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Hydrodynamics of the condensed phases of spin-polarized atomic hydrogen
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The thermodynamic, hydrodynamic, and kinetic properties of a variety of metastable states
accessible to spin-polarized hydrogen are examined. The state with Bose condensation in the
two lowest hyperfine levels will phase separate at a rate determined from superfluid hydro-
dynamics. The transverse and longitudinal magnetic relaxation times are evaluated in the classi-

cal, quantum, and superfluid regimes.

Atomic hydrogen in a large magnetic field (~100
kG), H|, is expected to behave as a weakly interact-
ing Bose gas at low temperatures and densities <10!°
cm™3.!' When the two lowest atomic hyperfine
states are involved in the Bose condensation, H| will
resemble a superfluid spin-% Bose gas.* We intend

here to clarify this analogy and explore those features
of the H| system, such as magnetic resonance, that
are not shared by an ordinary spin-zero Bose gas.
Most experimentally interesting properties of con-
densed quantum systems can be understood by
means of hydrodynamic arguments once the broken
symmetry is identified thermodynamically. Even if
the possibility of recombination to molecular hydro-
gen is put aside,> ¢ the phases of H| relevant to this
article are only metastable. Metastable equilibria are
not a problem if the various relaxation times are well
separated so that the system passes from one near-
equilibrium state to another of generally lower sym-
metry. This situation unfortunately does not prevail
in H| where a number of kinetic processes proceed at
roughly similar rates. In addition, certain lifetimes
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have proven difficult to estimate since the transfor-
mations involved resemble spinodal decomposition
and cannot be calculated perturbatively around some
uniform thermodynamic state.

These uncertainties and the desire to separate the
well understood from the conjectured, have led us to
consider the thermodynamics and hydrodynamics for
the Hamiltonian describing H| with certain small
terms either neglected or adjusted to stabilize an oth-
erwise unstable phase. We then proceed to estimate
the relaxation times between the various phases ac-
cessible to H| and conclude with a discussion of pos-
sible experiments to measure the new effects we
have proposed.

In a large magnetic field it is convenient to work
explicitly in terms of the two lowest atomic hyperfine
states, |a) and |b), whose energy difference we de-
fine as H..* Define a spin density in second quanti-
tized form, S = %‘1’*?‘1’, where 7, are the Pauli ma-
trices and ¥*=(y,, ¢+). We may write the total
Hamiltonian as the sum of Hy, H,, and H, where for
H.>0,

(x —=xVp(x') dxdx’ , (1a)
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and H, is the dipolar energy. In (1), Vy and Vi are
the triplet and exchange potentials, p=Y¥*W¥, and ¢ is
the amplitude of the small admixture of the electron
spin-up state in [a). (We have neglected a small
coupling of order €V between |a) and the other z
spin-zero state, |¢) in Ref. 4 which would be mani-
fest at low temperatures by a shift in the effective g

px)

factor for the spontaneous perpendicular magnetiza-
tion.*7)

The terms in H are grouped by symmetry. The di-
pole interaction relaxes S. (rate 77') and S, (rate
T5'); H, also contributes to 75!, while the largest
term, H,, thermalizes the kinetic energies (rate 7')
and Tlh << T2 S T].
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We begin by neglecting H, and H, and retaining
only Hy. The thermodynamic ensemble is defined by
the total energy, number density, and | S(x). The
imposed values of S;,S, are enforced by the thermo-
dynamic fields h, = u, — up and h,. Ensembles with a
nonzero value of S, could be prepared by magnetic
resonance.

The thermodynamic transitions in this model sys-
tem are best understood in the frame with the z axis
tilted to coincide with (S) [itself parallel to
(hy,h, + H.)]1. The first transition to occur as the
temperature is lowered to T,, is ordinary Bose con-
densation in the rotated spin state of higher density.
At a lower temperature, T,,, the other spin state
condenses and a component of the magnetization,
@1, perpendicular to the rotated z axis appears. Of
course, since we have fixed (S), domains will form
in o, to keep its volume average zero.

An analog to the transition at T, occurs in a
Heisenberg ferromagnet in a field with an imposed
value of (§). At sufficiently low temperatures, the
thermodynamically preferred magnetization will
exceed the imposed one in magnitude and a &, will
develop spontaneously. In H| as well as the magnet,
it then follows. that below T, the conjugate fields
satisfy h, =0 and h, =—H, and thus the free energy
per volume for H| becomes

F(N,,N,,T)=Fy(N, +N,,T)—H.(S,) . 2)

(If H, + h,= 0, for instance, then the full magnetiza-
tion would rotate into the z axis and exceed the
imposed value.)

Below T,,, since h,=0 and h, = —H,, the hydro-
dynamics are those of a condensed spin-% Bose gas
with a superimposed rotation generated by H..} In
addition to first and second sound, there are two fer-
romagnetic spin-wave modes making four propagat-
ing modes in the linearized hydrodynamics.

Next let us retain A, in addition to Hy so that S,
are no longer conserved. Strictly speaking, properties
of the phases so obtained are only relevant to H]| if
T, << T, but are of physical interest even if the
strong inequality does not hold. There are again two
thermodynamic transitions associated with Bose con-
densation in the two spin states. A magnetization
perpendicular to the stabilizing field appears below
T\, with a magnitude determined thermodynamically
by the number density, n, S,, and the temperature.

The changes in the thermodynamic functions due
to H, can be calculated perturbatively. For the free
energy per volume for T <'T,, we find

2
8F (No. Ny, T) =—=<-J (S} +nS, +20>(D)S; = 3n?]

(3)

where n>(T) is the number of uncondensed particles

per volume in an ideal Bose gas below its transition
temperature, and J is the average of ¥ over a pair-
distribution function determined from V7. For low
densities, n <10"%/cm?, J =4.2 x1072 Kcm? and is
positive.” The chemical potential difference,

po—pa=H. +J[S. +1n+n>(T)] , (4)

sets the rotation rate of &,.

Equations (2) and (3) imply immediately that the
uniform state with &, #0 (T < T,,) is thermo-
dynamically unstable when J > 0 (antiferromagne-
tism) even though the energy gain per particle is 107°
times smaller than k3 7,,. The two hyperfine states
will move to separate regions of the container, in
practice determined by inhomogeneities in H,, until
o, is reduced to zero everywhere, i.e., locally only
one spin component is superfluid. Whereupon, Fj in
(2) becomes a function of N, and N, separately, and
the usual entropy argument implies a termination of
the phase separation.!?

The remarkable ‘‘softness’’ of the o, # 0 state can
be understood following the example of a Heisenberg
ferromagnet used above if a small anisotropy, DS?, is
included. When D <0 and the thermal value of (S )
exceeds the imposed value, domains will form with
the magnetization either parallel or antiparallel to z.
Conversely, the opposite sign of D will stabilize the
phase with o, #0.

If we restrict ourselves to times less than the
phase-separation time, T, but longer than T, or as-
sume J <0, the hydrodynamics of H| for T < T, is
correctly described by the theory of Andreev and
Bashkin.!! Since H, << Hy and Fyin (2) is only a
function of the total density, the first- and second-
sound modes are identical to those of a one-
component superfluid of density n. The third pro-
pagating mode of Ref. 11 involves the concentration.
Its velocity is complex if / > 0 with a magnitude set
by €2Jn/m.

In an ordinary fluid in a regime where the relative
concentration moves with a diffusion constant D, one
would estimate T, ~ ks T/(D€*Jn) ~ 108 sec for a
1-cm? container. The simplest possible theory for
H| predicts that superfluid velocities of order
(e2Jn/m)"2 ~1 cm/sec will arise within both spin
components below T,;, thereby placing a lower limit
of 10 sec on T,,. The actual time could be far longer
if (e2Jn/m)'? exceeded the relevant critical velocity.

The linearized hydrodynamics of Refs. 8 and 11
look very different, since in the former the broken
symmetry is described by an overall phase and a
direction, while in the latter, the order parameter is a
pair of complex numbers with phases ¢,, ¢,. Actual-
ly, if we assume J <0 or T, << T, the two theories
join smoothly. For frequencies less than 75!, the
spin-wave mode in the plane of H, and (S) is damped
by T, while the remaining spin-wave mode and phase
of Ref. 8 can be rewritten in terms of ¢, and ¢,.
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The bulk relaxation times 7, and 7, have been cal-
culated at temperatures below £2/(2m o?) ~2 K
where o is the radius of a hard-core approximation to
V,. Conventional perturbation theory was done
about a state in which the populations of @ and b are
in equilibrium so there is only one transition at
T =T, where “‘a” Bose condenses.'? We assume
H,/kgT, >>1, i.e., n <10'% and define a thermal
wavelength, A =h/(2wmkg T)"%, and a magnetic mo-
ment, w;=u, +eu, where u, and p, are magnetic
moments of the proton and electron.

At high temperatures,'3

TTH(BH, << 1) =27 2u203mn /(H8?) ,  (5a)

while for all temperatures BH, >> 1, including -
T<T,,

TTU(BH, >> 1) = %‘n-,ug,u}mmnHzl/z/ﬁ“ . (5b)

The dipolar contribution to 75! equals 77" both
above and below T, to within numerical factors of
order unity. In high fields, the exchange contribution
to T, from (1b) was no larger than the dipolar term.
High momentum, nonhydrodynamic degrees of free-
dom were found to dominate the relaxation at all
temperatures, except to a limited extent in 7, for

T << T,.

One may also ask about possible collective contri-
butions to the spin relaxation at low temperatures.
The only such process we have found is speculative
and would shorten only T, when a sample of H| was
quenched to below T,,. Imagine the system to con-
sist of clusters of uniform (S) that move diffusively.
A classical calculation then demonstrates that 7 is
set by the smallest clusters and T, by the largest.

The possibility of phase separation was overlooked
in Ref. 4 so that even if 7| were infinite and domains
were ignored, states with o, & 0 only exist for a finite
time. For similar reasons, the absence of inhomo-
geneous broadening would only be readily visible in a
system with J < 0 since nonuniformities in the exter-
nal field will pull the two hyperfine states apart below
T,, if J =0. Thus even the model problem defined
by setting H, and H, to zero will phase separate in an
inhomogeneous field below T,, until the lower densi-
ty spin component is no longer superfluid.

There are at least two classes of experiments that
are potentially sensitive to Bose condensation in both
hyperfine states or a local o, #0. The first requires
T, significantly less than both Ty and T, Then, the
relaxation of o, following a perpendicular pulse

would be different above and below T,, since below
it would relax to zero on the scale of Tz or 7). Al-
ternatively, one could imagine compressing a hydro-
gen sample until T, was raised above the ambient
temperature. If a small rotating field were then ap-
plied the individual domains would be pulled into
alignment on a time of order 7.

A second class of experiments would actually look
for supercurrent assisted phase separation with spin
echos. Assume the Zeeman energy in (1a) has the
form )

H.(r)=H2+8H,z2/\}

and that the sample occupies a region [z| < A\, << Ay.
In the normal phase, a spin echo will decay at a rate
of order [DN38H2/(A}h?)]'3, where D ~1072
cm?/sec is a diffusion constant and # is Plancks con-
stant.'"* Below T,,, there will be an additional contri-
bution to the rate of order (8H,/m A })"2 which
under favorable circumstances could exceed the dif-
fusional term.

We wish to emphasize that the theoretical uncer-
tainties in our estimates of the relative relaxation
rates pertinent to either of the above experiments is
sufficiently large as to be consistent with no effect at
all below T,,. Perhaps in an appropriately designed
cell the phase separation below T, could be followed
on a macroscopic scale and its kinetics determined.

We have limited ourselves to a synopsis of what
are perhaps the most unusual yet least accessible prop-
erties of the H| system; those associated with Bose
condensation in both hyperfine states. Recombina-
tion has been totally ignored®'® as well as properties
that are sensitive to only a single condensate such as
changes in the first-sound velocity or in the local den-
sity.'® Finally, much of our discussion could be re-
peated for adsorbed atomic hydrogen films if the con-
ditions for Bose condensation prove easier to attain
in two dimensions rather than three.!” In addition, a
magnetic Bose fluid analogous to H| may yet be pro-
duced in an excitonic system.'®

ACKNOWLEDGMENTS

The authors benefited from a number of conversa-
tions with A. J. Berlinsky, B. I. Halperin, and A. J.
Leggett. Our research was funded in part by the NSF
under Grant No. DMR-77-18329. In addition,
E.D.S. was supported by an Alfred P. Sloan Founda-
tion grant, and A.E.R. acknowledges the Hertz Foun-
dation for fellowship support.

IL. H. Nosanow, J. Phys. (Paris) 41, C7-1 (1980).
2A. J. Berlinsky, in Proceedings of the 26th Conference on

Magnetism and Magnetic Materials, October 1980 [J. Appl.

Phys. (in press)].

31. F. Silvera and J. T. M. Walraven, in Proceedings of the
26th Conference on Magnetism and Magnetic Materials,
October 1980 [J. Appl. Phys. (in press)]; and Phys. Rev.
Lett. 44, 164 (1980); R. W. Cline, J. J. Greytak, D.



23 RAPID COMMUNICATIONS 3583

Kleppner, and D. A. Smith, J. Phys. (Paris) 40, C7-15
(1980).

4E. D. Siggia and A. E. Ruckenstein, Phys. Rev. Lett. 44,
1423 (1980); J. Phys. (Paris) 40, C7-15 (1980).

SW. N. Hardy et al., Phys. Rev. Lett. 45, 453 (1980).

6B. W. Statt and A. J. Berlinsky, Phys. Rev. Lett. 45, 2105
(1980).

TA. J. Berlinsky, Phys. Rev. Lett. 39, 359 (1977).

8B. 1. Halperin, Phys. Rev. B 11, 178 (1975).

9L. J. Lantto and R. M. Nieminen, J. Low Temp. Phys. 37,
1 (1979).

10M. D. Miller, Phys. Rev. B 18, 4730 (1978). Miller finds
phase separation only for bosons of unequal mass at zero
temperature.

A, F. Andreev and F. P. Bashkin, Zh. Eksp. Teor. Fiz. 69,
319 (1975) [Sov. Phys. JETP 42, 164 (1976)].

12W_ J. Mullin, Phys. Rev. Lett. 44, 1420 (1980).

13The relaxation time, Ty, in (5a) is one-half the value
given in Ref. 6.

18A Abragam, Principles of Nuclear Magnetism (Oxford
University Press, London, 1961).

I5M. Morrow, R. Jochemsen, A. J. Berlinsky, and W. N.
Hardy, Phys. Rev. Lett. 46, 195 (1981); A. P. M.
Matthey, J. T. M. Walraven, and 1. F. Silvera
(unpublished).

16J. T. M. Walraven and I. F. Silvera, Phys. Rev. Lett. 44,
168 (1980).

171, F. Silvera and V. V. Goldman, Phys. Rev. Lett. 45, 915
(1980); D. O. Edwards and 1. B. Mantz, J. Phys. (Paris)
40, C7-257 (1980).

18D, Hulin, A. Mysyrowicz, and C. Guillaume, Phys. Rev.
Lett. 45, 1970 (1980).



