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The cluster effect of spin-glasses is studied on the basis of the two- and three-spin cluster

theory. In contrast to ordinary ferromagnets, the effective field containing the cluster effect is

shown to be different from that containing no cluster effect, even at absolute zero. Numerical

calculations are performed for the infinite-range model with 50 and 16 spins. It is shown that

the solutions of the two-spin cluster equations at zero temperature are located at the bottom of
deep valleys in the energy space. At finite temperatures the relationship between the local ener-

gy structure around the ground state and the existence of well behaved solutions is investigated.

The Hessian matrix is examined also. The character of the lowest eigenvector of the Hessian

matrix is found to be "localized" at low temperatures, while it is "extended" near the transi-

tion temperature. The effect of three-spin clusters is shown to play an important role in the

temperature region where the three-spin cluster begins to be excited.

I. INTRODUCTION

Spin-glasses have recently attracted a great deal of
interest, "because of the possibility of a new type of
magnetic order which has not been found in pure
systems. Typical systems of spin-glasses are dilute
substitutional magnetic alloys, such as CuMn or
AuFe, where the positive and negative values for the
exchange interactions are produced by the oscillation
of the so-called Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction. ' Due to the competition
between positive and negative exchange interactions,
spins at low temperatures are considered to be frozen
in the sense that the thermal average of a spin takes
a nonzero value, while its direction is random. Usu-
ally these states are highly degenerate and this kind
of degeneracy causes anomalously long relaxation
time phenomena.

Following Edwards and Anderson's pioneering
work, 4 Sherrington and Kirkpatrick' (SK) proposed
an infinite-range model of spin-glasses in which every
spin is coupled with all others pairwise and the distri-
butions of the exchange interaction is assumed to be
Gaussian. This is an extension of the infinite-range
model of ordinary ferromagnets, which we can treat
exactly by the mean-field theory. SK studied this
model using the replica method. Due to the patholo-

gy of the replica method, however, they obtained un-

physical results, e.g. , a negative entropy at sufficient-
ly low temperatures. In order to remedy this difficul-

ty, Thouless, Anderson, and Palmer (TAP) devel-
oped a mean-field theory for this model, Making use
of the Bethe approximation, they obtained a self-
consistent equation and solved it in two limiting tem-
perature regimes, i.e., in the vicinity of the critical

temperature T,. and at very low temperatures. Their
results near T,. agreed with those of SK, while at low

temperatures they obtained a physically acceptable
non-negative entropy. In addition, they suggested
that the nontrivial solution of the self-consistent
equation is located at the saddle point of the free en-
ergy as a function of the Edwards-Anderson order
parameter. They showed the above fact explicitly im-
mediately below T,. and speculated that it is true for
the whole temperature region below T, This implies
the existence of a critical line below T, As for the
replica method, a recent idea' of the replica sym-
metry breaking has been successful.

The purpose of the present paper is to propose an
effective mean-field theory and to study the cluster
effect in spin-glasses, TAP found that in the
infinite-range model there exists an extra field be-
sides the conventional mean field. This extra field is

due to the two-spin cluster effect, indicating the im-

portance of the cluster effect in spin-glasses. In or-
der to make a further investigation, we formulate a
theory in which the effect of the two- and three-spin
cluster is taken into account exactly. We apply it

mainly to the infinite-range model.
The outline of this paper is as follows. In Sec. II

the two-spin cluster theory is developed. In Sec. III,
we apply the theory at zero temperature, It is shown
that the two-spin cluster effect reduces the magnitude
of the effective field calculated without considering
the cluster effect. This should be compared with or-
dinary ferromagnets, in which the two-spin cluster ef-
fect disappears at zero temperature. Section IV is de-
voted to numerical treatments for the infinite-range
model. It is demonstrated how the cluster theory
works in spin-glasses. The low-lying modes of the
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Hessian matrix are also examined numerically. The
character of these modes is discussed in detail. In
Sec. V we further examine the cluster effect by using
the three-spin cluster theory. A brief summary is

made in Sec. VI.

II. TWO-SPIN CLUSTER THEORY

Let us consider

Z;; =Tr exp(-PX;;)
and then we have

TlnZ f(1) + f(1) + f(2)

where

f("= H, m; —7' In(2 coshPH;)

(2.10)

(2.11)

e consider a system of interacting Ising spins
which is describec hy the Hamiltonian

X=—X J„SS;; S, =+1
(I,.i)

(2.1)

3C;, = —J;,S;S;—h "S;—h 'S, +C (2.2)

where C is a constant, which we will determine later.
From (2.2) we calculate the mean value for S, at
temperature T as

(S, ) —= m, =tanh[p(h;' +k;' )], (2.3)

where we take the summation to be pairwise and we

do not specify the interaction J„at this point. In or-
der to study (2.1) we take out a two-spin cluster of
sites i and I„we treat the term J,;S;S; exactly and
make the mean-field approximation for other terms,
i.e., we assume the effective fields h(" and h; '
which act on sites i and j, respectively. ' Then this lo-

cal system can be expressed by the effective Hamil-
tonian 3C„,

and

'1

1+m, 1+m; 1-m; 1-m;= T ln
' + ln

2
(2.12a)

f„' = —k;'m; —k 'm
1

coshPh, "'coshPh '
—Tin(coshP J;, )

cosh H; coshPH;

F X/(1) + g /(2) (2.13)

It is instructive to apply the above method to the
infinite-range model, in which every spin couples
with each other and the distribution of J;; is given by

—Tin(1+tanhph (" tanhph, ' tanhpJ„)

(2.12b)

In the above we have separated —T lnZ, ; into the
one-body parts f;"), f,"' and the two-body part l;, ~'.

Finally we get the free energy in the form

where (A ) =TrA exp( —PX,, )/Tr exp( —PX;,), P =1/T
(we have set ks =1), and

' 1/2

P(J(;) =
2mJ

—J,;N
exp

2J
(2.14)

k, "=T tanh '(tanhPJ;, tanhPh ") (2.4)

Equation (2.3) implies that k, (') is the effective field

coming from site j to site i. This naturally requires
the relation

where N is the number of lattice sites. Equation
(2.14) shows that J(, is of the order of N ' '. Using
this fact, we expand (2.4) with respect to J;,. Then
we have from (2.6) and (2.7)

h(i) X k(() (2.5) k; "=J;,m, —PJP(1 —m, )m, (2.15)

Then from (2.4) and (2.5) we can determine [k("]
self-consistently. With the solution one may calcu-
late the effective field H; at site i by the formula

This reproduces TAP's self-consistent equation

T tanh '
m; = XJ„m; —P XJ„'(1—m,') m; (2.16)

and

H, = Xk,")
I

m; =tanh(pH, )

(2.6)

(2.7)

(—J„S,S, ) = (X;;)

This yields

(2.8)

The next task is to calculate the free energy. First
we determine the constant C in (2.2). Since (X;,)
should give the same result'as that obtained by the
original Hamiltonian, we have the condition

In this case unknown parameters are m;. Incidentally
it is not hard to show that the approximation made in
the two-spin cluster theory is generally equivalent to
the Bethe approximation, which TAP used; therefore
it is quite natural that our method reproduces TAP's
result. (See the Appendix for the equivalence
between these approximations. ) The same expansion
yields the free energy in the form

F = —X J;,m;m, ——P X J (1 —m ) (1 —m, )
(r,.i) (i,j. )

+7 X[ —,'(1+m) in-,'(1+m)

C =h, ()m, +h()m, . (2.9) + —(1 —m;) ln —(1 —m;) ] . (2.17)
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This is again identical to that considered by TAP. In
TAP's work they obtained the free energy (2.17) by

the diagrammatical method. Our method gives
another way to get (2.17).

It is also interesting to investigate the infinite-range
model by using a statistical approximation. That is,
we ignore the correlations between k, '"'s in (2.5) and

have S, =sgn(8, ) (3.3)

where O(x) is the theta function: O(x) = 1 for x & 0
and O(x) =0 for x & 0.

A usual way to study the ground state at T =0 is

as follows. First we calculate the energy as a function
of state (S, ). Then we have many local minima
where the following condition is satisfied:

((h,"')'),„=(N —1) ((k, '")')„
where

(2.1S)

(2.19)

with

B, =QJ„S, (3.4)

Since J„ is small we have

((k,'")'),„=((J( tanh(8h(")')

Using the above and (J(z),„=J /N, one gets

((h, '")') =J ((tanhPh, ")')
This leads to the self-consistent equation for A.

(2.20)

(2.21)

III. DISTRIBUTION OF EFFECTIVE
FIELD AT T 0

Here we study the system at T =0. In this case
(2.4) and (2.12) are rewritten in the form

and

k, '" =min(l J(l Ih "I)sgn(J„h,") (3.1)

f (1) =0

f("= —IJ;, I

—2lh, ",lo( —H, h, '")—2lh, "Ie(—H, h,")
+ 2min( li(I. Ih,

'"I. I h,"I ) O( —J„h("h& &)

(3.2)

J
J~~ dh exp( —hz/2)tz) tanhzPh, (2.22)

(2n)t')' '

provided that h " obeys a Gaussian distribution.
Equation (2.22) is essentially the same as that ob-
tained by SK and by Klein et aI. It is known, how-

ever, that (2.22) yields unphysical results, e.g. , a.
negative entropy at low temperatures. This suggests
that the correlations between k, ' "'s are important.

k "=J;, sgn(h, ") (3.5)

Equation (3.5) agrees with (3.4) so that we see
B; = H; . For the case of spin-glasses, on the other
hand, the situation is different: since h," is given as
the summation of random fields, Ih,"I can be less
than Ii„l. Therefore the effective field due to (3.1)
should be different from (3.4).

The difference between those fields is large in the
following example. Suppose a one-dimensional sys-
tem in which J„ is nonzero only for the nearest-
neighbor pair and obeys a Gaussian distribution with

the width 5J. Since every bond is satisfied in the
ground state of this particular model, we have

IB I

= Ii —(. I
+ li. +(I (3.6)

From this one can calculate the distribution function
P((B, ) as follows:

The ground state is given by the state with the lowest
energy. The parameter B, can be regarded as the ef-
fective field acting on site i, since the excitation ener-
gy associated with flipping of S, is given by 2IB;I.
The distributions of B; for various models have been
investigated both analytically' " and numerical-

6. 12-16

Since we have two effective fields B, and H„ it is

interesting to compare these fields. First let us con-
sider an ordinary ferromagnetic case, i.e., J„=J. For
this case we have h, "' = (z —1)J in the ground state
(z is the number of nearest-neighbor sites). This
brings

2 8,
exp[ —8 /4(EJ)'] J dx exp[ —(x —8,/2)'/(AJ)']

rr(a J)' (3.7)

where P'(J„) is the distribution function of J„. Next we examine the distribution of H, . Here we note that
the relation k; ' —"= h, ~ +" holds in this one-dimensional system. In order to solve the two-spin cluster equations
self-consistently, we start from the site /where IJ((+(I is the smallest (IJ«+(I —= e, for simplicity). Then one finds
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that }k,' "
{
= a for all i because a propagates the

system in such a way that

Ik/'+'( I
=

I j/. /+ t I
= ~,

}«'+~" I
= min(l j/+), /+21, 1«'+'( I) = a,

and so on. (We have taken the periodic boundary
condition. ) Similarly, for the opposite direction, we

get {k,('+"
{
= a for all i. If we take account of the

sign in (3.1) explicitly, we see that there exists a
self-consistent solution for the case ffJ;, +( ) 0,
which gives }H; { =2a, while there is no solution for
gJ;;+( & 0. We consider only the relevant case

gj, ;+) )0. Since the Gaussian distribution is as-

sumed for J;;, e can take an arbitrarily small value.
Consequently the distribution of H; is to be

In this connection it is worthwhile to examine the
relation between 8; and H, . Let us consider a self-
consistent solution {k,"'}and a spin configuration
{S;}= {sgn(H, ) }. Using {S;}thus obtained, we calcu-
late B;. Then it turns out that sgn(H, ) =sgn(B, ) and
{B;{ ~ {H,}. This can be seen if one notices the fol-
lowing:

J S~j~e~~ &0

, I j/I & }&,'"{,{& ',
(ii) sgn(H;) =sgn(J;, S;) = —sgn(k; ' )

J;;h;~'~h, ~'~ (0
for, '

(3.1 I)

(iii) sgn(H, ) =sgn(J;, S,)

P, (H, ) = g(H, ), (3.8) = sgn(k, "') otherwise

= —
{J;, { otherwise

I
(3.9)

Equation (3.9) is equivalent to expressing

fP = —J;, sgn(H, ) sgn(H, ), (3.10)

This gives the identical energy to that of the spin
configuration {S;}={sgn(H, )}.

which is apparently different from (3.7).
In contrast to this, the difference between 8; and

H; is small for the infinite-range model. The numeri-
cal results "' show that the distribution function of
8, is proportional to 8; for small 8;. Therefore the
number of sites where we have {B,{ & }J/[—O(1/JN ) is given by N(1/JN )~ —O(1). This
leads to B; —H, —O(1/JN ).

The origin of the difference between 8; and H; is
as follows. Recalling that 2{B,{ is the excitation ener-

gy due to a single-spin flipping, we see that 8; is re-
lated with the single-spin problem. On the other
hand, since H; is the result of the two-spin cluster
theory, the correlation effect between two spins is in-

cluded in the calculation of H;. This explains the
difference between 8; and H;. Using the term
Onsager's cavity and reaction fields, Kirkpatrick and
Sherrington" and independently Cyrot" pointed out
that the reaction field plays an important role in
spin-glasses. Their arguments are essentially the
same as ours. The difference between 8; and H; was
noticed also by Klein et al. 9

At first sight one might feel curious about the ex-
pression (3.2) because (3.2) looks different from

J'jS'Sj If we have a self-consistent solution of
(2.5) and (3.1), however, we can show that (3.2) is

consistent with J'jS'Sj' with a self-consistent solu-
tion {k,'"}we can rewrite fl~) in (3.2) in the form

/(2)
I
j { r I;//t; /)/' &0

IV. NUMERICAL RESULTS

In this section we make numerical calculations.
Here we consider exclusively the infinite-range model
with N =50. Since N =50 is not sufficiently large,
we use the two-spin cluster equations (2.4) and (2.5)
without making any expansion.

A. Metastable solutions

In order to solve the two-spin cluster equations we
practically employ the following procedures: first we
look for the states {S;}which satisfy the conditions
(3.3) and (3.4) at T =0; then taking k "=J;,S, as
the initial state, we do an iterative calculation until all
k " are consistent with each other. (Actually the in-
teractions were terminated if five H s change their
signs. ) With the knowledge of the solution at T =0,
the calculation is extended to the case T A 0.

We have examined 25 systems and obtained the
following results: (1) There are at least 300 —500
solutions of (3.3) and (3.4) for one system. These
solutions have been found by the iteration of flipping
the spin which unsatisfies (3.3). We have examined
1000 different initial states; about 20 new solutions
have been found in the last 100 tries. The lowest-
energy state, which we call the ground state, has been
found within the first 30 tries. The ground-state en-
ergy is (—0.7077 + 0.0244) NJ, which agrees with the
previous works. "' (2) For the two-spin cluster
equations, on the other hand, 8 +4 solutions have
been obtained at T =0. Most of them come from
the solutions of (3.3) and (3.4) which are found by
early tries in the procedure mentioned above; at most
two solutions come from the states found in the last
500 tries. (3) There are 9 systems in which the
lowest-energy state at T =0 is not a solution of the



3518 KAZUO NAKANISHI 23

two-spin cluster equations. (4) Most of the solutions
do not continue to higher temperatures. In 11 sys-
tems we have obtained one solution for T «0.3J; all

of these start from the lowest-energy state at T =0.
(5) Every solution disappears discontinuously at
some temperature.

In Fig. 1 we present the numerical results obtained
with three systems. The letters A, B, and C in the
figure specify the system. For system 3 we have
smooth temperature dependence of q (= N ' X m, '),
while systems B and C have a discontinuity in q as a

function of T; no solution has been obtained in the
temperature region between dotted lines. In order to
clarify the origin of the discontinuity, we have exam-
ined the local minima around the ground state in the
energy space. For convenience we introduce symbols
Et and E& to represent the closest and second-closest
local minima to the ground state, respectively. After
some careful calculations we have found that the
number of the different spins between EI and the
ground state is 2 in A and B, and is 3 in C; as for E~
the difference from the ground state is four-, three-,
four-spin cluster in A, 8, C, respectively. The barrier
height separating the state Et (or Eq) and the ground
state has been found to be less than J. Since we take

0.5—

)O.i

50—

40—
C''j ~0-
O

20—

lo—

o, ,

0 5 IO l5 20 25

FIG. 2. Distribution D(Ar~) of the number of'dif'ferent
spins b, i~ between two solutions ot the two-spin cluster equa-
tions at T =0. Data are obtained from 25 systems of the
infinite-range model with N =50. The largest hi~ is

N/2 =25 because of the trivial degeneracy with respect to
S —SI I'

into account the two-spin cluster effect exactly in

(2.4) and (2.5), we expect that the irregular tempera-
ture dependence of q originates from cluster excita-
tions which consist of more than three spins. In fact
taking account of the three-spin cluster effect, we
have examined system B and found that the discon-
tinuity in q disappears (see the dashed line in Fig. I;
see also Sec. V for detail). In this connection we have
investigated the systems where the solution starting
from the lowest-energy state at T =0 does not con-
tinue over T =0.3J. %e have confined ourselves to
excitations whose energy is less than J and found that
Et and Eq are different from the ground state by

0.9
0 0.3 T/ J

MC STEP/SPIN
IOO
T

200

T= 0.3J

0,5—
I I I l I I I I I I

0.5

FIG. 1. Temperature dependence of the Edwards-
Anderson order parameter q(= IV ' g nt, ) calculated from

the two-spin cluster equations. Data are calculated f'or three
systems of the infinite-range model with N =50. Letters 3,
8, and C, specify the system. In the temperature region
between dotted lines in 8 and C, the two-spin cluster equa-
tions have no solution. A dashed line in 8 is the result
from the mixture of the two- and three-spin cluster equa-
tions (see Sec. V for detail). In the inset the other solutions
« the two-spin cluster equations in C are drawn.

—07—

FIG. 3. Energy as a function of time obtained by the
Monte Carlo calculation f'or system C. The states indicated

by arrows correspond to the solutions of the two-spin cluster
equations.
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A t/

'( Jk) [I —t'(hk") ) [1 —t'(h, 'k&) ]"X — (. ))[I- (h, ) (h, ) (;„))I —m2
k I —t Jk

t(J)[1+t(/1"')t(h")f(Jjt)]
[I —t J;,—'(J ) ] [I —t (h, "') r (h,")t ( J,, ) ]

fori = j

(4.1)
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for y &yo, (4.4)

where p(H„T) is the temperature-dependent distri-
bution function of the effective field H; and

yo=PJ (I —q) + T Followi. ng TAP's speculation, on
the other hand, we consider that the lowest eigen-
value of A,; is zero. This requires that the mixing ef-
fect due to the off-diagonal element broadens the
sharp peak in W(y) around yo so that the levels ex-
isting in the region yo & y & cyo [c is a constant of
O(1)] contribute to the lowest mode. Therefore,
roughly speaking, the number of nonvanishing com-
ponents of u is given by

8'y dy—
J

(4.5)

in which we have used yo ~ T (see Ref. 6) and as-
sumed p(O, T) cx T/i . Equation (4.5) shows that the
lowest mode is extended as far as we consider
T & J/JN.

In this way we have seen that u of the infinite-
range model is extended for T ~ T,. except at unusu-

ally low temperature. This means that the localized
eigenvector u in the system N = 50 comes from the
size effect. However, the picture obtained by the nu-

merical result is still applicable to a model with

finite-range interaction: using a two-dimensional Ising
model with the Gaussian random nearest-neighbor
interaction, Dasgupta et al. ' calculated the distribu-
tion of barrier height between the ground state and

eigenvector belonging to the largest eigenvalue of the
matrix J„. Since M; is a Gaussian variable, u is ex-
tended. This indicates that the numerical results near
T,. are reliable. To examine the low-temperature re-

gion, we calculate the distribution function of' the di-

agonal elements of A;; as follows:

W(y) = JI dH, p(H„T)

x 8(y —T cosh'PH, —Pl (I —q))

=——,
' p(o, T)[T/(y —yo)]'"

V. THREE-SPIN CLUSTER THEORY

The three-spin cluster theory is just the extension
of the two-spin cluster theory. In the same way as
we formulate the two-spin cluster theory, we take out
a three-spin cluster of sites i,j,k and have the local
Hamiltonian'

/;, —/h; h
—Jh, ShS,

h(lh)S -h(h')S -h('l)S (5.1)

where h, ""' is the effective field acting on site i.
With this Hamiltonian we calculate the mean value
for S; and obtain

m, = tanh[P(h, ""+ r,""')] (5.2)

where

the local minima. Their result shows that the distri-
bution of barrier height has a maximum around n hJ,
where n is the number of different spins between the
local minimum and the ground state, and AJ is the
width of the distribution of J„. Although their calcu-
lation was made only for n =2, 3 in the two-
dimensional case, this suggests that the characteristic
magnitude for the barrier height concerned with n-

spin cluster is given by nhJ in general, i.e., for gen-
eral dimensions as well as general n. On the other
hand the Monte Carlo data" indicate that the critical
temperature is given by T, —Ei (.for two —six di-
mensions). Therefore if we consider a temperature
which is low compared with T, , we have cluster exci-
tations consisting of a small number of spins besides
single-spin excitations; this implies that the lowest
mode of A„ is localized at low temperatures. As for
the region T & T,. we refer to Anderson's argu-
ment'; that is, the necessary condition for a sharp
transition is that the eigenvector belonging to zero
eigenvalue of A;, is extended at T= T, The above
results are what we have obtained by our numerical
calculation.

I + t (J„+hj ")t ( Jt, + ht,"")t ( Jit, )
pr, ""'=tanh '[t(J„)t(h ")]+tanh '[t(i„)t(h,"")]+—, ln (5.3)

wtth t (x) = tanh(px). Since r "' includes the effect
of two-spin cluster, we extract the field k; '") due to
the three-spin cluster by the formula

we obtain

h() =H, -k,(),
k(h) „(ih) k() I (k) (5.4)

h, «h) =e, -r(")
(5.6)

H; = Xkt" + $ k tkt

I (/ I&)

(5.5)

where kk ' is given by (2.4). Introducing the effec-
tive field on site i

Equations (5.4) —(5.6) together with (2.4) are the
self-consistent equations which determine (k,"'}and
(k,""'}.We call them the three-spin cluster equations
in the following.
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Now let us solve the three-spin cluster equations
numerically, Again we consider the infinite-range
model; here we take N =16. In order to demonstrate
how the three-spin cluster theory works, we choose
the system in which the difference between the state
Et (see Sec. IV A) and the ground state is a three-
spin cluster. Using the same procedure as mentioned
in Sec. IV A, we solve the three-spin cluster equa-
tions numerically. ' The result is shown in Fig. 5, in

which the solution of the three-spin cluster equations
is drawn by a solid line. For comparison we have
plotted the solution of the two-spin cluster equations
(dashed line) and the solution of the ordinary mean-
field equation m; =tanh(P XJ,, m, ) (dotted line).
The solid line in Fig. 5 shows a sharp drop in q
around T -0.15Jand takes a nearly constant value

q —0.8 for 0.3J & T &0.6J. This means that the
state E~ begins to be thermally excited around
T -0.15J and is almost completely excited for
T & 0.3J; notice (16 —3)/16 —0.8, which agrees with

the value for q for 0.3J & T &0.6J. The difference
between the solid and dashed lines is large around
T —0.15J. This implies that the three-spin cluster
theory is vital for the temperature region where the
state E~ begins to be excited. Open circles show the
solution of the mixture of the two- and three-spin
cluster equations in which we take account of the
three-spin cluster effect only for the relevant three-
spin cluster and apply the two-spin cluster theory to
the other spins. From the figure one realizes that
this treatment is practically sufficient to consider the
three-spin cluster excitation. The dashed line for sys-
tem B in Fig. 1 has been calculated by this method.

0.5

0
0

I

0.5
I

I.Q l.5

FIG. 5. Temperature dependence of the Edwards-
Anderson order parameter qi= N ' Xm2) calculated by

the following equations: the three-spin cluster equations
(solid line), the two-spin cluster equations (dashed line), the
ordinary mean-field equation (dotted line), and the mixture
of the two- and three-spin cluster equations (open circles).
Calculation is made for a system of the infinite-range model
with N =16.

As for the dashed line in Fig. 5, it vanishes around
T —1.55J. This high critical temperature is due to
the large fluctuation of J,;. This kind of fluctuation is

small for large N; we have not obtained such a result
for N =50.

In the large-N limit, the three-spin cluster equa-
tions are written in the form

T tanh 'm; = XJ„m, —X J;, Xm; —X JJJt Jt XXtm;

(5.7)

where X, = p(I —m;2). One sees that the last term in

(5.7) comes from the three-spin cluster effect and it

is order of N ' . This indicates that the effect of the
three-spin cluster gives no contribution in the N

limit. This may be understood by the following argu-
ments. We first consider an energy barrier separating
the ground state and the local minimum which differs
from the ground state by an n-spin cluster, and then
we introduce a parameter R„ to represent the barrier
height measured from the ground state. Next we re-
call that the three-spin cluster theory plays an impor-
tant role for the temperature region T —O(R„3);
e.g. , R3-0.6J for the case of Fig. 5. This explains
the unimportance of the three-spin cluster effect in

the large-N limit because we see R3 —0(J/JN ) and
we have used J/JN (( T to obtain (5.7).

VI. SUMMARY

In this paper we have formulated the two- and
three-spin cluster theory and applied it to the spin-
glass problem.

(I) At T =0 we have shown that the effective field
calculated by the two-spin cluster theory is different
from the result obtained by the formula B; = X J;,S, ,

in which no cluster effect is considered. This
presents a striking contrast to ordinary ferromagnets,
where these results are the same at T =0.

(2) The numerical calculation has been made for
the infinite-range model with N =16 and 50. At
T =0 we have obtained several solutions of the two-

spin cluster equations. These solutions are located at
the bottom of deep valleys in the energy space, im-

plying that the solutions are stable. This result is re-
markably different from that of the ordinary mean-
field equation, where we have a large number of
solutions, but most of them are not so stable. For
finite temperatures we have examined the relation-
ship between the local energy structure around the
ground state and the existence of well behaved solu-
tions. It has been shown that the irregular tempera-
ture dependence of the solution originates from the
presence of the-local minima which differ from the
ground state by more than three spins. We have di-
agonalized the matrix O' F/Bm, Bm, and found that the
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lowest mode is localized at low temperatures, while it

is extended near T, Although this is the conse-
quence of the finite size in the case of the infinite-

range model, this picture is applicable to a model
with finite-range interaction. We have also sho~n
that the three-spin cluster theory is vital for the tem-

perature region where the thermal agitation begins to
excite local minima which are different from the
ground state by a three-spin cluster.
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APPENDIX

Here we show that the approximation made in the
two-spin cluster theory is equivalent to the Bethe ap-

proximation. In the Bethe approximation we consid-
er a cluster in which we have a central site 0 and all

its neighbors i; we assume mean fields h, on sites i.
Then we start from

3C = —$ Ja, SaS, —$S;h, (A&)

To obtain m~ (i.e., the mean value for S; ~), we cal-
culate

r

Z+ exp(pJO~ +2 Y) +exp( —pJO~)=exp 2ph~
Z exp( —PJp) + 2 Y) +exp(P Jo~ )

(A3)

where Z+ is the partition function for S~ = +I, and
Y = X, ~, tanh '(tanhPJO; tanhPh, ). Then it is easy

to arrive at

m~ =tanh[ph~ +tanh '(tanhpJO~ tanh Y) j . (A4)

Equations (A2) and (A4) agree with (2.4) and (2.5)
in the text,

The mean value for So is given by
1 't

ma=tanh gtanh '(tanhpJo, tanhph, ) . (A2)
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