PHYSICAL REVIEW B

VOLUME 23, NUMBER 7

1 APRIL 1981

Fermi-liquid theory of the Korringa relations for the impurity-lattice relaxation
of a pair of interacting Anderson impurities

P. Schlottmann
Institut fiir Theoretische Physik, Freie Universitdt Berlin, 1000 Berlin 33, Arnimallee 3, Germany
and Institute for Theoretical Physics, University of California, Santa Barbara, California 93106
(Received 22 September 1980)

We consider a pair of single-orbital Anderson impurities interacting with cach other via a gen-
eral two-body Hamiltonian. Using the Ward identities corresponding to the conservation of the
total charge and the total spin, we derive the Korringa relations for the spin- and charge-lattice
relaxation. The results are complementary to the Fermi-liquid relations for the specific heat, the
charge, and spin susceptibilities derived previously. The results simplify in some special cases,
i.e., two Kondo impurities, two nohmagnetic ions, a pair of mixed valence ions, the casc of
spinless impurities, and if the mean free path is much smaller than the distance between the im-

purities.

I. INTRODUCTION

The electronic structure of magnetic impurities em-
bedded in a metallic host is usually appropriately
described by the Anderson model.! At low tempera-
tures isolated magnetic impurities are strongly cou-
pled to the conduction band of the metal.? The sys-
tem exhibits a universal behavior which is adequately
described by a Fermi-liquid theory.> The specific
heat is proportional to the temperature, and the mag-
netic spin and orbital susceptibilities, as well as the
charge susceptibility, are finite at zero temperature.
Fermi-liquid theories have been successfully applied
to obtain relations among these quantities to the
single-orbital* and the degenerate®® Anderson model
and to the Kondo problem.’

The Fermi-liquid theory also provides a relation
between the static susceptibilities and the dynamical
response functions at low energies and zero tempera-
ture. These relations are known as the Korringa rela-
tions and have been derived by Yosida and Yamada’
for the nondegenerate Anderson impurity and ex-
tended by Shiba® to the multiple-orbital impurity. If
we assume that the dynamical susceptibilities have
approximately a Lorentzian energy dependence, then
the Korringa relations provide the corresponding re-
laxation times of the impurity, i.e., the time scale for
the charge, spin, and orbital excitations.

The Fermi-liquid theory makes use of the conser-
vation laws of the system. In the case of the degen-
erate Anderson impurity the total charge, spin, and
orbital angular momentum are conserved. The con-
servation laws lead to Ward identities that relate the
susceptibilities, the specific heat, and the zero-
energy-invariant vertex parts. There are three such
relations and 2/ + 1 invariant vertex couplings for the
most general atomic interaction Hamiltonian,® where
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[ is the individual orbital momentum of the localized
electrons. If we restrict the interaction such that the
individual quantum numbers # and o are conserved
in the scattering process of two electrons then the
number of invariant vertex couplings can be reduced
to 2.°

In a recent paper’ we considered the casc of a pair
of interacting Anderson impurities. The low-
temperature and low-energy behavior of this system
is also described by a Fermi-liquid theory. If we re-
strict ourselves to single-orbital impurities, the total
charge and spin are conserved quantities of the sys-
tem. They give rise to Ward identities that lead to
relations of the specific heat and charge and spin sus-
ceptibilities. There are five invariant vertex cou-
plings, but the problem simplifies in a number of
special cases: (a) a system of spinless fermions, (b)
the case of a short mean free path, (¢) two interact-
ing Kondo impurities, (d) two interacting nonmag-
netic ions, and (e) the case of two mixed-valence
ions.

The purpose of this paper is to derive the Korringa
relations for the pair of Anderson impurities that re-
lates the dynamical response functions at low ener-
gies and 7T =0 to the static susceptibilitics. They are
derived using the same Ward identities that lead to
the relations between the susceptibilities and the
specific heat. The model is defined in Sec. 11, where
we state the Ward identities and the relations
between the static quantities derived in Ref. 9. The
w-linear part of the dynamical correlation functions is
obtained in Sec. III and it is expressed in terms of the
static susceptibilities and Fermi-liquid parameters. In
Sec. IV we discuss the results for the above-
mentioned five special cases. We close the paper
with a brief summary and conclusions.

The formulation of the problem is made in terms
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of localized 4/ electrons and extended 5 states in
view of rare-earth ions. The two-impurity problem
has been treated previously for the Kondo case by
perturbational methods'* ! and ground-state calcula-
tions were performed by Sato and Nagaoka.'? Within
the framework of the Anderson model the papers by
Alexander and Anderson.'? Casoli,'" Kim," and Ya-
mada'® should be mentioned.

II. MODEL AND WARD IDENTITIES

In this section we define the model and summarize
the results derived in Ref. 9.

We consider two interacting rare-earth ions, labeled
by a and B, in a metallic matrix. The impurity 4/
electrons interact with the Sd. electrons of the metal
through a hybridization term V
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and R = R — R,, The one-particle self-energy is de-
fined by

¢ () -5, ()]6, () =1 (2.5)
and the discontinuity of G,(w) at the Fermi energy
is denoted by

1 ‘
pyry == ImGy (+i0) . (2.6)

where / and /" are indices denoting the ions « and B.

The T-linear coefficient y of the specific heat and
the spin and charge susceptibilities can be expressed
in terms of derivatives of the f-electron self-energy.

éoo(w)

where /,,,, is the creation operator of a felectron at
the site a with spin o and d+ is the creation opera-
tor of a conduction electron w1th momentum K and
spin o. Our results are not affected by the inclusion
of a hopping integral for the / electrons between the
a and B sites.

Since we make use only of the symmetry properties
of the interaction Hamiltonian, its explicit form is not
given here. It is assumed that (a) it only involves /-
electron operators, (b) it conserves the total number
of felectrons, (c) it conserves the total spin of the
system, and (d) it preserves the spin-rotational in-
variance. These interactions involve direct and ex-
change Coulomb integrals, as well as indirect interac-
tions via the conduction electrons [Ruderman Kittel
Kasuya Yosida (RKKY)] or phonons.

It is useful to define the one-particle Green’s func-
tion
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which evaluated in the noninteracting system yields

=i (2.3)
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These relations are’
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where y is defined as
I -
Y=3 772)/ .
The charge and spin conservation laws of the system
lead to the following Ward relations linking the
derivatives of the self-energy to the antisymmetrized
vertex functions’

woxo'xa wa)G L ()G, (x) (2.10)
il I o I''lo

Nwoxo'xo', wU)G”uu;(X)GIuI:U,(X) . (2.11)

Making use of similar relations for the derivatives with respect to w, we obtained the following relations between
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Notice that according to the Fermi-liquid theory the
relations (2.12) and (2.13) only involve diagonal ma-
trix elements of the vertex function.

III. KORRINGA RELATIONS

In order to derive the Korringa relations for the
charge and spin susceptibilities we have to calculate

the corresponding low-frequency response functions
)
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FIG. 1. Diagramatic representation of the correlation
function ({n;,. n o
(( i ja’> >lm'

at zero temperature. Since the static quantities are
finite the dynamical correlations decrease lincarly
with |w| for small imaginary frequencies. We consid-
er the correlation function

({Sialio ] ;i f ) 1)) i (3.1)
and calculate its |w|-linear contribution for w — 0.

The correlation (3.1) is diagramatically represented in
FFig. 1 and its analytical cxpression is given by

G,/la.(w +w1)G,2,,(wl)F, NI (w+m,(r. wz(r';u)2+wo'"w|(r)

a3

XG,]jU,(wzﬂf—w)Gﬂw,(wz) . (3.2)

In order to obtain the |wl|-linear contribution we dif-
ferentiate Eq. (3.2) with respect to w at @ =0. Fol-
lowing Shiba® we divide the result into three contri-
butions that arise from the first diagram, the dif-
ferentiation of the two propagators carrying energy w
in the second diagram and the differentiation of the
vertex function.

(1) The contribution of the first diagram is given
by

T
Substituting the relation

(lG,'jq-( w)

diw

== Gyo(w)Gjjglw)—2mp;,d(w) , (3.4)
[ i ij

where pj;, is defined by Eq. (2.6), into expression
(3.3) we obtain

- lw\ﬂpuql)ﬁa . (3.5)

The first term of (3.4) does not contribute because of
the symmetry of the integral.

iwf dw' 4Gjo(w’) Grolw') . (3.3) (2) The differentiation of G,-,]c,(wl +w) in the
2w diw sccond diagram leads to
j
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115030 I
XF,I,‘V,},Z((»,O’, wz(r':wz(r',w,rr)Gljj”,(wz)Gﬂqal(wz) . (3.6)

The first term in the large parentheses vanishes because of the symmetry of the integral and we obtain

dw , , .
—|w|w 2 p”|"p’2“’f-z:zrﬁ’w’}’z(oq'wza KOs 'OU)GIJja'(wZ)GjI4a,(w2) . (3.7)
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Similarly the differentiation of Gl j.,’(“’z +w) yields
3

dw , ,
— || 2 P/3,,-a”’,//4a'fﬁrllur’s'z(“’l”'o"'*0"'“’1")6'/10(“’1)6'2-/0("“) . (3.8)
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(3) The differentiation of the vertex function is divided into two steps. We separate the vertex into two
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many-leg vertices joined by 2n propagators as shown §tw
in Fig. 2. This splitting of the vertex function is abso- > €,
lutely arbitrary. Following Shiba® we first show that the ic T I, jo'
only-vertex partitions that contribute to the |w]|-linear p
part of (3.1) are those with n =1, i.e., two propaga- &
tors JOlr"llﬂg the vertl.ces.' The second step consists in FFIG. 2. Schematic partition of the vertex function of Fig.
evaluating this contribution. 1. The two vertices, Iy and 'y, have 2n +2 legs. Only onc
(i) The diagram with the partitioned vertex, as incoming and onc outgoing line of cach vertex carries the
shown in Fig. 2, yields cxternal encrgy w.
. dw, de
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(3.9)

We substitute the derivative using Eq. (3.4). The contribution due to the first term of Eq. (3.4) vanishes by
symmetry of the integral. The derivative dG/d (i€,) has then essentially been replaced by 8(e;). Since there are
2n — 1 propagators left, the contribution vanishes by symmetry, unless # = 1. In this case the discontinuities of
G n\o (e) and G"’z"z“z(el) are superimposed and lead to a nonzero contribution.

(ii) For n =1 the many-leg vertices I'} and I'y are just the four-leg vertex. We have then
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that rewritten in a more convenient form yields
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The |w|-linear contribution to Eq. (3.1) is then obtained by summing expressions (3.5), (3.7), (3.8), and
(3.11). The charge susceptibility is obtained by summing (3.1) over i, j, o, and o¢’. It is convenient to introduce

a matrix

62,1,20( +i0)

All’2a= 2 f(/w F,],4,3,2(0fr (1)0' (1)0' 00’)0 "(w)Gjldo-'(w)=2;T_- (312)

113140'
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such that the static susceptibility is given by

Xe= 3 Tt(py+ped ) =TrX, (3.13)

and the |w|-linear part of X, (w) by

~lwlm 3 Sp(py+pod g)2=— |w|~72L Tx! . (3.14)

Equation (3.13) is the definition of a matrix charge
susceptibility. The Korringa relation for the charge
relaxation finally becomes for real energies

~2

Xe(w)
lim Im——= =127—Trxc . (3.15)

w—0 w

The main difference with Shiba’s® result for a single
impurity is that the one-particle Green’s function,
Eq. (2.2), is not diagonal for a pair of impurities,
since an f electron at one ion can submerge in the
conduction band and emerge as an f electron at the
other ion. This makes it necessary to handle with
matrices instead of scalars.

Similarly we define for the spin susceptibility

Xs(0) =3 a0 ({finhiafinfie))ie (3.16)
ijtral

the matrices l§¢, and §<s
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=E,(T T ’ (3.17)
lo lo
Xs=3 (pg+0psB,) | (3.18)
such that
X = TrX, (3.19)

and the |w]-linear part of X; is given by
- |w|% Tex; . (3.20)

For a real energy variable o we finally have the Kor-
ringa relation for spin relaxation

X;(w) .
: TRl . (3.21)

lim Im
w0 w

The two matrices 4 and B are not independent, but
related by the zero-energy vertex functions. From
Egs. (3.7) and (3.8) of Ref. 9 we obtain
A,1,2,=O'B,I,2‘, + 2] (l—od')

13I4a'
X F/l/4,13/2(00', 00’",00", 00‘)
(3.22)

P ’
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The general relations, Egs. (3.15) and (3.21), sim-
plify in a number of special cases which are discussed
in Sec. 1V.

IV. DISCUSSION OF SPECIAL CASES

In order to discuss the results we specify the in-
teractions of our model. There are five possible in-
variants for the antisymmetrized zero-energy vertex
which are compatible with the spin-rotational invari-
ance. The most general single-site interaction has the
form

U(n‘”nul-{-nmnm) , (4.1)

where n;, are the f-electron number operators.
There are two two-site interactions that preserve the
number of electrons at each site (a Coulomb and an
exchange term)

~—J§,-§j+ Wng +ng)Cng +ng) . (4.2)

where S, is the / spin at the site /. Finally there are
two interactions in which one and two electrons,
respectively, jump from one ion to the other:

13 S aol 8ot L0 ac) Nao+115-g) (4.3)

and
K (./‘;1,/';1,/‘31.1‘,;1 +Hc) . (4.4)

These five interaction forms have been discussed al-
ready in Ref. 9.

We consider the following special cases, for which
we already discussed the static properties in our pre-
vious paper.’

A. Case of spinless fermions

Here only the interactions W has a meaning and
we can build up bonding and antibonding states of
our diatomic molecule. The Green’s function is then
diagonal and the expressions like Ward identities,
etc., are similar to those of an isolated Anderson im-
purity. The only difference is that the two spin
orientations have different resonance widths, corre-
sponding to the bonding and antibonding states,

Ps & Pa.
The charge susceptibility X. can be written

Xc=xcven+xodd ’ (45)

where Xeven(Xoaq) contains all even- (odd-) order di-
agrams in W of X.. We have then that

Xcvcn=5'v Xodd=—papbrabba(wi=0) (46)

and that X./y is a monotonically decreasing function
of W which varies from zero (for W —+ ) to |
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(for W — — o) and takes the value 1 for W =0.

Similarly the conservation of the bonding and antibonding states leads to an additional Ward identity which is
associated with the charge-flip (from one site to the other) susceptibility®

Xcf=— <<(na '—nb);(”a _”b)>>w=()=xeven~xodd .

4.7)

Consequently the ratio Xcp/y is a monotonically increasing function of W which varies from zero (for W — — o0)

to 2 (for W — + o) and also takes the value 1 for W =0.

There exist three partial susceptibilities

= (1) Yoo == {00) Ym0 = Xoas = po | LLT(0,0) G (w)=p, fj—:rha(o, W) GHw) . (4.8)
~ (i) Yumo=ps |1+ [ L2T,,(0, ) GH(w) (4.8b)
2w
(4.8¢)
= {((np3np) Y w=0=ps |1 +f‘21—wrbb(0» w)sz(w)' ,
T
and
xeven=—((”a;"a>>m=0“<<nh;”b))m=0 . (48d)
In this way we obtain that the relaxation time for charge excitation, T),, is given by
T\.= ‘721[( (Cayng +1p) ) w=0)? + (({npsn, + 1) Y y=0)?1/Xe (4.9)
and similarly the relaxation time for charge-flip excitations, Tcf, is given by
Ticr =5 L3 =15) Yomo) + (e = my) )] Xer - 4.10)

For this simple model we have expressed five quanti-
ties in terms of the three partial susceptibilities.

If there is no direct hopping between the impurities
the bonding and antibonding states resonate at the
same energy. Their linewidths oscillate with the dis-
tance between the impurities and the amplitude of
the oscillation decreases with the distance R. For
large kR the bonding and antibonding states have
the same width, such that we have two isolated (or
weakly interacting) impurities. If kxR — 0 the reso-
nance width of the bonding state tends to zero.
Hence if £ =0 both states are equally populated, but
if E <0 (>0) the bonding state is empty (filled).

B. Case of F(w,R)=0for R #0

This assumption means that an / electron at the «
site cannot reach the 8 site and vice versa, e.g., be-
cause of a short mean free path, A << R. Only in-
teractions involving only number operators can sur-
vive in this case,’ i.e., /=1 =K =0. This simplified
model is related to the one-impurity Anderson model
with twofold orbital degeneracy but no spin exchange.
The number of f electrons are conserved at each site,
yielding a further Ward identity. The specific-heat
coefficient, the charge, the spin, and the ‘“‘orbital™
susceptibilities are related by

';'=X5 +p2FU=X¢-—‘p2(Fu+Fw)
=Xo—p Ty —Ty). 4.11)

f

There are three relaxation times, corresponding to
the charge, spin, and ‘“‘orbital’’ (impurity-impurity)
susceptibilities. Since the Green’s-function matrix is
diagonal, also the matrices >A<c, >2s and similarly )20 are
diagonal and we obtain in a straightforward manner

TM=%XC, (4.12a)
m

T,S=TX5 , (4.12b)

T|”=%X[) . (4.12¢)

In this case we have expressed seven physical quanti-
ties in terms of three Fermi-liquid parameters.

If the two ions are very distant, the W interaction
is not relevant and we recover the-case of two isolat-
ed Anderson impurities. In this case there remain
two independent Fermi-liquid parameters that corre-
spond to the Xeven and Xoqq of Yamada.*

C. Case of two Kondo impurities

We assume electron-hole symmetry and a large
repulsive U interaction, such that each ion has one
and only one f electron. In this case we neglect 1, K,
and W. The charge susceptibility vanishes and we
have’

'§=—p£aFU—piBFJ (4.13a)

=X, +pialv +pisly (4.13b)
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or
Xs =2y (4.14)

in analogy to noninteracting impurities.
Since the static and dynamic charge susceptibilities
vanish it follows that:

Aaua:ABBo:—l: AaﬁtrzABao:O : (4.15)
Using the relation (3.22) we have that

1
0B oo = (TBﬁBa=— 1 —"Z'Paan

| (4.16)
UBan=(rBBaa=~7paBrl .
such that the matrix is is given by
2 2
N Paal’ v + pagl PaaPap(Tv+T;)
%= UTPas 1 PeabastluT 4.17)

PaaPap(Tu +T))  plaly+plsly

Taking trace over )2, we recover X, as given by Eq.
(4.13). Using (3.21) we finally arrive at

T|5X3=—}Xf+npfmp,2,3(l‘u +F,)2 . (418)

This relation does not provide new information, since
the second term on the right-hand side involves a
new Fermi-liquid parameter.

The case of bare exchange coupling J =0 and
second-order perturbation in F(w,R) has been
analyzed in more detail by Yamada.'® Here we have
that only I'y remains and the matrix X; reduces to

Paa paﬂ
PaB Paa

Xs == paal’v (4.19)

The static susceptibility is given by X, =—2p2, 'y and
the relation (4.14) remains valid. Expanding pqe in
powers of F,(R),

Paa=Pux’ +poa (4.20)

where pi™P is the single-site contribution and pS, is
second order in F,(R), we can separate the local im-
purity susceptibility from the correlation between the
impurities

XM =—2(pimP)Ty . XS¥=—dplplly . (42D
The relaxation time is then given by
2]

D. Case of two nonmagnetic ions

Pap
Paa

1+

T
Tis= _4—Xs

We assume electron-hole symmetry and a large at-
tractive U interaction such that each ion has either
two or zero f electrons. We can neglect I'y, I',, and
I'w because of electron-hole symmetry. We have
that X, =0, such that

¥ =pral v +pigTk =Xc = paalv —paplx  (4.22)

and
X.=2y, X;=0 . (4.23)

Since the static and dynamic spin susceptibilities
vanish we obtain
0Baae=0Bgge=—1. 0Bugs=0Bgas=0 (4.24)
and

1
Aamr:ABﬂo:— 1 +7P¢mru

| . (4.25)
Aaﬁo':ABac: ?paﬁ[ K
The matrix it is then given by
N paal v +paglc  Paapap(Tu +Tk) (426)
= . . .26
" |PaalasTu +Tk)  plalv +plalx
and
T,cxc=%x3+wp3,,,pgp(ru+rK)2 , (4.27)

The situation is similar to the case of two Kondo im-
purities where the second term on the right-hand side
involves a new Fermi-liquid parameter.

Setting the bare coupling K equal to zero and ex-
panding in second order in F(w,R) we obtain

Xim == 2(pimP) Ty, X == 4pimpial'y

Pag
Paa

1+

m
T\= 'Ixc

2
] . (4.28)

The behavior of the charge susceptibility for the non-
magnetic impurities is similar to that of the spin sus-
ceptibility in the Kondo case.

E. "Case of two mixed-valence ions

We assume that the ionic states with zero and one
/ electron have similar energies, whereas a large en-
ergy is required to localize a second electron at one
site. We neglect ['x and also I'yy can be disregarded
if the zero and single occupancy states are quaside-
generate. We have then’
i’ = Xc‘ - P:zmrU - paapaﬂrl - pgzﬁr.l
=X; +paal’ v+ paapasl’s +plply (4.29)
and
Xs +Xc=2y . (4.30)
Using Eq. (3.22) we obtain that

Aaaa'=(rBaao+%(2paarU+paBrI) ’ (4.31a)
Augo=0Bago+ 5 (paal’s + 2papl’s) (4.31b)

With (4.31) we directly recover the relation for
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X. — X, of Eq. (4.29). The charge and spin-relaxation
times are given by

T1eXe =%x3 + 77 pag(1 + Aug) +paadagl? . (4.32)

Tlsxs =%X52 +7T[Paﬁ(l +(TBaaa) +‘paa(TBaBa]2
(4.33)

The second terms on the right-hand side of both of
these relations involve new Fermi-liquid parameters.

V. CONCLUSIONS

In a previous paper we obtained rigorous relations
between the specific heat and the charge and spin
susceptibilities for two interacting magnetic Anderson
impurities. We have extended this calculation deriv-
ing the Korringa relations for the dynamical suscepti-
bilities. The Korringa relation connects the w-linear
part of the dynamical response function, i.e., the re-
laxation time of the corresponding excitations, to the
Fermi-liquid parameters.

These relations depend in general on the A”,a and
on five independent zero-energy vertex functions.

Under special assumptions the number of Fermi-
liquid parameters can be reduced and the expressions
simplify. For the two physically relevant cases, the
pair of Kondo impurities and two interacting mixed
valence ions, the relaxation times include new
Fermi-liquid parameters. The Korringa relations in
this way do not yield new relations among measur-
able quantities. It is seen that the relaxation time of
the two-impurity molecule is always larger than that
of a single impurity. This can be explained as fol-
lows. A charge leaving one impurity contributes to
the impurity relaxation but not necessarily to the re-
laxation of the molecule, since the electron may em-
erge at the other impurity. A similar argument holds
for spin-flip excitations. This difference is, for in-
stance, explicitly given by the second terms on the
right-hand side of Egs. (4.18), (4.27), (4.32), and
(4.33).
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