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Hall coefficient in pure metals: Lowest-order calculation for Nb and Cu
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The lowest-order solution to the linearized Boltzmann equation is calculated for Nb and Cu with uniform external
electric and magnetic fields. This solution corresponds to a rigid displacement of the Fermi surface, and should be

accurate when the anisotropy of the electron scattering function is small. For Cu the result agrees very well with

experiment. The agreement with experiment for Nb is within 14'.

The Hall coefficient R~ has been measured in
many metals. ' Interpretation of the coefficient
is more difficult for metals than for semiconduc-
tors because of the more complicated Fermi-
surface topology. Relatively few calculations of
the Hall coefficient have been made for transition
metals. ' ' A method for calculation R~ was given
by Jones and Zener, ' and more recently by Hase-
gawa and Kasuya' (HK). Jones and Zener assume
no anisotropy of scattering; HK allow for aniso-
tropy but find very little at room temperature
for Cu. An expression for R~ equivalent to the
theory of Ref. 6 was given by Tsuji'.
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where (1/p)» is the mean curvature of the Fermi
surface at the point k. The notation k is short
for (k n), the wave-vector and band index of an
electron of energy e» and velocity Iv» =. Be»/sk.
The Fermi-occupation factor is denoted f. The
interpretation of Eq. (1) is that R» is a measure
of curvature. For a free-electron sphere (1/p}
is I/O» and Eq. (1) yields B» = —1/nec. For non-
spherical surfaces, Eq. (1) can differ strongly
from -I/nec because regions with large e» or
large curvature are more heavily weighted. The
Fermi surface of Cu, for example, is an electron
surface by any reasonable definition, but the
curvature (1/p)» is negative over significant re-
gions near the necks. These happen to be regions
of relatively low v~ so R~ is negative as expected,
but in principle the result could have been positive
if the v„'s had been different.

The evaluation of Eq. (1) is straightforward,
provided one has values of v ~ on a fine mesh of
k points on the Fermi surface. In particular, it
is not necessary to know components of V~ v~
normal to the Fermi surface as may be seen by
writing R~ as
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Equation (2) shows that only those components
of V~ v~„normal to v~, that is only those compo-
nents of V~ v~ lying on the Fermi surface, con-
tribute to the sum. A derivation of Eqs. (1) and
(2} is given in the Appendix. It is shown there
that these equations follow from a very simple
ansatz that the whole Fermi surface is displaced
in a direction given by E + a (E x H), where a is
a constant determined by the Boltzmann equation.

A Korringa-Kohn-Rostoker (KKR) program in
the constant energy mode was used to generate
a mesh of k points on the Fermi surface. In the
irreducible 48 th, 492 points were used for Cu and
1060 points for Nb. In contrast, HK used 576
points over the Fermi surface of Cu which corre-
sponds to 12 points in the irreducible ~

—', th. The
reason we used such a fine mesh was to reduce the
error arising from computing the derivatives in Eq.
(2) and in(1/p)» via the central difference technique.

Our calculated Hall coefficient for Cu is in ex-
cellent agreement with experiment. The agree-
ment between our Nb calculation and experiment
is approximately a 10% difference. In Table I,
a summary of our results ispresented. For Cu our
value —5.30X10 "m»/C agrees well with Dugdale
and Firth and with the room-temperature value
of Schmidt and Mann. ' In the latter calculation an
anisotropic scattering rate was used which gives
rise to temperature variation of R~ at low 7.'. The
result of HK' is —6.25 X 10 "m'/C; the discre-
pancy probably derives from their coarser mesh.

The difference between our result for Nb and
experiment is perhaps due to our neglecting the
anistropy of the scatting matrix. Recent cal-
culations, using the rigid-muffin-tin approxi-
mation, of the rms anisotropy of 1/v at T & 8»
yield 5%, 3%, and 2% for the Nb I; P, and N
sheets, respectively, and 16% for Cu. The mean
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TABLE I. Calculated parameters for Nb and Cu. The
density of states N(0) is in units of states per spin-
rydberg-atom. .The rms Fermi velocity is defined as
vz=Z~0(ek)v„/Z~d(~a) ' and is in units oi 10 cm/s.
The mean curvature (1/p),„ is defined as Zkvk(1/p)k/
N(0)e& and is in units of 10 cm. Hall coefficients are
in units of 10 ~ ms/C. Experimental values come
from Refs. 2, 15, and 16. The symbols I', N, P for
niobium refer to the three sheets of Fermi surface:
the "jack" centered on k= 0 (I'), the N-point ellipses
(N), and the "jungle gym" (P).

N (0) (1/ p) PSleor +exPt

CU

Nb I'
NbN
NbP
Nbtot

1.89
1.51
3.74
4.69
9.94

1.080
0.142
0.411
0.541
0.553

2.83
-6.72

-46.98
3.16

-50.54

-5.30 -5.17

7.52 8.75
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APPENDIX

First we shall derive Eq. (2) and then show the
equivalence of Eq. (2) and Eq. (1). The distribu-

values of 1/7 on different sheets in Nb differ by
sBg." Experiment" indicates that this may be
an underestimate in Nb. We estimate an uncer-
tainty of -

10%%uc in Rs from anistropy effects. As
the coefficients found using either Eq. (1) or (2)
are within B%%uc of one another, numerical accuracy
is not a problem.

A final source of discrepancy between theory
and experiment lies in the fact that transport
properties are sensitive to quasiparticle velo-
cities v, . Our band structures agree well with
Fermi-surface a.reas measured by techniques
such as de Haas-van Alphen oscillations. Com-
parison of theoretical and experimental velocities
is less well defined, partly because of mass-en-
hancement effects. In principle, a "quasiparticle"
band structure rather than a local-density approx-
imation to a "ground-state" band structure is
needed for v, . The fact that our band structures
for Nb and Cu give reasonable agreement with
measured R~ is thus an interesting and gratifying
result.

tion function is written as
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which defines pk. The other symbols were de-
fined in the text. The linearized Boltzmann
equation is
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where the structure of the scattering operator
Qkk, , is immaterial for lowest-order Hall-coeffi-
cient calculations. We expand pk as

&f&a
= p, Vk ~ E + p, V k

~ (E X H ), (AB}

where P, and P, are constants to be determined
shortly. If we then let E =E x, 8 =Ps and insert
Eq. (A3) into (A2) and equate powers of H, we

have, through linear terms,
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The current density is given by
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Due to our choice of E and H the current in the
z direction vanishes; the current in the other
directions is written as

~~ a -sfj, = —2e pc~Vk, (A9)
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From Eqs. (A9) and (A10) we find the Hall coeffi-
cient to be given by Eq. (2). An alternate deriva-
tion of Eq. (2) using Chambers's method is given

by Kittel. '
To show that Eqs. (1) and (2) are equivalent

consider solely the numerator of Eq. (2), namely,
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The coefficients P, and P, can then be determined
and are written as
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Expanding the cross product and using cubic sym-
metry we have

Evaluating Eq. (A14), multiplying by (h s~P/6, and
summing the result over k yields the numerator
of Eq. (1). For our calculation of the curvature
of the Fermi surface we used a different formula, "
namely,
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Tsuji' has shown that the quantity in the square
brackets is equal to
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from which Eq. (1) immediately follows. Alterna-
tively one could use the fact that, for a surface
given by e(k„, k„,k, ) = constant, "
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Here n is the unit normal to the surface, i.e.,
v ~/)i, ~

and u', u' are two perpendicular directions
along the surface.
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