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We consider a pair of single-orbit;il Anderson impurities inter'icting with e'ich other vi;i;i gen-

eral two-body Hamiltonian. Using the W;ird identities corresponding to the conserv;ition of the

total charge and the total spin, we derive the Korring;i rel;itions f'or the spin-;ind ch;irge-l;ittice

relaxation. The results are complementary to the I ermi-liquid rel itions for th specific he it, the

charge, and spin susceptibilities derived previously. The results simplify in some speci il c;ise»,

i.e., two Kondo impurities, two nonmagnetic ions, i piir of mixed vilence ions, the cise of'

spinless impurities, and if the me'in free pith is much sm. ilier th'in the distance between the im-

purities.

I. INTRODUCTION

The electronic structure of magnetic impurities em-

bedded in a metallic host is usual'ly appropriately
described by the Anderson model. ' At low temper i-

tures isolated magnetic impurities are strongly cou-

pled to the conduction band of the metal. ' The sys-

tem exhibits a universal behavior which is adequately
described by a Fermi-liquid theory. ' The specific
heat is proportional to the temperature„and the mag-

netic spin and orbital susceptibilities, «s well as the
charge susceptibility, are finite at zero temperature.
Fermi-liquid theories have been successfully applied
to obtain relations among these quantities to the
single-orbital' and the degenerate" Anderson model

and to the Kondo problem. '
The Fermi-liquid theory also provides & relation

between the static susceptibilities and the dynamical

response functions at low energies and zero tempera-
ture. These relations ire known as the Korringa rela-

tions «nd have been derived by Yosida and Yam ada

for the nondegenerate Anderson impurity and ex-
tended by Shiba" to the multiple-orbital impurity. If
we assume that the dynamical susceptibilities h we
;ipproximately a Lorentzian energy dependence, then
the Korringa relations provide the corresponding re-

laxation times of the impurity, i.e. , the time scale for
the charge, spin, &nd orbital excitations.

The Fermi-liquid theory makes use of the conser-
vation laws of the system. In the case of the degen-
erate Anderson impurity the total charge, spin, and
orbital ingular momentum are conserved. The con-
servation laws le id to Ward identities that rel ite the
susceptibilities, the specific he it„and the zero-
energy-invari tnt vertex parts. There ire three such
rel itions hand 2/+1 invariant vertex couplings for the
most gener &1 itomic interaction Hamiltonian, ' where

I is the individu il orbit il momentum of the loc;ilized
electrons. If we restrict the inter;iction such th;it the
individu &1 qu intum numbers I» ind o- ire conserved
in the scattering process of two electrons then the
number of inv;iriant vertex couplings can be reduced
to 2.'

In;& recent paper we considered the c'ise of;i p iir

of interacting Anderson impurities. The low-

temperature and low-energy beh ivior of this system
is ilso described by a Fermi-liquid theory. If we re-
strict ourselves to single-orbital impurities, the tot;il
ch irge ind spin ire conserved qu intities of the sys-
tem. They give rise to Ward identities that le;id to
relations of the specific he it and charge hand spin sus-
ceptibilities. There are five inv variant vertex cou-
plings„but the problem simplifies in i number of
speci il cases: ( i) & system of spinless fermions, (b)
the case of i short mean free p ith, (c) two inter ict-

ing Kondo impurities, (d) two inter;icting nonm;ig-
netic ions, and (e) the c &se of two mixed-v &lence

ions.
The purpose of this paper is to derive the Korringa

relations for the pair of Anderson impurities th tt re-
lates the dyn imical response functions it low ener-
gies and T =0 to the st'itic susceptibilities. They;ire
derived using the same Ward identities that lead to
the relations between the susceptibilities ind the
specific heat. The model is defined in Sec. Il, where
we state the Ward identities and the relations
between the st;itic qu intities derived in Ref. 9. The
e0-linear part of the dynamical correlation functions is

obtiined in Sec. III and it is expressed in terms of the
st itic susceptibilities &nd Fermi-liquid p;ir;imeters. In

Sec. IV we discuss the results for the ibove-
mentioned five special c ises. We close the p iper
with a brief summary and conclusions.

The formulation of the problem is mide in terms
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of localized 4f electrons and extended Sd states in

view of rare-earth ions. The two-impurity problem
has been treated previously for the Kondo case by

perturbational methods'" " «nd ground-state calcula-
tions were performed by Sato and Nagaoka. " Within
the framework of the Anderson model the papers by
A lexander and A nderson, Casoli, K im, and Ya-
mada should be mentioned.

II. MODEL AND WARD IDENTITIES

In this section we define the model and summarize
the results derived in Ref. 9.

We consider two interacting rare-earth ions, labeled
by u and P, in a metallic matrix. The impurity 4f
electrons interact with the Sd. electrons of the metal
through a hybridization term V

H&)= $e-„d-„' d-„+ $(E f / +Ea fa fa )

+ V $ (e /
' d-„+e Pi& d-„+ H.c. )

k cr

(2.1)

I

where f' is the creation operator of a f'electron at
the site o. with spin fT and d-k' is the creation opera-
tor of a conduction electron with momentum k and
spin o-. Our results are not affected by the inclusion
of a hopping integral for the f electrons between the
a and P sites.

Since we make use only of the symmetry properties
of the interaction Hamiltonian, its explicit form is not
given here. It is assumed that (a) it only involves f-
electron operators, (b) it conserves the total number
of f electrons, (c) it conserves the total spin of the
system, and (d) it preserves the spin-rotational in-

variance. These interactions involve direct and ex-
change Coulomb integrals, as well as indirect interac-
tions via the conduction electrons [Ruderman Kittel
Kasuya Yosida (RKKY)l or phonons.

, It is useful to define the one-particle Green's func-
tion

, (2.2)

which evaluated in the noninteracting system yields

I ~ —e..—V'Fcr(~, O) —V'Fcr(~, R)
—V F (cu, R) i cu —

Fl3
—V F (o), 0)

~

2 2 GOcr() (2.3)

where
I

These relations are

~i k ~ R

F ( Rru)=X
I 0) —E'

k kcr

(2.4}

G() (o)) —X (o)) G (o)) =1 (2.S)

and R = R —R&. The one-particle self-energy is de-
fined by

9X (o))
p

o+
t

ai.(+ I 0)
x, =gTr p +p

cr I cr Icr

(2.7)

(2.8)

and the discontinuity of G (ru) at the Fermi energy
is denoted by

, BX (+io)
X, = QTr p +op

cr I cr I cr

(2.9)

p, =-—ImO, (+ID),1

fl cr ~ II cr
(2.6)

where y is defined as

where / and I';~re indices denoting the ions o. and P,
The T-linear coefficient y of the specific heat and

the spin and charge susceptibilities can be expressed
in terms of derivatives of the f'-electron self-energy.

The charge and spin conservation laws of the system
lead to the following Ward relations linking the
derivatives of the self-energy to the antisymmetrized
vertex functions

9X„(o))
J I, g ((t)o,x a'', x a, .rua ) G rr i ( )G its st rt(x)

II 0 I I cr
Icr Icr II I cr

, ~~cger(~), dX$a' ' = — $ o. ' I'„, (run. ,xo.';xa', rua. )G„„,(x)G,„, (x)
(jB 2n II cr I I cr

I cr I cr II I cr

(2.10)

(2.11)

Making use of similar relations for the derivatives with respect to co„we obtained the following relations between
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y, X„and X,

p,, p„, , I „,, (Oa. , Oo. '', Oo. ', Oo. ) +X,
I 1

jill crcr

(2.12)

lO JO + lO JO

y = — $ aa 'p j p„ I' „, (Oo. , Oo. ';Oo. ', Oo. ) + X,
r

ijll crcr

(2.13)

1"1(j. 1. L)i'tgr'tnllttic represetlt'ttiotl of tlute correl;ttion
l'unction ((n, ; )),) ),„.jcr

Notice that according to the Fermi-liquid theory the
relations (2.12) and (2.13) only involve di &gonal m t-

trix elements of the vertex function,

at zero temperature. Since the static quantities tre
finite the dyn tmic'll correl ttions deere tse line trly

with ~a)~ for small imaginary frequencies. We consid-
er the correlation function

III. KORRINGA RELATIONS (3.1)

In order to derive the Ic'orringa rel ttions for the
charge and spin susceptibilities we have to c tlculate
the corresponding low-frequency response functions

and calculate its ~ru~-line)r contribution for co 0.
The correlation (3.1) is di &gramatii;&lly represented in

Fig. 1 tnd its tn tlytical expression is given by

,

~ do) (/N1 ~ (/QJ2S, ) G i~j(~ +r'd)G j~i( ))+ $ q
) Gi) ~(0)+)0))G);~(r0))I) ( ) ) (~+~)o, ~ 2'a~, +rua. ', (u o)).

2m 2' 2m 2
I cr

1 4' 3 2

1 234

+ G , r(OJ2+ M}G. r(402}
l&j cr jl4cr

(3.2)

ln order to obtain the ~r0~-linear contribution we dif-

ferenti tte Eq. (3.2) with respect to co at co=0. Fol-
lowing Shiba8 we divide the result into three contri-
butions that arise from the first diagram, the dif-

ferentiation of. the two propagators c trrying energy ~
in the second diagram and the differenti ttion of the
vertex function.

(1} The contribution of the first diagram is given Ir)) ~ rrpijnpji~ (3.5)

Substituting the rel &tion

(/Gij (co) = —QG;) (o))G), (Oj) —2rrp;, 5(oj), (3.4)
(/I m I

where p„ is defined by Eq, (2,6) „ into expression
(3.3) we obt ~in

by

rf r0' c(Gj~( ci) )

27r dl r0
(3.3)

The first term of (3.4) does not contribute bec tuse of
the symmetry of the integr tl.

(2) The differentiation of G;I (co1+co) in the'1
second d i

angra

m le tds to

f'
C/W1 |' dCO2

io) —$ Gi)~(co) )G)) ~(~) ) —27rp;) ~5(co) ) G(t; (cu) )
2n " 2n 1

2'
I

1
I 2I 3l 4

)

~r, , » (~to. , 2o-', 2~', . Jo-)G, , (~2)G. ( 2)14'32 I ljcr JI4cr
(3.6)

The first term in the large parentheses vanishes because of the symmetry of the integr«l and we obt tin

~ C/OJ2—[Oj(irr X p;( ~p(;~ I'( (, ( (Oo. , o)2o ', o)2a', Oo. )G i(0)))G, i((o2)
1 234

Simil trly the differentiation of G . , (co2+~} yields
I3J cr

(3.7)

d Ctrl

~
ri)

~

'lr X p p, I ) ) ) ) ( ci)O) (&TT;0 U) ()G )T~( i)G r))))~()i))) )
lll2I3I4

(3.8)

(3) The differentiation of the vertex function is divided into two steps. We sep tr tte the vertex into two
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many-leg vertices joined by 2» propagators as shown
in Fig. 2. This splitting of the vertex function is abso-
lutely arbitrary. Following Shiba" we first show that the
only vertex partitions that contribute to the ~~]-linear
part of (3.1) &re those with» = I, i.e. , two propaga-
.tors joining the vertices. The second step consists in

eval uating th is contribution.
(i) The diagram with the partitioned vertex, as

shown in Fig. 2„yields

)')t;j. 2. Schem;Itic p;trtition of the vertex f'unction of )'ig.
1. The two vertices, )

1
In]() ) 2, h;Ive 2II + 2 legs. Only i)ne

incoming Ind one outgoing line of e'Ich vertex c Irrics thc
extern;Il energy ~.

dn1 f dm2
J~ J~ G/ ~(ru/)G/ i~(0/() G i(o)2)G, , (cu, )

2~ 2~ '1 jl4cr
1234

"XSX JI2

t'6', „, ,
( e1)

G.,„...(., ) - 6. „.(.,„)
C/I 61

2n 2 2 2n "2n 2n

r 1

x I 2 I oiplqir, cd2140 ) 6/I/
~
0 /, . . . , K2z//iz /T2& ] 2'/r5

(3.9}

We substitute the derivative using Eq. (3.4). The contribution due to the first term of Eq. (3.4) vanishes by

symmetry of the integral. The derivative dG/d(i&/) has then essentially been replaced by 5(e~). Since there are
2» —

1 propagators left, the contribution vanishes by symmetry, unless» = I. In this case the discontinuities of

6 „(e1)and 6 „(e2) are superimposed and lead to a nonzero contribution.1"
1 1

m 2n 2cr2

(ii) For II =1 the many-leg vertices I
1

and I 2 are just the four-leg vertex. %e have then

CI QJ1 f &/Cd2

Jl Jl G/ .(~, )G/. .(~, )G , (~, )G , (~, )
l1(2(3(4

p tap iiI / ~ pg / (ctJ/ITOOO/T, , M//7) , I / ~ „ / (~go', Oo','0/r, (A&2/7 )
m1n]o n 2m 2o. 4n1, n2

, m 1m 2n 1n 2c'

(3.10}

that rewritten in a more convenient form yields

f &IN] i/I I r

p p X Jl 2
I / m, m / (0/i/r. O/T .0/T

m]n]tr 2 2c 2~ 1 2' 1 2
I 10'

2
I Cr

m 1m 2n 1n 2(r 1 2

&& $ Jt — I"/ „„i (c0)a', 0/7", Oo.", cu2o. ') G, , (co))G, (/0)) . (3.l I)
j(4o' I3j cr

(3(4

The ]co~-linear contribution to Eq. (3.1) is then obtained by summing expressions (3.5), (3.7)„(3.8), and
(3.11). The charge susceptibility is obtained by summing (3.1} over i, j, o-, and o-'. lt is convenient to introduce
a matrix

BX( ( (+ (0)
~/ / ~ $ Jt I / / / / (0/r ~/T,'%/r, 0/T)G i(rd)G, i( )=0/g

1 2 2~ 143 2
' " ' (3jrr' j(4tr'

j(3/4rr (rr I (r

(3.12)
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such th ~t the stittic susceptibility is given by

x, = QTr(p +p A ) =Trx, (3.13)

The general rel actions, Eqs. (3.15) ~nd (3.21), sim-
plify in a number of speci ~l cases which are discussed
in Sec. IV,

and the 10(1-linear part of X, ((0) by

(3.14)
IV. DISCUSSION OF SPECIAL CASES

Equ ~tion (3.13) is the definition of a matrix charge
susceptibility, The Korring ~ rel ~tion for the ch urge

relaxation fin ~lly becomes for re ~l energies

X, (0) )
lim Im = —TrX,

y) ~() Cd 2
(3.15)

The main difference with Shib;~'s" result for ~ single
impurity is that the one-p&rticle Green's function,
Eq. (2,2), is not di &gonal for ~ pair of impurities,
since &n f'electron at one ion c ~n submerge in the
conduction band and emerge ts ~n f electron at the
other ion. This makes it necessary to h tndle with

matrices instead of scalars.
Similarly we define for the spin susceptibility

(3.16)

U(ll~tn~t+ Ilpltlpl) (4.1)

where»; are the f-electron number operators.
There ~re two two-site inter actions th ~t preserve the
number of electrons ~t each site (a Coulomb hand ~n

exchange term)

—JS; Si+ H (»~t+»~~)(»&t+»&~) (4.2)

where S; is the f spin at the sitei. Finally there ~re

two interactions in which one ~nd two electrons„
respectively, jump from one ion to the other:

In order to discuss the results we specify the in-
teractions of our model. There are five possible in-
variants for the lntisymmetrized zero-energy vertex
which ~re comp ~tible with the spin-rot ~tion;tl inv ~ri-

ance. The most gener ~1 single-site interaction h &s.the
form

A

the matrices B and X, ($(/' /'p +fp /, )(n +np ) (4.3)

(jg( ( (+i 0)

QB,
(3.17)

cf QJ
B( (

= x n' I'( ( ( ( (0(T, (0 T', ((0 J.O(V')
l2 , & 2~ 1432

il 314

x G, ((0)G (0()
I ~j

n' jl4o

&nd

lfPif 11+ I~ c ) (4.4)

These five interaction forms h ~ve been discussed al-

ready in Ref. 9.
We consider the following special cases, for which

we already discussed the static properties in our pre-
vious paper. "

X, = $(p +op B )

such that

(3, 18)

A. Case of spinless fermions

X, = TrX,

and the 1(01-linear part of X, is given by

r "2—
I a(I —Trx,

2

(3.19)

(3.20)

For a real energy variable co we finally have the Kor-
ringa relation for spin relaxation

X, (o) )
lim I m = —TrX,

y) ~() OJ 2
(3.21)

A

The two matrices 3 and B are not independent, but
related by the zero-energy vertex functions. From
Eqs. (3.7) and (3.8) of Ref. 9 we obtain

3( ( ~= O'B( ( ~ + X ( l (T(T )p
l 2 12

r 43
I 3I4cr

xr. . . , (o~, o~';o~', 0~) .

(3.22)

Xc = Xeven+ Xod (4.5)

Where X,v, „(X„dd) COntainS all eVen- (Odd-) Order di-
agrams in W of X, . We have then that

Xeven V Xodd Pa Pb r ahba ~i (4.6)

and that X,/j is a monotonically decreasing function'
of H which varies from zero (for H' +~) to 1

Inhere only the interactions N h ~s & me tning and
we can build up bonding and antibonding states of
our diatomic molecule. The Green's function is then
diagon &1 and the expressions like Ward identities,
etc. , are similar to those of tn isolated Anderson im-

purity. The only difference is th ~t the two spin
orientations have different resonance widths, corre-
sponding to the bonding and antibonding st ~tes„

Pb +Pa
The charge susceptibility X, can be written
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(for W —~) and takes the value I for W=0.
Similarly the conservation of the bonding and antibonding states leads to an additional Nard identity which is

associated with the charge-flip (from one site to the other) susceptibilityp

XcF = —(((n, —nb);(n, —nb) ) ) =p= X „„—X pp (4.7)

Consequently the ratio Xcp/j is a monotonically increasing function of W which varies from zero (for W —~)
to 2 (for W + ~) and also takes the value 1 for W =0.

There exist three partial susceptibilities

"d
((n nb)) =p= —((nb n. )) =o= —,X. =p J I' (0, «p)G„(ro)=p Jl "r„(0, )G,'( )

7r

—((n, ;n, ) )„=p = pb I + Jt "r..(0, ~) G.'(~)2'

(4.8a)

(4.8b)

and

1

do)—((nb, «) )„=o= pb 1+J I',b(0, ru) Gb'(co)
i i

X „,„=-((n, ;n, )) p- ((nb, n«)) -p

(4.8c)

(4.8d)

In this way we obtain that the relaxation time for charge excitation, Ti„ is given by

Ti, = —[(((.n, ;n, +nb))„=p)'+(((nb', n, +nb)) p) )/X, . (4.9)

and similarly the relaxation time for charge-flip excitations, TicF, is given by

TICF ~( ((n no nb) ) =p) +( ((nb n nb) ) =p) 1/XCF
2

(4.10)

For this simple model we have expressed five quanti-
ties in terms of the three partial susceptibilities.

If there is no direct hopping between the impurities
the bonding and antibonding states resonate at the
same energy. Their linewidths oscillate with the dis-
tance between the impurities and the amplitude of
the oscillation decreases with the distance R. For
large A..FR the bonding and tntibonding states have
the same width, such that we have two isolated (or
weakly interacting) impurities. If kFR 0 the reso-
nance width of the bonding state tends to zero.
Hence if E =0 both states are equally populated, but
if E ( 0 ( & 0) the bonding state is empty (filled).

B. Case of F(co,R) =0 for R %0

This assumption means that an /' electron at the u
site cannot reach the P site and vice versa, e.g. , be-
cause of a short mean free path, A. ((R. Only in-
teractions involving only number operators can sur-
vive in this case, i, e., J =t =K =0. This simplified

- model is related to the one-impurity Anderson model
with twofold orbital degeneracy but no spin exchange.
The number of f electrons are conserved at each site, ,
yielding ~ further Ward identity. The specific-heat
coefficient, the charge, the spin, and the "orbital"
susceptibilities are related by

y = x, +p'I, = x, —p'(I U+ I"
g )

There are three relaxation times, corresponding to
the charge, spin, and "orbital" (impurity-impurity)
susceptibilities. Since the Green's-function matrix is

A A

diagonal, also the matrices X„X, and similarly X() are
diagonal and we obtain in ~ straightforward manner

Tlc = —xc (4.12a)

7T
T =—XIs

4 s

7r
Ti = —

X()ET 4

(4.12b)

(4.12c)

C. Case of two Kondo impurities

We assume electron-hole symmetry and a large
repulsive U interaction, such that each ion has one
«nd only one f'electron. In this case we neglect t, It:,
and H. The charge susceptibility v tnishes and we
have

p "U —p p"J (4, 13a)

In this case we have expressed seven physic &I qu &nti-

ties in te'rms of three Fermi-liquid parameters.
If the two ions are very distant, the 8' inter iction

is not relevant and we recover the case of two isol ~t-

ed Anderson impurities. In this case there remain
two independent Fermi-liquid parameters that corre-
spond to the X,„,„and X„d& of Y &mad &.

=X()—p (I U I (4.11) =x, +p.'.r, +p.',r, (4.13b)
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x, =2y
in analogy to noninteracting impurities.

Since the static &nd dynamic charge susceptibilities
vanish it follows that:

x, =2~, x, =0 .

Since the static and dynamic spin susceptibilities
vanish we obtain

Appa 1 p Hap(y Apery 0

Using the rel ltion (3.22) we have th &t

(4.15) n.8 „=o.Bpp = —1, o.8 p =a-Bp =0

BAd

l~ eecr ~ PPcr 1 + ) Pea~u ~

such that the matrix X, -is given by The matrix X, is then given by

X =—
S

1

Pea~ U +PaPI J PeepeP( ~U + ~J )
(4.17)

PeePaP("U + "J) Paa" u + PaPI J
Pea1 U + PePI A PaePaP(1 U + I K )

PaaPap U K ) Pae U Pap
(4.26)

Pl

Taking trace over X, we recover X, ls given by Eq.
(4.13). Using (3.21) we fin tlly arrive lt

Tl, X, =—X, + m P' P p( I U + I g )' . (4.18)s s 4 5

This relation does not provide new information„since
the second term on the right-hand side involves 8

new F'ermi-liquid parafneter.
Thc case of bafc cxchaAgc coupllAg J =0 Bnd

second-order perturbation in F(~,R) has been
analyzed lA morc detail by Yamada. Hcfc wc have
th lt only 1"U rem lins and the matrix X, reduces to

Tlc~c ~c Pe P pc c 4 c (4.27)

The situ ltion is similar to the cise of two Kondo im-

purities where the second term on the right-hand side
involves & new f=ermi-liquid parameter.

Setting the b lre coupling K equal to zero &nd ex-

pounding

in second order in F(co,R) we obt&in

~ imp 2( imp) 21" ~ex 4 imppex 1"

Pee Pep
&s= PaeI u

Pep Pea

The static susceptibility is given by X, = —2P' I U and
the relation (4.14) remains valid. Expanding P in

powers of F (R),

, Paa

The behavior of the charge susceptibility for the non-
magnetic impurities is simil;&f to that of the spin sus-
ceptibility in the Kondo case.

imp 2( imp)2p y cx 4PIIPPcx f"

The relaxation time is then given by

, Pee,

D. Case of t~o nonmagnetic ions

where P' p is the single-site contribution and P""„ is

second order in I= (R), we can separate the local im-

purity susceptibility from the correlation between the
impurities

E. "Case of two mixed-valence ions

BAd

7 = ~c Pae1 U P'aePepI » Papi J

2='X, + P 1 U+ P P„pV»+ P pV J
2

We assume th &t the ionic st ltes with zero lnd one
f clcctfoA have slfnllaf eflcrglcs, whcfcas 8 lal"gc cA-

ergy is required to localize l second electron lt one
site. e neglect I"z- lnd also 1'~ can be disregarded
lf thc zcfo BAd slAglc occupaAcy states Bfc quasldc-
gener &te. e have then"

%c assume electron-hole symmetry and a large at-
tractive U interaction such that each ion has either
two or zero f'electrons. %C can neglect I"q, I"», and
I"~ because of electron-hole symmetry. c have
that X, =0, such that

Using &q. (3,22) we obtain that

~ aae = ~8eecr +
p

( 2Pee~u + Pep~» )

~ ap~ = ~8epo +
4 ( PeaI » + 2Pap~ J )
1

With (4.31) we directly recover the rel &tion for

(4.31a)

(4.31& )
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X, —X, of Eq. (4.29). The charge and spin-relaxation
times are given by

T„x,= —x,' + vr[p p() + & ) +p & pJ' , (4.32)c c 4
c

T~, X, = —X,'+m[p &()+a B )+po'BP .J'
s s 4

s

(4.33)

The second terms on the right-hand side of both of
these relations involve new Fermi-liquid parameters.

V. CONCLUSIONS

I n a previous paper we obt;tined rigorous relations
between the specific heat and the charge and spin
susceptibilities for two interacting magnetic Anderson
impurities. We have extended this calculation deriv-

ing the Korringa relations for the dynamical suscepti-
bilities. The Korringa relation connects the co-linear

part of the dynamical response function, i.e.„ the re-
laxation time of the corresponding excitations, to the
I=ermi-liquid parameters.

These relations depend in general on the 3„, and

on five independent zero-energy vertex functions.

Under special assumptions the number of Fermi-
liquid parameters can be reduced and the expressions
simplify, For the two physically relevant cases, the
pair of Kondo impurities and two interacting mixed
valence ions, the relaxation times include new
Fermi-liquid parameters. The Korringa relations in

this way do not yield new relations among measur-
able quantities. It is seen that the relaxation time of
the two-impurity molecule is always larger than that
of a single impurity. This can be explained as fol-
lows. A charge leaving one impurity contributes to
the impurity relaxation but not necessarily to the re-
laxation of the molecule, since the electron may em-

erge at the other impurity. A similar argument holds
for spin-flip excitations. This difference is, for in-

stance, explicitly given by the second terms on the
right-hand side of Eqs. (4.18), (4.27), (4.32), and
(4.33).
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