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The global phase diagram for a three-component lattice gas or spin-one Ising model with gen-
eral single-site and nearest-neighbor "ferromagnetic" interactions is worked out for two-

dimensional lattices using a Migdal-Kadanoff recursion relation. It differs in important qualita-
tive respects from the corresponding mean-field phase diagram. The set of fixed points and

flows provides the characteristic'phase diagrams of the three-state Potts multicritical point and

the ordinary (n =1) tricritical point in a complete set of symmetry-breaking fields. The latter is

associated, in this renormalization-group scheme, with seven distinct critical fixed points, a

number which is surprisingly large.

I. INTRODUCTION

A spin-one model, in which each spin variable can
take three values, is probably the simplest generaliza-
tion of the ordinary spin-

2
Ising model which can

exhibit a variety of multicritical points without the
necessity of breaking translational invariance (i.e.,
without "antiferromagnetism"). In lattice gas termi-
nology, spin-one corresponds to three possible types
of atoms (or two types plus vacuum) in each cell.
Hence Furman et al. ,

' who worked out the complete
global phase diagram for nearest-neighbor interac-
tions in a mean-field approximation, have called this
a "three-component model. "

The mean-field approximation" yields tricritical
and fourth-order multicritical points' in the "principal
energy triangle, " the range of parameters for which
one does not have antiferromagnetic ground states.
However, certain features of the mean-field phase di-

agram are not even qualitatively correct for a two-
dimensional square lattice, which is the focus of the
present study. In particular, a suitable choice of
parameters in the Hamiltonian produces the three-
state Potts model, which is known to have a continu-
ous transition on this lattice, 4 in contrast to the mean
field and other classical theories which, for reasons
pointed by Landau and Lifshitz, ' always yield a first-
order transition.

Renormalization-group procedures can remedy the
defect just mentioned, and previous authors have re-
ported studies of a three-dimensional "even" sub-
space of the full five-dimensional field or parameter
space of the three-component model on a square or
triangular lattice using real-space or cell methods.
In addition, Krinsky and Furman' have studied a

one-dimensional model in the five-dimensional
parameter space.

It should be stressed that a complete description of
asymptotic tricriticality in nonsymmetric systems re-
quires consideration of four parameters: two even
fields and two odd fields. '" In this paper we extend
the previous studies to the full parameter space. for a

two-dimensional lattice using a recursion scheme of
the Migdal-Kadanoff type. " Several interesting
results emerge from our study.

First, we have obtained the complete set of fixed
points for the recursion relations in the space of five
fields, and have thus determined the global phase di-

agram for the three-component model in two dimen-
sions (in a renormalization-group approximation, of
course). Second, we have obtained the complete
characteristic phase diagrams, in the sense of Grif-
fiths, ' " for both the two-dimensional tricritical point
and the three-state Potts point. For the former, the
general topological characteristics are in agreement
with classical theory, and the tricritical fixed-point ex-
ponents agree fairly well with previous estimates.
The interesting feature which emerges is the manner
in which the particular renormalization group studied
produces the phase diagram through the structure of
fixed points and flows. The result, Sec. VI, is re-
markably complex, and could hardly have been anti-
cipated without carrying out explicit calculations. In
the case of the three-state Potts point it is, of course,
impossible to obtain the characteristic phase diagram
from a classical model, so another approach is essen-
tial. True enough, our results are not surprising in

view of previous speculations, "but it is nonetheless
gratifying to see the anticipated answers emerge from
an honest, albeit approximate, calculation.
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An outline of the paper is as follows. After defin-

ing thc model 1fl Scc. II and dcscflb1ng thc approx1-

mate recursion relations embodying the renormaliza-
tion group in Sec. III, we list the fixed points and

their exponents in Sec. IV. Section V contains a dis-

cussion of the global phase diagram and some
features of the fixed point structure, awhile the tricriti-
cal points are the subject of Sec. VI. Conclusions and

some open questions are presented in Sec. VII.
Whereas this paper is concerned almost entirely

with the two-dimensional (d =2) square lattice, the
same recursion relations can be applied in other di-

mensions as well. Various results from studying this
dimensional dependence, together with a modifica-
tion of the model which contains a free parameter
which can be adjusted to yield good tricritical ex-
ponents for d =2, will be discussed in a future paper.

II. THREE-COMPONENT, OR SPIN-ONE, MODEL

The three-component model can be thought of as a

lattice gas in which all of space is divided up into
identical cells whose centers form the sites of a hy-

percubic (in two dimensions, a square) or perhaps
some other lattice. Each cell is occupied by precisely
one atom, which can be of one of three types: n, P,
or y. The projection operator P; is 1 if the ith cell
(centered at the ith lattice site} is occupied by an

atom of type o., and is zero otherwise; P;~ and P are
defined similarly. Note that

where T is the temperature, k is Boltzmann's con-
stant, q is the coordination number of the lattice (4
for a square lattice), and (ij ) denotes a nearest-
neighbor pair of cells or sites, each pair occurring in
the sum precisely once. The quantities

4=e 'jf. 4=e "jf. f.=e 'lf .
with

(2.3)

+e +e (2.4)

s, =P; —Pp (2.S)

sum up to unity, and serve as activities for the
corresponding components. Note that f„f», and g,.

depend only on the differences p,, —p,, , p, b
—p, , In

fact, in view of the sum rule (2.1), the only effect of
adding a constant to the p, 's is to add an uninterest-
ing constant to 3C.

In this paper we shall consider only the situation in
which a, 6, and c are all non-negative. The reason is
that a negative value of (say) a, as is evident when
(2.2) is exponentiated as a Boltzmann factor, tends to
favor a situation in which neighboring cells are occu-
pied by different types of atoms, and thus low-

temperature states which lack translational invariance.
It is doubtful whether such states and the associated
phase diagrams will be described correctly by a simple
recursion scheme of the sort introduced below in Sec.
IV.

The lattice gas just described is equivalent to a
spin-one Ising model in which the spin variable

P,.+P~+P, =& . (2.1)
associated with the lattice site i takes the values 1, 0,
or —1, and the energy 3C has the form

—q
' X [a(P;aP +P,'Pt')+b(P, P,&+P,&P,')

&!i &

+ (p.p~+ pap') -] (2.2)

The total energy X, of a set of atoms has the form
=H Xs; Dxs,2—

kT

+q ' X [Js,s, +ICs, 's,'+
2 H3s;s;(s;+s, )]

(2.6)

The parameters appearing in (2.2) and (2.6) are relat-
ed to one another in Table I, which also shows their

TABLE I. Correspondence between notations for various fields.

This paper
Eq. (2.2)

This paper
Eq. (2.6)

Furman, Dattagupta,
and Griffiths'

Berker arid
'+ortisb

2 (P, Ijt, b

—(P.„+JM, b
—2P,, )

1

—,(J + Z —I-I3)
I

—(J + K + h"3)

2J

H+ —H
2 3

—0+—(J+EC)1

2

2 (v1 —~2)
1

1

2
(V1+ V2)

—q(J+a -2L)1

—q(J+X+2L)

aReference 1. bReference 6.
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T=(a+b+c) '=(K +31). (2.7)

This agrees with Furman et al. ' when a, b, and c are
all non-negative ("ferromagnetic"), which is the only

case we shall consider. This definition makes T in-

variant under the permutations of a, b, and c dis-

cussed below. It is also convenient to introduce a

normalized set of parameters, following Furman
et a/. ,

' namely,

a =, aT, b =bT, c =cT (2.8)

connection with variables appearing in some other pa-

pers. Note that J, K, H, etc. in (2.6) are equal to an

energy divided by kT, in contrast to the convention
employed in several previous papers" devoted to
this model.

Since only the differences between p, 's in (2.2) are
physically relevant, K/k—T depends on five indepen-
dent continuous real parameters or fields in both
(2.2) and (2.6). This set is "complete" in the sense
that it is the most general set of interactions involv-

ing only single sites and nearest-neighbors pairs
which has the full symmetry of the lattice. As the
Gibbs probability depends only on K/kT,—the defini-

tion of temperature in terms of the parameters in

(2.2) and (2.6) is somewhat arbitrary. We shall, for
convenience, adopt the convention

gous subspaces, one invariant under (bc) and the
other under (ac). They may be termed the "even
spaces" since the corresponding odd fields vanish
identically for the space defined by (2.11).

III. RECURSION RELATIONS

We have employed a Migdal-Kadanoff' type of ap-

proximate renormalization group which derives recur-
sion relations in two steps: (i) bond moving followed

by (ii) one-dimensional (exact) decimation. These
steps are illustrated in Fig. I for the case we have

employed, in which the spatial rescaling factor b is

equal to 2. In step (i) the single-site energies (p,„,
etc. ) are divided evenly among the bonds incident at

the site and are then moved with the bonds, " a pro-
cedure which yields exact results for ground-state en-
ergies and hence a correct "anchor" at T =0. The
transformation' produced by these two steps maps the
parameter space (a, tt, etc.) onto itself. It is impor-

tant to note that this mapping commutes with all the
permutation operations discussed in Sec. II, and thus
preserves the various symmetries of the problem. In

particular, the Potts space (2.10) and the even spaces
(2.11) are mapped onto themselves. In addition the
transformation maps the space

whose sum is unity

a+b+c =I (2.9)

a =b, c=0

(see Appendix A) or, equivalently,

(3.1a)

An important symmetry of (2.2) is connected with

permutations of the particle labels, n, P, y. For ex-

ample, 3C/kT is unchanged if the permutation
a ~ P ~ y ~ n, which. we denote as usual by

(uPy), is accompanied by a simultaneous permuta-
tion (abc) applied both to the "energy parameters" a, '

b, and c, and to the "chemical potentials" p, „p,b, p, ,
In addition, there are certain subspaces of the space
of the five fields a, b, etc. which are invariant under
all or some of the permutations of a, b, and c (in the
sense just described). The one-dimensional space

H3= J =0 (3.lb)

(,' = C $,"( (f + (g w, .
2 + f,"wt2 )'t". (3.3)

and a corresponding set of equations for wt,', w, .', $t'„

onto itself.
The explicit recursion formulas are

( (g Wp W(. + g W, + ((l'Wg )'
Wg =

(( w +(t'w +g".)'t (gw. +gg+gf w )'

(3.2)

a = b = c, pa = pa = pc

corresponding to

H=H3=0, K =3J, D =2J

(2.1Oa)

(2.1Ob)

4 E
'~ F m ~ w ~

is invariant under all permutations, and corresponds
to the standard three-state Potts model with tempera-
ture as the only variable. It might be called the
"Potts space. " The three-dimensional space

~ g ~ R ~

a b pa pb (2.11a)
(o) (b)

corresponding to

H =H3=0 (2.11b)

is invariant under (ab). There are two other analo-

F16. 1. Migdal-Kadanoff recursion scheme. Starting with

(a), bonds (together with single-site interactions) are shifted

to produce the pattern in (b). The spins with only two

neighbors are then summed out to produce the new set of'

nearest-neighbor interactions indicated in (c).
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and $,
'

obtained by permuting a, b, and c on both
sides of (3.2) and (3.3). Here we have

(3.4)w, = exp( —pa/2)

with ~b and ~, defined in a corresponding manner.
The constants

p 2d/q r 2d —! (3.5)

IV. FIXED POINTS AND CRITICAL EXPONENTS

The fixed points of the recursion relations present-
ed in Sec. III for the case d =2 are listed in Table II,
and the corresponding exponents are given in Table
III. Following Furman et al. ,

' we use symbols
A' ( AA ) and A' to denote points of two- or three-
phase coexistence, respectively, or the corresponding
manifolds in a phase diagram, and B, BA, and C for
critical points, critical end points, and tricritical
points. The symbol F, suggesting threefold sym-
metry, denotes a three-state Potts mu1ticritical point.
Fixed points corresponding to any of these therrno-
dynamic entities are denoted by placing the symbol
for the entity in angular brackets, e.g. , (BA ) denotes
a fixed point describing a simple critical end point,
and using subscripts, and occasionally superscripts, to
differentiate different fixed points corresponding to
the same entity.

Because the recursion relations preserve the per-

are equal to l and 2, respectively, for a square lattice
(d =2,q =4!, The. c.instant, C, on the right-hand
side of (3.3) is adjusted for each iteration so that

(, + f/+ g, is maintained equal to unity [see (2.4)].
It has been pointed out by Berker and Ostlund'4

that the recurs'on scheme described above, while it is
approximate for a square (or hypercubic, etc.) lattice,
is actually an exact renormalization-group transfor-
mation for a certain class of models on lattices which
possess a hierarchical structure but lack translational
invariance. This fact is of some interest in connec-
tion with certain "anomalies" to be discussed below.
However it also serves to guard against nonphysical
results, such as negative specific heats, to which ap-
proximations are prone.

There are alternative Migdal-Kadanoff schemes
which differ from that described above. One consists
in reversing the order of steps (i) and (ii) above.
The difference in terms of flows and fixed points
between this scheme and the one we have used is

rather trivial: our fixed point values for a p,„etc. are
simply multiplied by a factor of b~ ', but the ex-
ponents are identical. On the other hand, if the
one-site interactions are not moved with the bonds,
as in the scheme of Emery and Swendsen" (see Ap-
pendix A), the results differ in several notable
respects from the scheme we have used.

y, = ln A, / ln b (4.1)

where A; is one of the eigenvalues of the recursion
relations of Sec. III linearized about the fixed point,
and b =2 in our case. Since all fixed points in an
equivalence class have precisely the same exponents,
only one example of each is given in Table III. For
fixed points in the invariant even space (2.11), i.e.,
those carrying a single subscript y, the exponents
have been separated into two sets, even (y!,y4y6)

mutation symmetries, the fixed points occur in

equivalence classes in which the different points are
images of each other under the permutation opera-
tions on a, b, and c as described in Sec. II. In Table
II we list only one example from each equivafience
class, while the number of members in the
equivalence class, m, is indicated in the second
column. The symbols for the other fixed points in
the same class can be obtained by applying appropri-
ate permutations of n, P, and y to the subscripts asso-
ciated with the symbol in the table, and simultaneously
the corresponding permutation of a, b, and c to both
the a, b, c columns and the („(b,(,. columns of the
table. For example, Table II gives parameter values
for the critical fixed point (8), and notes that there
are six fixed points in this equivalence class: the
symbols for the other five are: (8),p, (8) p,
(8) ~, (8)t!, and (8)». To obtain the parameter
values for (8)» from those given for (8), we
note that the permutation (nyP) applied separately
to each of the subscripts, y and o., of the latter yields
the subscripts, P and y of the former. The
corresponding permutation of a, b, and c is (acb).
Hence the parameters for (8 )» are obtained by tak-
ing the number in column a opposite (8), in th' e
table and moving it to e, the number in c to b, etc. ,
and also the number in column $, to (, , etc. A simi-
lar process is applied in the case of fixed points carry-
ing only one subscript. For example, the parameters
for (8)0& can be obtained from those listed for (8)0
by applying (bc) [or (acb) ] to the numbers in the
two sets of columns, as just described.

In the case of A and A', the recursion relations
result in families of fixed points described by one and
two continuous parameters, respectively. For (A'),
we have broken the family down into three separate
sets, as indicated in Table II, in order to distinguish
some of the flows (Table IV). Presumably a similar
decomposition is possible f'or (A ), but wi: have not
attempted to carry it out. The infinite temperature
fixed points are denoted by (A ), consistent with oth-
er notation, and (A )0 is invariant under all permuta-
tions. %e have no proof that we have found all the
fixed points, but various lines of evidence suggest
that the set listed in Table II is complete.

The renormalization-group exponents y; (some-
times denoted by l!.;) associated with different fixed
points and listed in Table III are defined by
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TABLE II. Fixed points of the approximate recursion relations for « =2,q =4.

Label a/q b/q (/q qT'

()')

(C)7

1

3

0.342 3

1

3

0.342 3

1

3

0.3160

0.693 15

0.539 2

0.693 15

0.539 2

0.693 15

2.085 9

0.4809

0.3160

0.282 1

1

2

1

2

0.282 1

1

2

1

2

0.4358 0.618 0

0.129 5

0.618 0

0.129 5

0.609 4

0.8090

1.1515

0.8205

(BA )

(BA )„
0.327 05

0.327 05

0.327 05

0.327 05

0.3459

0.3459

0.609 4

0.609 4

(A')

(A2)

0.278 75
1

2

1

3

0.278 75
1

2

1

3

0.4425
1—ln2
2

0

1—ln2
2

(A)

(A )0

I

3

1

2

1

3

1

2

0

1

3
ph

ph

ph 0

'See Eq. (2.7).
ba=b a=b= —.

2
1'a =1.7556q +b, a =b = —.

da

'c" =1
'a( —'

b
2 '-2 a+b+('=l.1 . 1

a +&" =1

gb ( 2. ( ~ 2. b+(-. 1
1 . 1

"a,b, c' ~~ 0 and a + b + c"' = 1.

TABLE III. Exponents of the various fixed points listed in Table II [see Eq. (4.1)).

Label Codimension 3'2 S4 .V6 V1 V3

(~)
(C)7
(B)',
(B)„
(B),.
(BA )„
(BA )

0.8299

1.7734

0.7550

0.7473

0.7473

0.7473

0.7473

0.5186

1.8773

2(=«)

2(=«)

-1.2905

1.8679'

1.9365

lb

1.8792

1.8792

1.8792

1.8792

0.5472'

0.8108

—0.4160

0.1209

—0.2527

0.5827

-1.5752

'These exponents are doubly degenerate; see text.
The M igdal-Kadanoff scheme predicts y1 = « —1 for all dimensions.
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TABLE IV. Summary of renormaliza-tion-group flows

linking the various fixed points.

(y)
(C&,

(C), (C)p, (C), (BA), (BA) p, (BA)„
(BA&., &BA)p, &B&'. &B&p &B)„

(BA)„
(BA ),. (BA )„,(BA ) p, (B )

(B)„,(A'), (A')',

(B)',
(B)„
(B&,.

(»., &»„,&A')', , (A).
&B),.&B),p
(A2), (A)

(A')

(A 2) 0

(A'),
(A)0

(A)

(A2), (A2) p, (A')

(A'&. . (A'), , (A),

(A).. (A),. (A),
(A)'„, (A)p

and odd (yt, y3) correspondng to eigenfunctions be-

longing to the even and odd irreducible representa-
tions of the group I (ab), E j. In the language ap-

propriate to a Landau or classical descriptions of tri-
criticality3'2 the odd eigenvalues correspond to the
odd fields coupling to s and s3, where s is the scalar
order parameter, while the even ones corrcspond to
the fields coupling to s', s~, and s . In the case of
the Potts fixed point, ( Y), the "even" exponents
correspond to the identity and the "odd" exponents
to the two-dimensional irreducible representations of
the permutations of a, b, and c; naturally, the "odd"
exponents are twofold degenerate. In the language of
a two-component order parameter s =—{s„,s, ) the odd

eigenvalues include those of the ordering field h cou-

pling directly to s. For fixed points which are not in

invariant subspaces, the exponents arc listed in a
manner corresponding to their more symmetrical
counterparts.

The leading odd or "magnetic" and even or "ther-
mal" exponents for (8) and (BA ) in Table III may

be compared with the exact results' y~ =
8

=1.875

{note that this corresponds to y4 for (8),) and

y2=1 for ordinary Ising critical points in two dimen-
sions. For the Potts point ( Y) and the tricritical
points (C), exact values are not known. However,
there is a plausible conjectur'c" that y~ =—„=1.8667,

yt= —, =1.200 for (Y) and yt =—=1.925,

y2= —, =1.800 for (C).
At the (A2) and (BA ) fixed points there is an

eigenvalue exactly equal to d, while at (A3) there are
two exponents equal to d, in accordance with what

one would expect for phase coexistence. ' In addi-

tion, as one would expect, yt and yt at the (BA )
fixed points agree with the values for (8)~. That
these desirablc features should be reproduced by thc
M igdal-Kadanoff approximate rcnormalization
scheme is not a priori clear, but the observation of
Berker and Ostlund that the recursion relations are
realizable on a definite, if unusual, model makes the
result somewhat less surprising.

Table III also shows the codimensions of the rnani-

folds which flow into {and are thus "governed" by)
the various fixed points. Wc remind the reader that
in thc usual renormalization-group phenomenology,
the manifold governed by the fixed point is (typical-

ly) in the same universality class as the fixed point.
The codimension of this manifold (the dimension of
the parameter space less the dimension of thc mani-

fold) is equal to the number of positive exponents at
the fixed point and hence to thc number of relevant
scaling fields. However, the manifolds governed by

various fixed points of the same type, e.g. , (8) or
(BA ), may be part of a larger smooth thermodynam-
ic manifold of a particular type. In this case thc codi-
mension of the former may bc greater than the codi-
mension of thc latter; i.e., the dimension of the man-

ifold governed by a particular fixed point can be less
than that of the thermodynamic manifold of which it

is a part. This feature of the renormalization-group
flows will be discussed further below.

The renorrnalization-group flows linking the fixed
points are summarized in Table IV, using the follow-

ing convention. Prom the immediate vicinity of a
fixed point listed in the first column there are flo~s
to all of the fixed points listed in the second column,
and a/so to all fixed points which can be reached by

&B& g &8& {8&p

FIG. 2. Schematic diagram showing a selected set of fixed
points and some of the interconnecting flows.
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flows from the latter. Thus, for example, there is a

flow from (C) ~ to (A') ~ even though the latter is

not explicitly listed in the second column opposite
(C)„ in the first. Once again, only one member of
an equivalence class is listed in the first column,
since flows for the other members can be determined
quite easily using symmetry.

Due to the high dimensionality of the parameter
space and the large number of fixed points, it is not
very helpful to present all of the fixed points and
flows on a single diagram. A selected set of fixed
points are shown in a schematic projection in Fig. 2,
which clearly sho~s the threefold symmetry associat-
ed with the Potts, tricritical, and various critical fixed
points. We turn now to a discussion of this figure
and other features of interest.

V. SOME PROPERTIES OF THE FIXED POINTS
AND PHASE DIAGRAMS

A. Critical fixed points

The critical fixed points (8 ) listed in Tables II to
IV and displayed in Fig. 2 show a number of interest-
ing features. First, it is worth noting that (8),z and

(8),„can be regarded as "satellites" of (8),. Not
only are the exponents the same (with one excep-
tion), but also these three fixed points in a sense
represent identical physical situations. In particular,
the extra relevant eigenvalue associated with (8)„
corresponding to a flow outv ards to the two satel-
lites, does not mean that (8) is in a separate
universality class from (8), . Further details re-

garding this situation will be found in Appendix B.
Of course both (8) and (8)& possess a correspond-
ing set of satellites to which the same discussion ap-

plies.
By contrast, the critical points ( 8 ) and (8 )o

have exponents which are slightly different, Both
fixed points occur within the invariant even space
(2.11), yet within this space they play different roles.
The first, (8 ) ~, is an attractor for critical points
corresponding to symmetry-breaking phase transi-
tions at which (S, ) acquires a nonzero value despite
the fact that H = H3 =0 in the spin representation
(2.6). On the other hand, (8)o is a sink for critical
points bounding first-order phase transitions across
which, (S,') is discontinuous, but no symmetries of
the Hamiltonian are broken.

The difference in the exponents between (8), and

(B)~~ must be regarded as a defect if one regards this
renormalization group as an approximation for
describing the model (2.2) on a square (or hypercu-
bic) lattice, for one can show quite rigorously (see
Appendix A) that the corresponding critical points
should have the same Ising-like properties. On the
other hand, one may (as noted in Sec. III) regard the

renormalization group as providing an exact solution
for a particular model which lacks the usual transla-
tional symmetry. Viewed from the perspective just
mentioned, one can regard (8)o as corresponding to
some special sort of multicritical point. Unfortunate-
ly, the theory of infinite systems lacking normal
translational invariance is not very well understood,
so it is hard to say anything more about the possible
character of such points and its significance, if any,
for more realistic systems.

B. Global phase diagram

The fixed points and flows described in Sec, III
serve to determine the global phase diagram of the
three-component model in what Furman et al. '

termed the "principal energy triangle, " defined by a,
b, and c all non-negative, which is equivalent to
J ~0, J + K ~

~
H3~. (hen these parameters be-

come negative one expects antiferromagnetism at low

temperatures, and the bond-shifting recursion rela-
tions we have employed are not expected to give phys-
ically meaningful results under such circumstances. )
This diagram differs from that obtained in the mean-
field theory in two significant qualitative aspects, In
the first place, the "shield" region which Furman
et al. identified near the center of the principal energy
triangle has completely disappeared. This is not
surprising, since the existence of such a region is

closely connected with the first-order nature of the
transition predicted for the three-state Potts model in

a classical theory, whereas our renormalization-group
approach (in agreement with exact results for d =2)
predicts a continuous transition. Thus at the center
of the principal energy triangle we find a simple situa-
tion, Fig. 3, in which three lines of tricritical points
meet at the three-state Potts point. [This may be
contrasted with Fig. 3(b) of Ref. 1.]

A
Q

FIG. 3. Projection of the phase diagram on the principal

energy triangle (the coordinate of a point is the center of
mass if weights proportional to a, 6, and c are placed at the
corresponding vertices). There are three lines of tricritical

points (C, , C&, C,.) which meet at the three-state Potts point

at the center of the diagram.
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TABLE V. Estimates of the tricritical coordinates for K =0 on the square and triangular lattice.

Lattice This paper Monte Carlob
Renormalization

group

Square

Triangular

J/q

Jjq

3.1

2 ln2 =1.4
3

4

2 ln2 =1.4
1

2

2.8

1.5

2.5

1.3

3 4c

1.7'

1.8d 2.6'

1.0e

'Reference 2.
bMonte Carlo simulations for a 60 & 60 (first column, Ref. 22) and a 100 && 100 (second column, Ref. 23) array. The simulations
probably give values of the parameters which are too small (private communication from D. P. Landau).
'References 6 and 7.
"Reference 8.
'Reference 9.

The other feature which is qualitatively different
from mean-field predictions is that the lines of tricrit-
ical points extend out to the vertices of the principal
energy triangle, as shown in Fig. 3, and are not inter-
rupted, in their course outwards from the center, by
the fourth-order points which occur in mean-field
theory (see Fig. 3 of Furman er al. '). Since mean-
field theory makes predictions which are qualitatively
incorrect near the center of the principal energy trian-
gle for d =2, it is perhaps not surprising if it fails to
give qualitatively correct answers else~here, as well.
However, it is perhaps worth adding the caution that
real-space renormalization-group methods'are also
quite capable of giving qualitatively misleading
answers (as, for instance, in the case of q-state Potts
models for q ~ 5, prior to the recent work of
Nienhuis et ai. '9) Hence, alth. ough we are inclined
to favor the diagram in Fig. 3 as qualitatively correct
for d =2, some doubt must remain until it has been
confirmed by other procedures.

In terms of the various thermodynamic manifolds
which occur in the principle energy triangle, we
predict a three-state Potts point Y of codimension 5,
and, in addition, the following subset of the mani-
folds described by Furman er ai. ' (see their Tables 11

and 1V): tricritical C„Cb,C, , critical end points
(BA ),(BA)&,(BA)„critical 8, and first order A3

and A'. Note that in the case of 8, A3, and A2, we

expect only one smooth manifold (for each entity) in

the principal energy triangle. This is, of course, not
inconsistent with the renormalization-group flows
having several different fixed points governing the
different parts of the same manifold (but see the dis-
cussion of (8)~~ in Appendix A).

The characteristic phase diagram' for thc thrce-
state Potts point, Y, is simply that part of the global
phase diagram which occurs in the immediate vicinity
of this point. It is evident from Tables III and IV

that in the five-dimensional space, Y is connected to
three distinct lines of tricritical points C, and each
pair of lines is joined by a two-dimensional surface of
critical end points BA (note that the satellite fixed
points (BA )~ and (BA )» are really physically in-
distinguishable from (BA ),). The remaining enti-
ties, 8, A', A', and A, all occur on single, connected
manifolds of appropriate codimension.

In terms of actual numerical results for the loca-
tions of different entities, our Migdal-Kadanoff re-
cursion scheme is not particularly accurate. The
values of J for (8), and ( Y), and of K for (8)a

are smaller than the corresponding exact results'6' "
by about 30%. Interestingly enough, the ratios of our
rcnormalization-group values to the exact results for
these quantities are almost identical (the average ra-
tio is 0.69) in all three cases, varying by less than 2'/o.

The location of the Blumc-Capel tricritical point
in the invariant even space (2.11) at K =0 has
been estimated previously by several different
methods, ' 9""and the results are shown in Table
V along with the values (for a square and triangular
lattice) given by the present recursion relations.
Again, the present results, while a considerable im-
provement on mean-field theory, do not seem very
accurate.

VI. TRICRITICAL POINTS

The classical theory of tricritical points described by
a single order parameter, of the type one expects in
an Ising model or in an ordinary fluid mixture,
predicts a codimension of 4. This means that four
thermodynamic field variables are needed to describe
thc characteristic phase diagram near a tricritical
point, and that additional field variables will Simply
produce lines or surfaces, etc. , of tricritical points.
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Our result showing four relevant eigenvalues (posi-
tive y;, Table III) is in accord with this expectation
and with previous real-space renormalization-group
calculations. In addition, however, the fixed points
and flows of Tables II and IV provide a description of
the characteristic four-dimensional phase diagram for
a tricritical point, which has not previously (so far as
we know) been obtained using renormalization-group
methods.

The manifold of critical points inside a small ball
centered at a tricritical point in a space of four fields
is expected, from the classical theory, to resemble a
two-dimensional disk, see Fig. 4(a), with a cut run-
ning from the periphery (where the manifold leaves
the ball) to the center. '4 Each edge of the cut is a
line of critical end points, and these two lines meet in

a cusp at the center of the disk, i.e., at the tricritical
point. This "cut disk" picture appears in an interest-
ing way in terms of the fixed points and flows near a

single tricritical fixed point in our renormalization-
group analysis, as indicated schematically in Fig. 4(b).
Not unexpectedly, there are two separate critical
end-point (BA) fixed points, one for each of the
manifolds constituting the edges of the cut. Howev-
er, the multiplicity of critical (8) fixed points is

something of a surprise. There seems to be no good
reason why a single critical fixed point should not
suffice, as illustrated in Fig. 4(c), and it is an in-

teresting question why so many actually occur in the
present renormalization group. The existence of the
satellites of (8)~ may perhaps be related to the fact
that this fixed point occurs with the field D, in (2.6),
equal to —~. On the other hand, it is not clear why

(B)„and (8)p should play an essential role near

(C),. It may be that the threefold symmetry of the
global phase diagram (see Fig. 2) imposes certain
constraints on the flows, and leads in some natural
way to the large number of critical fixed points
shown in Fig. 4(b).

Yet another way of viewing the renormalization-
group flows for a tricritical point may be helpful. In
Fig. 5(a) we have sketched the phase diagram near a

tricritical point in the three-dimensional T, DT, HT
space, showing the "wing" critical lines diverging
from the tricritical point. Also indicated are the fixed
points which govern the manifolds which include the
critical and tricritical points. (The reader must resist
the temptation of supposing that the flows to the crit-
ical fixed points actually take place along the critical
lines in this diagram, since this is not, in general, the
case. ) In the case of a tricritical point in an n-vector
model with n ~2, the wing critical points will belong
to a different universality class (namely n =1 or
Ising-like) from those in the symmetry plane H =0."
It would be quite impossible to describe this situation
by the simple fixed point structure suggested in Fig.
4(c). It would still seem, however, that a structure
less complicated than in Fig. 4(b), say one with only
three critical fixed points, would suffice in a natural
way.

For H3 (0, Fig. 5(b) replaces Fig. 5(a) as a

schematic phase diagram in the T, DT, HT space: note
that the tricritical point is replaced by a single critical
point. Again, the fixed points governing the dif-
ferent critical manifolds are indicated. In this case
there is no longer any flow to (8 }„which lies in the
even space. The continuous line of critical points, all
of which are expected (on physical grounds) to be
Ising-like, can be divided into two segments. One of
these, which includes the portion with DT (0, flows
to (8)», and the other flows to (8) &. The point
which separates these two segments flows to (8)&0
and is on a smooth extrapolation (the dashed line in

the figure) of the three-phase line. As explained
above, the eigenvalues of (8)&a and (8)» are not
precisely equal, so that within our approximation this
point on the critical line has distinct exponents (see
Appendix A). The dashed line, together with the

B

/

I

I
&B&a' :&B&p

(o)

& B&p B&oP

& BA&P„&BA&~y

(b)

&BA& &EiA &

(c)

FIG. 4. {a) Topology of the critical surface near a tricritical point {see text). {b) The topology of fixed points and flows near
a tricritical fixed point in the Migdal-Kadanoff scheme. {c) A hypothetical minimal set of fixed points and flows near a tricritical
point.
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& A'&,

HT

(a)

FIG. 5. Coexistence surfaces and critical lines (schematic)
in the T, HT, DT, space for (a) H3=0 and (b) H3T negative.

The fixed points governing the different manifolds are as in-

dicated.

three-phase line, divides the main coexistence surface
into two regions, one flowing to (A') ~ and the other
to (A')„whereas the dashed line itself. flows to
(A2)ap. Thanks to the fact that all of these fixed
points have an eigenvalue equal to d(=2), as noted
above, they all correctly describe first-order transi-
tions.

VII. CONCLUSIONS

The principal conclusions of our study are two in

number, and each of them is connected with some
interesting problems, regarding both the model and
renormalization-group methods, which can only be
answered by further study.

First, the global phase diagram for the three-
component model in two dimensions, within the
principal energy triangle (a, b, e ~0 or J ~0,
J + K ~

~ H3~ ) appears to have a remarkably simple
form, especially when compared with the mean-field
results of Furman et al. ' In the five-dimensional
field space one finds a three-state Potts multicritical

point connected to three lines of tricritical points, Fig.
3, and then the minimal set of critical end-point man-

ifolds which one might have anticipated under this
circumstance. The "shield" region of the mean-field
theory disappears, and we also find no trace of the
fourth-order points, double critical points (82), etc.
which are present in the classical global phase di-

agram. Is the renormalization-group result really reli-

able for d =2? And assuming that it is, at what
dimensionality do the various classical features reap-
pear? The answers to these questions must await
further study.

That part of the global phase diagram which is near
the three-state Potts point is what one believes to be
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APPENDIX A: THE INVARIANT MANIFOLD
a b c 0(J H3 0)

Griffiths' and Bernasconi and Rys" have sho~n
that the manifold a = b, c =0 for the three com-
ponent model (or J = H3 =0 in the spin representa-
tion) can be mapped by an exact transformation onto
the spin- —, Ising model, and thus the corresponding

phase diagram is known exactly for a square or tri-

angular lattice. Specifically, for a square lattice there
is a line of critical points at

2coshp, , =exp@,. ; T = [8ln(1+~2) 1
' (A&)

the characteristic five-dimensional diagram for this
entity. While present evidence suggests that this type
of multicritical point does not occur in three-
dimensional systems, it is not inconceivable that at
some future date experimental studies of two-

dimensional systems will yield sufficient data to check
our predictions.

Second, the renormalization-group we have em-

ployed produces the expected classical phase diagram
near a tricritical point (with, of course, nonclassical
exponents) by means of flows to two critical end-

point fixed points, as one might have expected, and a
total of seven critical fixed points, many more than
seem (intuitively, at least) necessary in order to pro-
duce the desired result. To be sure, two of the extra
fixed points are off-symmetry "satellites" which

seem, in some sense, physically equivalent to a fixed
point in the same invariant space as the tricritical
point. We are, however, not sure whether they are
necessary in all renormalization-group schemes. It
would be of interest to see if one could produce a re-
normalization group which could produce the global
phase diagram near a tricritical point using a smaller
set of critical fixed points. Does one really need
more than the single point shown in Fig. 4(c)? The
answer is not obvious. In terms of the set of fixed
points which actually occur in our Migdal-Kadanoff
approximation, it is fairly easy to describe various
sections of the global phase diagram; examples are
shown in Figs. 3 and 5. Some of these aspects, in

particular in the vicinity of the tricritical lines, will be
taken up in a future paper.
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(where we adopt the convention that P, = —p,, ) and
a two-phase coexistence surface at smaller values of
T.

The Migdal-Kadanoff scheme used in this paper
maps this manifold onto itself and generates a critical
line with two segments, governed by the fixed points
(8) „and (8)tt, meeting at the fixed point (8)~~.
The coexistence surface is governed by the fixed
points (A'), (A')tt, and (A')o„and there are addi-
tional high-temperature fixed points whose properties
are unimportant for critical phenomena. The recur-
sion relations predict a phase diagram whose topology
is the same as the exact result (previous paragraph).
However, in some other respects the renormaliza-
tion-group scheme shows significant differences. The
exponents associated with (B)o are not exactly equal
to those at (8), and (8)», which means that

(8), is singled out as a special point on the critical
line. Indeed, the criticai line exhibits a (rather small)
cusp, I'ig. 6, at (B)o„whereas the exact result, (Al),
is a smooth curve. For the recursion relations to pro-
duce a smooth curve of critical points belonging to
the same universality class, it would be necessary to
have the "extra" positive exponent (relevant eigen-
value) for (8)~, yt in Table III, equal to —y4, as well

as the other positive exponents identical to their
values for (8), and (8)».

On the other hand, if we regard the renormaliza-
tion scheme as an exactly soluble model on a special
lattice, ' rather than an approximation for the square
lattice, (B)0 corresponds to some sort of multicritical

point with a codimension of 3, and of course the
same is true of (8)o and (B)ott. The argument re-

ferred to in the first paragraph fails for the special lat-

I

0

FIG. 6. Locus of critical points for a = b, c =0 projected
along the Taxis on the p,„p, plane: (i) the exact result and

(ii) Migdal-Kadanoff scheme. The inset shows (ii) in the
immediate vicinity of p,, =0 with the horizontal and vertical

axes magnified by factors of 3 & 10 and 3 && 10, respectively.

tice because the latter lacks the necessary translation-
al in variance.

The alternative recursion relations proposed by

Emery and Swendsen" also leave the manifold
J H3 0 invariant and produce a line of critical
fixed points at

2 cosh p, , = expp, , ; T =0.8205/q (A2)

together with a line of discontinuity or first-order
fixed points at T =0, and a surface of fixed points at
T = ~. The phase diagram in this scheme is in better
agreement with the exact results in that the critical
(fixed) point at p,, =0 (H =0) has the same proper-
ties as all the others. (Some disadvantages of this re-
cursion scheme are that its "magnetic" exponent is

significantly smaller than the exact value, and there is

no exponent equal to d at any of the discontinuity
fixed points. )

APPENDIX B: CROSSOVER TO THE SATELLITE
FIXED POINTS

Our Migdal-Kadanoff recursion relations predict
flows from the symmetrical fixed point (8), to its
off-symmetry satellites, (8)~ and (8)», but there
is no corresponding crossover between two different
critical regimes, and indeed there is a sense in which
the three fixed points can be considered to be a sin-

gle point. The same comment applies to (BA ), and
its satellites (BA ) and (BA )».

To see that this is the case, note that (B)~, (8), ,

and (8)~tt all occur at $,. =0 (Table II), which means
that p„. in (2.2) is equal to —~. Thus the Boltzmann
factor fixes the average of P, ' equal to zero for every
i, as a consequence of which the energy, (2.2), and
the corresponding free energy are independent of a
and b. Since the renormalization-group flows from

(8) to (8), keep all the parameters except for a
and b fixed, it is no surprise that they leave the free
energy unchanged and thus produce no change in

critical behavior.
A similar analysis applies in the case of (BA )„

(BA ) ~, and (BA )», which occur at a and b = ~
(Table II), with flows between them corresponding to
a variation of a —b with all other parameters fixed.
The Boltzmann factor, see (2.2), then implies the
vanishing of the averages of all nearest-neighbor pro-
ducts of the form P,~P,' and P, P, as a consequence
of which a variation of a —b changes neither the en-

ergy nor the free energy. This fact is correctly re-
flected in the renormalization-group formula for the
free energy.

A similar "Ising-to-Ising" crossover has been
found in renormalization-group studies based on the
6 =4 —d expansion" and in a real-space renormali-
zation-group calculation. '
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