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First- and second-order transitions in the Potts model near four dimensions
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The continuum generalization of the p-state Potts model is analyzed in the ordered phase.

Renormalization-group iterations in d =4 —e dimensions are followed by an elimination of the

transverse modes and a mapping onto an effective Ising model. This model is then used to

show that the transition is first order for p )p, (d) and continuous for p (p, {d). We find that

p, (d) =2 for d ) 4 and p, (4 —e) =2+a+0(e ).

-I. INTRODUCTION

The order of the phase transition of the p-state
Potts model' has been of much recent interest. It is
believed that the transition is second order for
p & p, (d) and first order for p )p, (d), where the
critical value p, (d) varies with the dimensionality of
the system, d. At d =2, Baxter' showed exactly that

p, (2) =4. Recent approximate real-space renormal-
ization-group calculations'4 reproduced this result,
and gave details of the behavior for different values
of p. Some of these results have also been confirmed
experimentally. ' As d approaches one from above,
Migdal-type recursion relations applied by Stephen
showed that the transition is second order for all fin-
ite p; i.e., p, (1)=~. At the other end, one expects
the Potts model to be correctly described by mean-
field theory above the upper critical dimensionality,
d, =6.' Mean-field theory predicts that all Potts
models with p & 2 should have a first-order transi-
tion, due to the presence of cubic terms in the ap-
propriate Ginzburg-Landau expansion. Thus,
p, (d) =2 for d ) 6. In fact, a recent study' of the
Potts model in 6 —e dimensions showed that the
transition remains first order for all p & 2; i.e.,
p, (6 —e) =2. The critical value p, (d) thus seems to
be a monotonically decreasing function of d, changing
from 4 at d = 2 to 2 at some d & 6.9

The actual dependence of p, on d is of great impor-
tance, as the properties of the Potts model at d =3
are still far from being settled. For p =3 and d =3,
experiments' " exhibit a first-order transition. A

first-order transition is also found in a Monte Carlo
renormalization-group calculation" and in earlier
field-theoretical renormalization-group calcula-
tions. ""Thus it seems that p, (3) & 3. However,
earlier series-expansion results"' may be indicating

a second-order transition for p = 3, d = 3, so that

p, (3) is probably quite close to 3.
In the present paper we investigate the dependence

of p, on d. Extending t'he earlier work, ' we show that

p, remains equal to 2 for all d ~4. We then general-
ize earlier calculations"" in d = 4 —e to obtain our
main new result; i.e.,

pq(4 6) =2+ e+ 0(6 )

Our calculation is based on the continuum generali-
zation of the Potts model. ' Since at p =2 the Potts
model becomes an Ising model, we are basically ex-
panding in powers of ( p —2) about this model.
Technically, we argue that a sufficient number of
iterations of the renormalization group in the ordered
phase will eliminate most of the fluctuations in the
transverse modes. Integrating the remaining
transverse modes out of the partition function then
leaves us with an effective Ising-model Hamiltonian
in the longitudinal component of the order parame-
ter. The properties of this Hamiltonian are then used
to determined p, .

The integration over tPe transverse modes is

described in Sec. II. The explicit integration of the
recursion relations in d = 4 —e dimensions is then
described in Sec. III, and the results are combined
with those of Sec. II to yield the final Ising-model
parameters in Sec. IV, where these parameters are
also used to identify p, (4 —e). The situation for
4 ( d ( 6, and the results in general, are then dis-

cussed in Sec. V.

II. EFFECTIVE ISING HAM ILTONIAN

Following Priest and Lubensky' the effective re-
duced Hamiltonian is written as

H = ——'
J~~t (r +k ) XQJ(k)g;~( k) +cu Jt

/gal(k)

g—&k(k')Qk~( —k —k')

—u Jt $Q„(k)Q;,(k')Qki(k"")Qkl( k —k' —k") —v —Jl QQ;, (k)Q&1, (k')Qki(k")QI;( k —k' —k"), —(2)
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by

H = JX—A (x) A (x')
(xx')

P

Qff=XA a„

(3)

(4)

where r is linear in the temperature T and Q/ are
symmetric diagonal traceless p-dimensional tensors.
The tensor components g/ are related to the com-
ponents A of the p-state Potts model

one component, A 1, orders. For reasons that will be-
come clear below, it is then convenient to shift A

via

A (x) =Q8 i+L

(Q+L)Q»=
p

The parameter g will be determined later. The corre-
sponding expression for Q;; is given by Eq. (4),

li'2

(7)

where

a 1
1/I'2—1 1

Q;, = p —— (Q+L)+q;; for i %1
p

p —n
a;i =

p —++1

f

li2 0 ifi &0.
1 lfi=o,
—1/(p —a) if/ ) a

t

%e now assume uniaxial ordering, i.e., that only

(5)

where q;; is a traceless diagonal tensor of dimension
( p —1) and where the subscript on L f has been
dropped.

We add a fictitious field —A f(x) If to the Hamiltoni-
an and separate it into its "fluctuating" part

H = —— (rL+k2)L(k)L ( k) —
4

—(rr+k2) X q;;q;, —hL(0)
i gal 1

+ [(p —2)cf» —4Q(u +bu)] l. (k)L (k')L( —k —k')
j

—[3f»c +4Q (u + 3uc2) ] J L (k) X q;;(k') q„(-k—k')
i &1

+(f»+4ct/Q) J X q;, (k)q„(k')q;;( k —k') —(u—+bu) J L(k)L(k')L(k")L( k —k' —k"—)
i 01

—2(u +3uc') L (k)L (k') X q;;(k")q&;( k —k' —k")—+4tfc L (k) X q„(k')q„(k")q;;(—k —k' —k")
i Wl i off'- I

—u X q„(k)qf;(k')q//(k")q/I( k —k' —k") ——u X q;;(k)q;;(k')q;;(k")q;, ( k —k' —k")—
i A 1 i gs-'1

J kg 1

(9)

and its fluctuation-independent (mean-field) part

HMF 4rQ +—( p —2)cf»g —hg —(u + bu)Q

(10)

In these equations

rL = r —12(p —2) f»cg + 24(u + b u) Q2

rr=r +12f»cg +8(u +3|pc )Q

h =h —
2 rQ +3f»c(p —2)Q2 —4(u +bv)Q3

c = [p(p —1)] 'I

b = (p2 —3p +3)c2

—u„,J L (k) L (k')L (k")L (—k —k' —k")

with

(12)

I

that any choice of rr(l') will yield the same final
universal result, Eq. (1). At this stage, we can in-
tegrate the transverse modes [q;;] out of the partition
function, using standard perturbation-expansions in
f»(l'), u (I'), and v(l'). The result, apart from a
constant, is

H ff Jl (r ff+ k )L (k)L ( k) lf ffL (0)

+ f»,ff JI L (k) L (k') L (—k —k')

The Hamiltonian (9) contains fluctuations in both
L and q;;. %e shall find, however, that for p —2, rL

is less than rr by a factor of (p —2). We thus iterate
the renormalization-group equations out of the criti-
cal region until rr(l') = l.s'7 '8 We note, however,

u ff ——u (I")+ bv(l")

f», „=(p —2)cf»(l") —4Q (I ) [u (I') + bv(l') l

(13)

(14)



364 AMNON AHARONY AND E. PYTTE 23

h, ((= h (I') —6( p —2)c(v(l')1~

—23( p —2) Q (I")[u (I') + 3c2v(l') ]1~, (1S)

r,((= rL (/") —2'3'( p —2)c'(v'(I") lp

Once cu,((=0, Eq. (12) reduces to the usual Ising
model in a field. Belo~ the critical point, this model
has a first-order transition from negative {L) to pos-
itive {L) as h, (( goes through zero. Thus, the first-
order point is identified via

+ 24( p —2) [u (/') +3c'v(/') ]li

~here

(16)
h, [[ =0 (19)

Kg ' = 2~ 'a ~/'F (d/2)

Since h, [[ is explicitly dependent on the temperature,
as seen from Eqs. (11), this determines the first-
order transition temperature. Finally, we note that
this transition is first order only below the critical
point, i.e., for'9

and where we have kept only the leading terms in an
expansion in both the cubic and quartic coefficients.

Having generated the Ising-like Hamiitonian (12),
we can now use existing knowledge of this Hamil-
tonian. As usual, it is convenient to eliminate the
cubic term by an appropriate shift in the order
parameter. In our case this is simply achieved by an
appropriate choice of Q (/"), as determined by Eq.
(14)

(p —2)ceo(/')
4[u(/") +bv(/')]

ref[' Q foc (20)

If we set the temperature at the transition value
determined from Eq. (19), r, (( will then depend only
on p. The equality r, [[.= ro, will thus determine the
critical value p, .

III. RECURSION RELATIONS

For the Hamiltonian given by Eq. (9) the recursion
relations are'~

1/
(/) = [2 —r/(/)]rL(I)+2 3Ky[u(/) +bv(l)]gL(l) +2 Kg(p —2)[u(/) +3c'v(l)]gr(i)

—243'K~ [ ( p —2)ceo(/) —4Q (I) [u (I) + b v(/) ] }'gL (/)

—2'K~( p —2) [3co)(/) +4Q (I) [u (/) +3c'v(/) ] }'gr2(/) (21)

(/) = [2 —g(/)]rr(l) +2 Kqp [u (I) +3c (p —2)v(/)]gr(l) +2 Kz[u(/) +3c'v(l)]gL(/)
dl .

—2'K {3c (I)+4Q(/) [u(/)+3 ' (I)] }'g (l)g (/)

243K~c'p ( p —3)—[(0(/) +4cv(/) Q (I) ]'gr2(/) (22)

dl
(I) = —' [d + 2 —ri (I) ]h (/) + 6K' ( p —2) c o) ( I) [gL ( I) —gr (I) ]

—2'3K~Q (I) [u (I) + bv(l) ]g( (I) —2'K~( p —2) Q (/) [u (I) +3c'v(/) ]gr(I) (23)

where

1 1

1+r((I) ' 1+rr(l) (24)
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For the higher-order coefficients the recursion relations for the disordered phase will suffice,
r

dc@ 1(I) = —[6 —d —3g(/)]co(l) +288Kd 1 ——,—2c3Kg 2u (/) +3 1 ——v(l)
cu'(I) cu(I)

dl p [1+r(l)]' '
p [1+r(l)]'

(I)- [4 —d —2g(l) ]u (I) + 3226Kgu (I)cu2(i) 1 —— + 3'26Kgu(l) cu(i) 2

dl p [1+r(/)]' p' [1+r(l)]'
t

—2"K~ ( p + 7)u'( I) + 6 1 ——u ( I) u ( I) + (9/p') u'( I) ——
[1+r(/)]'

c 'I

"(I)=[4—d —2q(I)]u(i)+3'2'Kqu(/)cu'(/) +3'2'Kgu(I)cu'(I) 1 ——
dl [1+r(/)] p [1+r(/)]

c c

—2c3K 4u (l)u(l) +3 1 ——v2(l)
[1+r(/)1' '

where
t

g(l) =48K' 1 ——cu'(/)

(25)

(26)

For d =4 —. e these have the solutions

rt, (l) = TL(l) —23Kc (p +1)u (I) +3 1 ——u(l) +233Kc[u(l) +bu(l) ]TL(l) in[1+ TL(l)]1

+ 23Kc( p —2) [u (I) +3c2v(l) ] Tr(I) in[1+ Tr(l) ]

T, (I)
+ 2332Kc( ( p —2)c~(I) —4Q (I) [u (I) + bu(l) ] ]2 in[1+ TL (I) ] + i+ T, (0

Tr(I)
+23(p —2)Kc[3ccu(l) +4Q(/) [u (I) +3e2u(l)] }2 in[1+ Tr(l)]+

1+Ty /
(27)

rr(i) - Ty(/)+0(u, cu') (28)

and

h (I) = ho(l) +223KcQ (I) [u (I) + bv(l) ] +22Kc( p —2) Q (I) [u (/) + 3e2v(l) ]

+3K4( p —2) ccu(l) ( TL (I) 1n[1+ TL (I) ] Tr(l) in[1 + Tr—(l) ] ]

—2'3K,Q (I) [u (I) + b v ( I) l TL ( I) [1+TL ( I) ]

—2'Kc( p —2) Q (I) [u (I) +3c'v(l) ] Tr(I) 1n[1+Tr(l) ] (29)

where

TL (I) = t (I) —12( p —2)ccu(i) Q (I) +24[u (I) + bu(l) ]Q2(l)

Tr(l) = t (I) + 12ecu(l) Q (I) +8[u (I) + 3c2v(l) ]Q2(l)

h, (l) - h(l) ,
'

t (I)Q(l) +-3(-p —2)c~(/) Q'(0 4[u (I) + bu—(l) IQ'(I),
(31)

(32)

and where t (I) satisfies the equation

t c c

—(I) -2t(l) —2cKc (p+1)u(/) +3 1 ——u(l) t(l) —2"32Kc 1 ——cu'(/)
dl

(33)
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Further

Q()Q(I /2)(h(()h(3 —I/2)l (34)

the recursion relation for (»(/) is
7

d(»(/) = 1+—f»(I) —2'3K4u(/)f»(i) + . , (38)
dl 2

Here h is the external uniaxial field applied to the
Potts model, which we set equal to zero.

We shall require only approximate solutions for
u (I), 2)(/), (»(/), and t (I). Following Priest and Lu-

bensky, 7 we start with the recursion relations for u

and v in the absence of ~. For p ( S, they find that
the (p —1)-component Heisenberg fixed point is

stable, i.e.,

yielding

~(() e( I+a/2)l/U(()6/(P+7) (39)

To the same approximation, the solution of Eq. (33)
for t (/) is given by

te" 3' ~'(/)
t(/) =-

U (/) (P+I)/(P+7) 2p u (()

u (/) u'= e/16( p + 7)K4, 7)(/) 0 (35)
32 o)2t=r+23K (p+1)u+-
2p M

(41)

for I ~. Note that for p 2 this becomes the usu-
al Ising fixed point. Assuming that 2)(/) is small we

indeed find
IV. EVALUATION OF p, (4 —~)

u ( () = ue "/ U ( /)

&(I) eel/U(()(2/(P+7)
(36)

We return now to the evaluation of the effective
parameters of the Ising model as given by Eqs.
(13)—(16). To leading order in e, the integrals II
and /2 may be evaluated at d =4 and rr(( ) = Tr(l'),
yielding

where

U(/) =1+(e"—1)u/u' (37)

and where u and 7) are the initial values u = u (0) and
2) =2)(0). We note that 77(/) indeed decays to zero
for / sufficiently large and p & S. We now introduce
a small cubic term ao. Neglecting terms of order co,

1
Ii =—

2

ll2=—
2

Tt(( )
1 + T,((') ln

,
1+ T,(l')

1+ Tr((')
ln

Tr (I")
1

1+ Tr((')

Combining Eqs. (15) and (29) (with the latter
evaluated at I = /") then gives

(42)

h, fr =hp(l ) 3K4{(p —2)cf»(I") —4[u (I') +(727((') ]Q(l') }{1—Tl (I")in[1+ Tl (I")] } (43)

When we substitute Eq. (18) for Q (I') we find

h, ff = ho(l') (44)

where ho(l') is given by Eq. (32), without any correc
tions from the diagrams. Setting h,fr=0, and making
use of Eq. (18), gives

gives

=3(p —2)+0((p —2)') (47)
c f» (I")

Hence by Fq. (45) the first-order transition occurs at

t (I') = ( p —2 ) /3 + 0 (( p —2) ')

( p —2)'c'f»'(I")
[u (I")+ (77)(I') ]

(45) From Eq. (30) we now obtain

TL (I') = —( p —2)/6+ 0 (( p —2)2) (49)
As outlined in Sec. II we iterate the recursion rela-

tions until rr(l') = l. In practice, it is more con-
venient to choose Tr((') =1. Thus, from Eq. (31)
we set

t (I")+12c~((")Q (I")

+ 8 [u (I') + 3c'2) (I') ]Q'( I") = 1 . (46)

Substituting Eqs. (18) and (45) for Q(l') and t(l')

This shows that our assumption that {rL { ( rr does
indeed remain true up to / = t'.

Next we need to calculate r, ff as given by Eq. (16).
Substituting Eqs. (27) and (42) we find again that all
the diagrams cancel to leading order in ( p —2).
Thus we obtain simply

feff TL (I") = —( p —2)/6 + 0 (( p —2) ) . (50)

At this stage we can iterate the recursion relations for
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the effective Ising Hamiltonian (12). The recursion
relation for the temperature variable is'

dr u= 2r,ff+ 243K~
dl 1 +feff

(51)

so that to leading order the temperature scaling field
is"

jeff reff + 2 3K4ueff3 (52)

Thus finally we need to calculate u, ff as given by Eq.
(13). From Eq. (47) it follows that for p —2

e " —(p —2)

From Eqs. (36) it then further follows that

u (I")= u'[1+ 0 ((p —2)' ') j

u(l") =0+ 0 (( p —2)'I6)

(53)

(54)

Thus

u, rr
= u (I")+ b (ul') = u'+ 0 (( p —2)' 6) (55)

with u" as given by Eq. (35). Finally, from Eqs. (50)
and (52) we obtain

(p —2)t.ff =—
6 6

+ (56)

V. DISCUSSION

In the preceding sections we mainly concentrated
on the solutions for d & 4, i.e., e & 0. In fact, the
same solutions apply for d ) 4. The only difference
is that u (I), according to Eq. (36), will decay to zero,
as e ' ', and, therefore, u (I")~ ( p —2)' 2.. Thus,

The transition (as function of h, rr) is first order for

ff ( 0, i.e., for p & 2 + e. This concludes the deriva-
tion of' Eq. (1).

both terms in Eq. (52) will vanish at p =2. This
shows that p, (d) = 2 for all d )4.

One could also repeat the above calculations in
6 —~ dimensions. The solutions of Sec. III must then
be replaced by solutions in which co(l) approaches its
fixed-point value, '

ra ~e/144K6 —32 10

, P
(57)
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Again, a detailed analysis sho~s that all the diagrams
contributing to Eq. (19) cancel, so that Eqs.
(47)—(49) are still correct. However, using Eq. (57)
in Eq. (47) yields u (I') ~ ( p —2), so that finally Eq.
(52) gives t,rr ~ ( p —2), again showing that p, = 2.
This is consistent with the results obtained in Ref. 8.

To summarize, we have been able to show that

p, (d}=2 for all d ) 4, and to evaluate the deviation
from d =4 —~ dimensions. A simple extrapolation of
Eq. (1) to lower dimensions approaches the correct
answer at d =2, i.e., p, (2) =4. The same extrapola-
tion goes through p, (3) =3. Corrections of higher
order in a are thus essential in order to determine
whether in fact p, (3) is smaller than 3. The extrapo-
lated result p, (3) = 3 does seem' to confirm the gen-
eral belief that p, (3) is not very far from 3, explain-
ing the conflicting evidence in the literature.
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