons in R Qonpolar material, we have found that
the interaction (excluding e'/s) has a repul. sive
core. In other words, when'the electxons are
close together, they repel xather than attract
one another. This core ls very wide, exteQdlng
more than 100 A. The repulsive core has been
found to be due to the virtual-recoil kinetic en-
ergies of the two electxons. In the optic-phonon
case, we find large quantum oscillations in the
phonon-medlRted interaction Rbout the expected
smooth ljs behavior, where s is the distance be-
tween the two electrons. When the usual Coulomb
repulsion between the two electrons is added, we
find that deep potential wells remain in the total
potent'. al, the first of which is about 28 meV
deep for LiCl and occurs when the electrons are
separated by about 33 A. This could lead to bound
states, or electron-pair bubbles. We have not
yet investigated this possibility in detail. The con-
sequences of such bubbles on the pxoperties of
ionic crystals could be of considerable interest,
especially if these paixs were to undergo a Bose
condensation into R common center of mass mo-
mentum state.

A subject fox future study is an analysis of the
potentials presented here when the vel.ocities of
the electrons are large. Specifically ii is impor-
tant to see if the potential wells that we have found
here for ionic crystals still persist at higher vel-
ocities. If that were true, a small concentxation
of electrons, injected into some ionic crystals,
might become superconducting. Finally, it would
be useful to.know the effects of higher-order cor-
rections of the electron-phonon coupling on our
results, especially for optic phonons. Here, our
discussion has been limited to the lowest order
in perturbation theory required to derive an elec-
tron- electron potential. .
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