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The application of average t-matrix IATA) and coherent potential (CPA) approximations to the calculation of
average electron momentum density p(ll) in. random mufftn-tin alloys A„B, , is considered. The necessary equations

for the general matrix elements of the operators describing scattering by the CPA atom and also by an A or B atom
embedded in the effective medium are derived. Various versions of the ATA for p(l)) are discussed. Several p(l))
curves calculated on the basis of the CPA and ATA in Cu„Ni, „are presented. These results are used to delineate
the effects on p (P) of self-consistency in the treatment of disorder.

I. INTRODUCTION

Much of the recent work concerning electronic
structure of disordered metallic alloys has fo-
cused on the application of single-site approxi-
mations, and particularly the average t-matrix
(ATA) and coherent potential (CPA) approxima-
tions, to the muffin-tin Hamiltonian. The ap-
plication of these approximations to obtain the
average electronic density of states p(E) and
associated spectral properties has reached a
fair degree of maturity, although some difficult
problems remain to be solved. The stage for a
full theoretical development and discussion of
other electronic properties te.g., momentum
densities, soft x ray emis-sion (or absorption}
profiles, neutron scattering form factors, optical
spectra, transport coefficients, etc.] would there-
fore appear to be clearly. set. Our particular
interest here is in the average electron momen-
tum density, which is related to the measured
positron-annihilation or Compton scattering pro-
files in random alloys.

In earlier publications, "we have presented
the ATA formalism for p(p }and applied it to
Cu, Ni, „. In Ref. 3 a new version of the muffin-
tin ATA for p(E) (referred to as ATA2), which
incorporates the physically important effects
due to a single A or I3 impurity atom embedded
in any given effective medium, was considered.
A discussion of several aspects of the equilibrium
electronic structureof Cu ¹,„and Cu„Zn, „alloys
on the basis of the muffin-tin CPA and ATA2 has also
been reported. The present article extends
the ATA2 and CPA to the evaluation of momentum
densities. Cu, Ni, „ is used as an illustrative ex-
ample, because we possess extensive relevant

information (such as CPA solutions, complex en-
ergy bands, densities of states, etc.} on this sys-
tem from our previous work.

New results reported in this paper are the fol-
lowing. (i} The muffin-tin CPA equation for the
general matrix elements, tcp (p, p'), of the CPA
scatterer is derived (Sec. IIA). ' Our analysis
shows that for the off-energy-shell elements
(i.e., for p or p'c WF), this equation is not a non-
linear self-consistency condition (in contrast to
the case of the on-energy-shell elements), but a
simple linear equation in the unknowns. (ii) Ex-
plicit solutions for the (p, p'} matrix elements
of the scattering path operators, (T'„'„' (p, p'))e „&»
for a single A(B) impurity embedded in any given
effective medium are presented. (Note that these
solutions are required for the calculation of the
momentum densities whereas for evaluating the
densities of states only the p = p' = v E elements
are necessary. ) These results are used to derive
and discuss ATA2 and CPA expressions for p(p )
in Sec. IIB. (iii) Several CPA and ATA2 curves
for p(p) in Cu, Ni, , are presented in Sec. III.
CPA and ATA2 values are compared with each
other, and with earlier ATA Ireferred to as
ATAl (Ref. 2)] computations. Self-consistency in
treating disorder is generally found to have rather
little influence on the physically relevant quantity
p(p). (iv) Finally, the Appendix discusses how
the various off- and on-energy-shell matrix ele-
ments occuring in the present multiple-scattering
framework can be related to the solutions of the
Schrodinger's equation within the A - and B-atom
%'igner-Seitz cells. Such a reformulation of the
theory is relevant for understanding charge dis-
tributions in alloys.

Effects of the positron wave function on the
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Blomentum density Rx'8 excluded fl'oln tile scope
of present work. R may be noted, nonetheless,
that the incorporation of these effects within
the framework of the independent parhele model
is a x'elatively straightforward px'oposltion This
matter will be taken up in a subsequent study.

OcP f cP (1 + G f cP)-t (2.5)

8A.(B) tA(a)(1 +G gk(B))-x (2.6)

to 81HIllnate fl, tl, Rnd 0 111fRvol' of tile col'-
responding t matrices, Eq. (2.4) yields

II. FORMALISM

A. General matrix elements of the coherent potential
scatterer

f CP (f) (fA. f CP)y CP (g, 8 fCP) (2.7)

We consider the substitutiona1. ly disordered binary
alloy A„B, „on the basis of the one-electron
Hamiltonian

(2.1)

Here the crystal potential is assumed to be given
as the sum of nonoverlapping spherically sym-
metric muffin-tin potentialsv, ~ l(r) =-v"i i((r —R„[)
centered on atomic sites(R„]. Because the alloy is
a.ssumed to be random the probability of any given
site being occupied by an A {8)atom is equal to its
fractional concentration» [or y = (1 —»}].

%'e analyze the average electronic spectrum
of the alloy within the framework of the single-site
approximation, which amounts to replacing the
disordered alloy by an ordered crystal of appro-
priately chosen effective atoms. In the ATA, the
effective atom is characterized by the scattering
matrix t'"= «) = xt" + yt .—The CPA scatterer is
more complicated and is determined by the phy-
sical requirement that, on the average, there be
no scattering from a single A or B impurity em-
bedded in the effective medium. More specifically,

(2.2)

6 = Go+ COT Co-

With the decomposition

(2.9)

(2.10)

of T in terms of the path operators T &, the
operator F can be rewritten as

E = Go Q T„„iGO.
asso S 880

[Superscripts CP are suppressed in Eqs. (2.10)
and (2.11)because these are operator identities. ]
Speciallsmg 'to 'tile lllllff Ill-till Hamiitonian, we
write Qo and the various scattering matrices in
the angular momentum representation. Thus

{2.11)

t"(p, p')=(«)'Z ~&(P)t,~ (p, P')~, (p'),

(2.12)

wltll sllnllR1' equations fol' i (p, p ) Rlld t (py p }g

and

ycP —(1 + G tcP)-xG (TGP tcP)G (1 + fcPG )-x

(2.8)

and T~p is the total scattering operator for the
Cp medium related to G~ by

yA(B) (Q(B) OcP)[1 GcP(Q(8) ccP)] 1 (2.8)

ls the f Illatrlx fol' RIl A(B) Rtonl with I'espect 'to

the effective medium. Here, 0~ denotes the
coherent potential (located on site tI) and G cP the
CPA Green's function. Using (2.8) in (2.2) yields

=»v" +ye -(0 -v")Gc (e -8 ) (2 4}

where 01nlssi011 of tile subscript II, by conventio+
iIIlplles PI = 0. (This collve11'tloll will be employed
in the remainder of this article. ) Equation (2.4)
has been used extensively in the treatment of
one- and two-. band tight-binding model Hamil-
tonians. In the context of the muffin-tin HamO-

toniany ho%every it ls more convenient to x"e-

write Eq. (2.2) in terms of the free-electron
propagator Go and the scattering matrices t ~, g 8,
and t ~ of theA. , B, and Cp atom, respectively.
Using

(2.15)=-N ~&X(1-&cp&W) '.
Equatloll (2-14) RIld (2 15) Rx'8 to be understood

G,(r r' R„)=g-r-, (f)f,(»P)a",„'q„(»P') r, ,( ')P.
I.I.'

(2.18)

Here» =vE, L -=(l,III) is a com—posite angular mo-
mentum index, and Y~(x) is the real spherical
harmonic associated with direction x. Bo„is
the matrix of lattice Fourier transforms of the
usual Korringa-Kohn-Rostoker (KKR} structure
functions B-„(E). By straightforwald manipula-
tions Eq. (2.7) can be cast into the form'

t'"(P, P') =«(P, P')) -[@(P,»)-f (P, »)]~"
x [f'(», P') —t"(»,p')] (2.i4)

with I"CP given by a BriQouin-zone summation
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as matrix equations in (I„L') space. Here, ~op
= f ((t, t&) denotes the on-shell elements of t

Equation (2.14) permits the calculation of ar-
bitrary matrix elements of the CP scatterer and
for P =P'= w, it reduces to the usual CPA self-
consistency condition. Note that for half-off-shell
elements f (P, t&) [or f (t(, P), (2.14) is ttot a.

self-consistency condition, but a simple linear
equation in the unknowns. Once &„p is obtained,
all other elements of the CP scatterer are comput-
ed easily in terms of &~; no additional nonlinear
equations need be solved. It is clear then that
the average one-electron properties (in particular,
momentum densities, real space charge densities,
and Bloch spectral functions) of the muffin-tin
alloy in the CPA are determined unambiguously
via the solutions of the usual CPA equation, with-
out recourse to any further approximations. '
(See the Appendix for a discussion). This is also
true of physical quantities which involve the
properties of a single A or B atom embedded in
the CPA medium (e.g., the A and B component
charge densities).

(G(p, E)& ~&» may be evaluated approximately on

physical grounds placing an A(B) atom at the
zeroth site in the effective medium, i.e., by
solving the single-impurity problem. Note, how-

ever, that the value of G"t(P, E) computed for a
given effective medium t"' with such approximate
(G&ot~t and (G&o"B values will be equal to that ob-
tained by placing t,«at every site in the crystal
only if t,«= t~~." In this sense, the CPA incor-
porates the properties of a single A or B impurity
embedded in the effective medium. With this
motivation, we have recently proposed a version'
of the muffin-tin ATA (referred to as ATA2 in
Ref. 3, which includes the physically important
single-impurity effects, yields the CPA for t'«
= tcB) and possesses other desirable features.

To develop an expression for the momentum
density in spirit of the ATA2 and in the CPA,
we require the momentum matrix elements
(T(p, p; E)&at'A&B& of the total scattering operator
for a single A (B) atom placed in an effective
medium.

When restricted averages of both sides of Eq.
(2.10) are taken, we have

B. Average momentum density in ATA and CPA ( /(&-A(B) Q (Tnn'&(&-A(8) )
I

(2.19)

The average electron momentum density in an
effective medium is given by

where the path operators (T„'„",&, „&» satisfy"

g~
pet& (P) dE pet& (P E) (2.16)

where E~ is the Fermi energy, and the spectral
momentum density p'"(p, E) is related to the
ensemble-averaged Green's function, G'" (P, P; E)-=Get&(P, E) by

pet& y E) = ~&lmGet&(P Ee) (2.1V)

G'" (p, E) can be written in terms of the one-site-
restricted average Green's function

G"'(P, E)= x«(P, E)&:"+ X«(P, E)&:"B (2 18)

Substitution of

(T:V (P, P')&. A(B&=Q 1'x(P)(T"'(p, p')&O'A&B) 1; (p')
LL

(2.21)

in (2.20) yields a matrix equation in (I., L') space
whose solution is easily obtained by a Fourier
transform of the lattice coordinates (n, n'). The
final result is"

(T'tt (p, p')&. „„,=It"'(p, p')+ PA"'(P P') f:"(P,p')Jf.J ~ —+If:"(P,~)+ PA"'(P, ~) —f:"(P,~)j~.&

1
X ( —()nn + rettT„nl)tettt' ((()P')+ (—() p+r &&Tnt& )EA(B) 1 Tett t&ett Tan' ettf

Do g {B)

1
+ (-il„+T„, ') t„, ~„,'[&„, ''1(Ic,in') —i„',i"'(&,(')(I! .),

A{B) 00
(2.22)

where T„"„' is given by the Brillouin-zone summation

T"'=— e4'~~ R1 -, 1 (2.23)

jeff
A{B) eff A{8) (2.24)
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As discussed in Ref. 3, we are interested in the contribution

(2.25}

of the zeroth site to the total scattering operator. Using (2.25) and (2.24) this may be written as

&7'"(P, P)) =~&7"0"(P, P)}0 A+y& '0" (P P))0 B (2.26)

where

= F,+ F2+F3+F4 ) (2.27)

E, =&t(p, p)) —[XtA(p, «)~„'tA(«, p)+ytB(p, )«V 'Bt («,p)], (2.28a)

1
+ y[tB(p, «)~B' —t"'(p, «)~f'f]T~f „, „, [7B't («, p)- ~f'ft" f(«, p)], (2.28b)

1 g 1 ff 1 B -1 ffE, t (s =«") 'T7 ,'( .„~„,('t„'t" (» tt) t!l,t"'(& tt))-+ t-[7 t (Ks) —T t' (Ks)J ),

(2.28c)

1 .ffF4
~

&t (Ps «)rA 1 z eff gaff y~(Pt «) B l tftefffI)sff
~

y-1 m iff
00 A oo B ) Hf 5

(2.28d)

Equations (2.25) through (2.28) provide' an expression for p(p) which incorporates single-impurity effects.
However, these equations must be modified to ensure an exact cancellation of the free-electron poles in
p"f(p, E) for arbitrary effective medium. (This cancellation is automatic for the case t"'=tcB.) For
p"f(P, E) to vary smoothly as p «, two conditions mustbe satisfied'. (i) the terms independent of the
structure functions Bf, must vanish at least as fast as (E -p')', and (ii) B;-dependent term involving the
inverse matrix (7', fff B;) 'sh-ouM -diverge as (E -p')-', We discuss these conditions in turn.

Of the B z-independent terms (i.e., F„F„and F,), E, and E, obviously vary as (E-P')', but F,- (E —p').
While F,vanishes rigorously in the CPA, it turns out that in the general case it is difficult to ensure a proper
behavior for E, as p - )f, and therefore we have dropped the contribution E, from our final expression for p«(p, E).
For the 8 z-dependent term F4, we use the replacement

(1-T0»() tt'A ) '- —(r,ff' VB')(T„' -VB') ', -eff eff (2.29)
x

(with a similar relation with the interchange A—B) in the prefactor enclosed in the large parentheses in
expression (2.28d} to obtain

(2.30)-1 1 1 -1 -I
E4

~

t (PAt )«A -1 -1. ( sff B }+ tB(P& «} B 1 1( eff -A } --1 sff tsff ( t P} '
~a

The replacement (2.29} is exact in the CPA and was also used previously in connection with ATA2. ' Our
final result for p' (p, E) is

p'"(p, E)= ——lm, , + . ..~ F, (P}(F,+F, +F,)„,V, ,(P)i, (2.31)

with E„F„and E4 given, respectively, by Eqs.
(2.28a), (2.28b), and (2.30).

In the preceding discussion of the free-electron
poles, we have assumed implicitly that for P - &,

t'»(p, p), t'»(p, ff}, and ts" (ff, p}-t'»(«, (f}-=r«,

and also that tAfal(p, «}-tAf»((f, «). The question
of how to ensure the proper limiting behavior for
tAf@(p, «} was considered in Ref. 2. The easiest
method of ensuring this behavior for t'» (p, p') is
to evaluate the matrix elements for p = p'= z, as
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well as for p or p'4z via equations whichexplicitly
possess the proper limiting behavior. This can
be accomplished by a few straightforward mani-
pulations on the CPA equation (2.14). The rele
vant (matrix) equation is

where

expression for p (p, E), which can also be ob-
tained directly by placing a CP atom at every lat-
tice site in the alloy. This shows that (2.33) re-
duces properly in the case t"= t . By contrast,
as already noted, for t' =

&f& Eq. (2.31) does not
reduce to the usual ATA (i.e., placing a &f& atom
on every lattice site}, but represents a new ver-
sion of the ATA for momentum densities in any
given effective medium.

111. ILLUSTRATIVE RESULTS

1 ~ 1
(2.34)

N ~ 1-&ff- B

We emphasize that Eq. (2.32) is not meant to be
solved for t'". Instead, given the values of v;ff and
F" (obtained during the course of solving the
CPA equation), Eq. (2.32) detexmpnes new values
of f's(p, p'), which are guaranteed to reduce
properly in the limit p or p'- z. Finally we note
that by repeated use of the CPA equation, it can
be shown that

(2.35)

The substitution of (2.35) in Eq. (2.31) yields an

Spectral momentum densities p(p, Z) for two
different versions of the ATA and the CPA are
presented in Figs. 1 and 2.'P A general R point
in the Brillouin zone (with no particular symmetry
properties) is considered. The ATA1 (filled dots}
and ATA2 (dashed) values" of normal as well as
umklapp contributions to Io(p, E) are seen to be
very close to each other. This may be understood
qualitatively by recalling that these two versions
of the ATA differ in that the ATA2 incorporates
the effects of a single Q or B impurity, while
ATAl does not. Since impurity states tend to be
localized in real space, their effects are expected
to be delocalized in momentum space. ' Indeed,
we find that the net contribution from the E, and +,
terms [cf. Eq. (2.31}]is 2 to 3 orders of magni-
tude smaller than the plotted values of p(p, E).

Turning to the comparison of CPA and ATA2
(or ATA1} in Fig. 1, we see that a self-consistent
treatment of disorder causes two characteristic
effects on p(p, E}: (i) the structure associated
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FIG. 1. Spectral momentum density p(p, E) for ATAl tfilled circles), AYA2 (dashed) (Ref. 15), and CPA (solid) in
Clip yp¹p pp as a function of energy at (a) p =kp =—(0 166, 0 415, 0 664) (2r/a) ~ and (b) p= kp+ Kffi (1 166, 1 415, 1.664)
{2~/~), where a = 6.S309 a.u. is the Cu lattice constant. (Note that the vertical scales on the right-hand-side set of
figures are ten times smaller than those for the left-hand side. )
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FIG, 2. Same as Fig. 1 except that this figure is for Cu() 2&Ni() &5 (Ref. 17).

with the Ni-derived d states (in the range 0.45 to
0.65 Ry) is considerably broadened and shifted
to higher energies, and (ii) the peaks arising from
the Cu-like d states (in the range 0.3 to 0.45 Ry)
are broadened and relatively less shifted. Similar
effects were discussed in connection with the Bloch
spectral density and the density of states in Ref. 5.
They are a manifestation of the generally larger
damping of states given by the CPA scatterer and
of the d-d repulsion, which shifts the Ni d reso-
nance to higher energies in the Cu-rich alloy.
Much of the preceding discussion is.also appli-
cable to Cup 25Ni„., considered in Fig. 2 and to
other alloy compositions that we have studied
(not shown). Note that in the Ni-rich regime the
Cu-impurity resonance in the ATA (the structure
around 0.43 Ry in Fig. 2) is completely smeared
out in the CPA in Fig. 2(a), and only a hint of

this structure remains in the CPA umklapp curve
of Fig. 2(b).

Figure 3 compares the momentum density in
CPA and ATA along the (110) direction. The dif-
ferences between the two curves are not discern-
ible on the scale of the figure. We find similar
results along other directions in the Brillouin
zone (not shown). In this connection, Fig. 4 is
particularly interesting. As discussed in Ref. 2,
the dip in p(p) Iappearing around (112) point] is
associated with the fact that, as the Ni concentra-
tion increases from 50%%uq to 75/q, the Fermi ener-
gy falls below the top of the Ni d bands and, as a

0.2—

).0—

O.l

I.O

p (a.u. )

I

2.0 5.0

00 1.0 2.0
P(~ U)

FIG. 3. ATA2 (solid) and CPA (filled circles) momen-
tum density p($) along (110) in Cuo &&Nt& &&.

FIG. 4, ATA2 and CPA momentum densities p(p) in
Cuo 2&Nio 75 (sold, ATA; filled circles, CPA} and
Guo 5¹i()~ (dashed, ATA; unfilled circles, CPA) along
the line joining the points (1,1,0) and (1,1,3) in momen-
tum space (Hef. 17).
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result, hole ellipsoids appear around the sym-
metry point X in the Brillouin zone. Figure 4
shows that even such a delicate feature of p(p)
is influenced by only a small amount in going from
ATA to CPA.

Although the spectral momentum density p(p, Z)
differs significantly between the CPA and ATA
(see Figs. 1 and 2), the momentum density p(p)
on the basis of the two approximations shows a
striking similarity (see Figs. 3 and 4). This ef-
fect can be understood qualitatively in terms of
Eq. (2.16) which defines p(p) in terms of p(p, E).
In this context, two points are noteworthy: (i) A

peak in p(p, E) which is well below EB will yield
an approximately similar contribution to p(g and,
therefore, changes in its precise location in en-
ergy and width are not important; (ii) the values
of g~ in ATA and CPA differ in general in such
a manner as to tend to compensate for any overall
movement of energy levels across E„. For these
reasons, we believe that the present insensitivity
of p(p) to the use of self-consistency in the treat-
ment of disorder can be expected to hold more
generally in, transition- and noble-metal alloys.

This work was supported in part by National
Science Foundation Grant No. DMRV9-02600 and

by Grant No. DMR77-27249.

APPENDIX

Qur purpose is to show how the real-space ma-
trix elements of various quantities occurring in
the theory can be obtained. As noted earlier,
such a transformation is particularly relevant for

yA(B)(+) «+(B)BA(B)(+) (A2a)

=j, (ttr)+ f Ar, r,*ttt(rr, )t", t t(r,„r), (Atb)

where g, ()",r') = i«j, («r-, )h, («);) is the angular
momentum decomposition of the free electron
propagator and g)"( ) is normalized (for r = y„) to

y"'B'() ) =e(B( [j,(«r) cos6"(B) -n) («) ) sin6(A(B)]. (A3)
. g(a&

To evaluate the site-diagonal matrix elements
(r+R„~Gc~( r'+R„), we employ the identity

G"=G,+G, f„"G,+G,(1+I„"G,) g r(,'(I+G, f„")G,
i&n, Wn

(A4)

On substitution from (A1), (A2), and (A3), the
first two terms on the right-hand side of (A4)
yield

a discussion of charge densities in the alloy. For
illustrative purposes, ere consider the average
CPA Green's function Q

We use the form (2.32) of the CPA equation in
the coordinate representation

f"(r,r') =(f(~,~')) [f„-(r,«) -(t(r, «))]~"
x[f,(«,r') -(f(«, r'))], (A1)

where r and r' are confined to the cell at the
zeroth site and M is defined via (2.33) with

ff 7 cp Our results are best formulated in terms
of the real solutions Ej', (A( )(r) of the radial Schrodin-
ger's equation in the A(B) muffin-tin sphere and
the associated scattering solution

& r+ R„~{G,fc'G, ) p'+R„& =g I;(~){(G,(r, r')& - [y,"(r)-(y, (~))]~,''[y,'(~') - Q, (~')&]] I;(~'),

with (G,) =-xG)" +yG(B and (g)) =x)A+y()))B. Similarly, the last term on the right side of (A4) gives

rrR„G ((+t G) Q Ttt(lr„G t )G r'+R„)„.
iW, j&n

{A5)

= p I' { ){(0 (~)) —[0"() ) —
&)I) () ))]I"(+—&7 &)]F"

I.X,'

x{(e,(r')) —( ,".7-(T,))M [cy(r') -(y,.(r'))]]-I" .(r"'), (A6)

where F was defined previously by Eq. (2.15). In deriving (A6), we have used the identity

(A7)I, («lr-R„I)I, (r -R()=P B".„~i, {«r)r, (~),
1

where B„are the KKR structure functions [cf. Eq. (2.13)]." If the A- and B-atom phase shifts for I ~ 3
are neglected, the matrix Fc is diagonal, and when (A5) and (A6) are combined, the local charge density
in the cell at site ~ takes the form

pep(r, E) = (( ' Im(r+ R„~G ] r +Rg =(( 'E Im g r (r)[xB", (r)C"B,"(r)+yB,, (r) C R, (( )] I" (~), (A8)
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where

CA&a& —T (1 +[(v.A&s&) &. (~cP)-1]T ],

& ~~&a&I L

(A9a)

(A9b)

cp+ cpg cp cp
L X I I L (A10)

It may be noted that our CPA charge density (A8) is equivalent to the corresponding expression derived
in Ref. 10. The identification of individual terms in (A8} as A- and B-component charge densities by
Faulkner and Stocks" appears reasonable. However, as emphasized in Ref. 3, differences betweenvarious
approximate methods of calculating component charge densities (and other physical properties) for muffin-
tin ahloys are likely to be smaller than the uncertainties inherent in the present ab initio framework.
Therefore, such differences are of little physical consequence.

As emphasized elsewhere, "to calculate the Bloch spectral density, we require the non-site-diagonal
matrix elements (r+R„~ Gc'~ r'+R ) (&to yn). To evaluate these quantities, we use the operator identity

C" =(1+0 )„))G +G Q T,) )G(1+ Q))
«~,& ~m

Proceeding as in the derivation of (A8), we find

(A11)

(A12)

where the indices i and j are summed over the atomic species A, B and c„—=x, cs -=y. [Thus, the term in
large parentheses in (A12) involves a sum of four terms. ] The quantities P~~~i&(n —m) are defined by

Z&",,&(n —~) =D&o T„"D&,',&, (A13)

with D+~s& given by (A9b). Equations (A8) and (A12) are sufficient to derive, for example, the CI&A Bloch
spectral density of Ref. j.o.
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Since the expression (2,11) entails the exclusions g & 0
and n' & 0, the multiple-scattering expansion of the
second term on the right side of Eq. (2.7) wi11 not in-
volve any terms in which bvo successive scatterings
take place from the game site. As a result, E ~ [cf.
Eq. (2.15)] depends only on the on-shell elements 7cp
and the dependence on p, p' in Eq. (2.14) occurs in a

relatively straightforward manner. [See also the
derivation of Eq. (A5) of the review article by
H. Ehrenreich and L. Schwartz, in Solid State Physics,
edited by H. Khrenreich, F. Seitz, and D. Turnbull
(Academic, New York, 1976), Vol. 31.]

In particular, there is no need to invoke further de-
couplings [see Kq. (2.41) of Faulkner and Stocks (Hef.
10)],
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CP scatterer may also be obtained via the condition»'
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Indeed, with the solution (2.22) it can be shown that the
above equation leads to the CPA condition [cf.. Kq.
(2.14)] derived in Sec. IIA.

&4p($, E) and p(p) curves presented in Ref. 2 are in
error by a constant factor of @/2g)~ = 1.397. Ac-
cordingly„ the present ATAl values are smaller than
the corresponding values of. Bef. 2 by a factor of
1.397.

»~More specificaQy, ATAl refers to the use of Eq.
(2.2) of Bef, 2. [This can be shown to be equivalent of
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setting t'tf= (t) and Tg'~= (7) in Eq. (2.21).] ATA2
is defined by Eq. (2.31) with t'~~ = (t). Although the
ATAl and ATA2 defined in this way for momentum
density carry the spirit of the corresponding versions
of the ATA used for densities of states in Bef. 3, they
are not strictly equivalent to those.

~6In contrast, the Bloch spectral density in ATA1 and
ATA2 shows pronounced differences associated with
the impurity states (see Fig. 2 of Bef. 3).
The present calculations on Cup 75Nip 25 employ the
same Ni potential as Ref. 2. The Ni potential for
Cup 5Nip 5 and Cup 25Nip 75, however, differs slightly
from that used in Bef. 2 in that the Ni 3d resonance is
higher in energy by 0.03 By. (This ¹ipotential was
used extensively in Befs. 3-5.) The Cu potential used
in all the computations reported in this article is

identical to that of Ref. 2. Concerning other details
of the calculations, we note that our programs require
on the order of one minute of CPU time on Cyber 72
computer to carry out one iteration of the CPA equa-
tion. (The total CPU ™e,of course, depends upon
the number of energies one considers and the ac-
curacy one wants. ) Finally, numerical interpolation
in energy was used in computing KKB structure func-
tions, as in Bef. 3 ~

In expansion (A7), f is assumed to be confined to the
Wignex'-Seitz cell at the site rn ~'fl ~ This expansion
does not hold for arbitrary crystal structures, al-
though it can be shown to be valid for close-packed
lattices.

'~See Appendix A of Ref. 1.


