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The critical properties of Potts models with random bonds are considered in two dimensions.

A position-space renormalization-group procedure, based on the Migdal-Kadanoff method, is

developed. While all previous position-space calculations satisfied the Harris criterion and the

resulting scaling relation only approximately, we found conditions under which these relations

are exactly satisfied, and constructed our renormalization-group procedure accordingly. Numer-

ical results for phase diagrams and thermodynamic functions for various random-bond Potts

models are presented, In addition, some exact results obtained using a duality transformation,

as well as an heuristic derivation of scaling properties that. correspond to the percolation problem

are given.

I. INTRODUCTION

Phase transitions in two-dimensional models and
physical systems have been the subject of intensive
theoretical and experimental studies. ' In particular,
order-disorder transitions in adsorbed monolayers
have provided realizations of various models of
theoretical interest. ' Investigation of the critical
behavior of these systems are often hindered by
finite-size effects and substrate imperfections, The
inhomogeneities that appear in experimental situa-
tions are in most cases too complicated for simple
theoretical modeling. Therefore theoretical studies
have concentrated mainly on the problems of
quenched bond and site dilution. Most detailed cal-
culations are limited to the effects of randomness on
Ising models. In particular, the dilute-bond Ising
model has been studied throughout the years by a

variety of methods„only recently have random Potts
models been considered. 4

While detailed calculations provide information
about the phase diagram, critical exponents, and ther-
modynamic functions of random systems, some im-

portant qualitative aspects can be understood on the
basis of general, model-independent arguments. For
example, if one considers the problem of bond dilu-

tion, it is quite obvious that when p, the bond con-
centration, is below the value for percolation p, , the
system consists of an aggregate of finite connected
clusters, and therefore no phase transition is expect-
ed. The free energy will contain singularities associ-
ated with percolation at p =p, and T =0 K. For fin-
ite temperatures, however, the singularities are ex-
pected to be different; or, in renormalization-group

language, the percolation point is a multicritical point,
from which the system "crosses over" to some ther-
mal critical behavior.

In another limit, for p = 1 the free energy is that of
the pure system. As dilution is introduced, a transi-
tion line appears in the concentration-temperature
plane. A question of central importance, namely,
under what conditions is this line characterized by the
same exponents as the pure system, was addressed by
Harris. ' He showed that randomness does not
change the critical behavior of the pure system pro-
vided 0, , the specific-heat exponent is negative. The
Harris criterion can also be derived by the replica
method, ' combined with scaling arguments. Such
analysis yields that the crossover exponent that
corresponds to the perturbation associated with ran-
domness must have the value $ = e/v.

We note that none of the existing approximate
(position-space) renormalization-group calculations of
the bond dilute Ising model satisfies this scaling rela-
tion. This is the first issue addressed in the present
work; namely, the construction of a (position-space)
renormaiization-group procedure that satisfies the
Harris criterion. One hopes that by using a pro-
cedure that correctly reproduces scaling near the pure
system fixed point, the behavior of the bond diluted
Isirig model can be studied in a quantitative manner.
In particular, since o. =0 for this model, the operator
that corresponds to randomness is marginally ir-
relevant at the pure system fixed point. The presence
of such an operator is known to induce logarithmic
corrections to the critical behavior. '

Another case of interest is that in which Ap „,) 0.
Randomness is then relevant, and the critical
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behavior may be dominated by a "random fixed
point. "" This could be the situation, for example,
for the random-bond three- and four-state Potts
models. To our knowledge, no previous work em-
ploying position-space methods has studied the ex-
istence of such a fixed point, the exponents associat-
ed with it or the bond distribution that characterizes
it."

In experiments it is difficult to introduce bond dilu-

tion, i.e., a certain fraction of zero bonds in a matrix
of nonzero interactions. However, it is possible to
make systems with different nonzero bond strengths
distributed at random. For instance, when the mag-
netic interaction is induced by nonmagnetic atoms
between magnetic ones, one can use different non-
magnetic atoms and obtain different superexchange
interactions, For this reason we studied phase di-

agrams and thermodynamic properties of such sys-
tems.

We succeeded in constructing a position-space re-
normalization procedure that satisfies exactly the
scaling relation Q = a/v. The general considerations
that led to our procedure, and its implementation for
the bond dilution problem are discussed in Sec. II;
details of the method are presented in Sec. III. In
Sec. IV we use duality transformation and geometri-
cal arguments to give relations between different ran-
dom systems. We obtain an exact critical line and
deduce some characteristics of the percolation net-
work from known thermal properties. We also dis-
cuss the influence of negative bonds in Potts models;
in particular we note that frustration has different ef-
fects in Ising and Potts models.

The numerical work concentrates on bond-random
q-state Potts models, in which q, the number of
states in the Potts model, is being used as a parame-
ter to adjust a for the pure system to have its known
values, " so that the effect of sgn(a) on crossover
can be studied. Results for the phase diagrams and
critical behavior are given in Sec. V. Section VI sum-
marizes our study.

II. HARRIS CRITERION

In this section we consider how the Harris cri-
terion' can be incorporated in a position-space
renormalization-group calculation. First, the criterion
is rederived on the basis of the original heuristic ar-
gument. Then an exponent relation resulting from
scaling is given (in the context of the replica
method). Finally, we show how the criterion can be
exactly incorporated in a position-space technique.

The problem, as originally posed by Harris, ' con-
cerns the critical behavior of a system into which a
small amount of randomness has been introduced.
For example, one considers a situation where a ran-
domly selected fraction p of the (nearest-neighbor)
bonds has been removed, and asks under what condi-

tions can the critical behavior of the dilute system be
identical to that of the pure system. Harris assumes
that the system exhibits one sharp transition at tem-
perature T, (p). Then various subsystems I of size L,
are considered. If L, ) g, , where $1 is the local corre-
lation length, such a subsystem can be viewed as in-

dependent of the rest of the system, and (I —
I
T

—T„(pl)I, with pI the local impurity concentration.
The concentration pI fluctuates about its mean value

p with deviation Apl —LI ' and therefore

2' (p) + &If& (2. l)

with some coefficient a/. This picture of a sharp
transition and the assumption of a single underlying
length scale is self-consistent if

I & —&, (p) I » (;"',
and, therefore

I & —&.(p) I » I & —&, (p) I'""

(2.2)

(2.3)

This relation, in conjunction with the scaling law
dp=2 —e, leads to the condition o. & 0.

The critical behavior of random systems can be ad-
dressed via the replica trick' and scaling arguments.
When bond randomness is introduced into a model
with say, nearest-neighbor interactions between spins
(Ising, n vector, Potts, etc.), the replica method
yields an effective Hamiltonian that couples n replicas
of the basic interacting system. ' In particular, if the
pure system is characterized by the Hamiltonian

H=X (ar) (2.4)

where a ( r ) is the energy density operator of the
original nonrandom system, The parameter 5 is pro-
portional to some measure of the randomness. For

I

vanishing randomness b = 0, and H, ff reduces to n

decoupled systems. Since the coupling between the
replicas has, to lowest order in the local variables, the
form a e& (energy-energy coupling) the scaling index
of this operator is given by9

Xg = 2X~ (2.6)

The eigenvalue associated with randomness near the
decoupled (pure) system critical point is given by

y„=d —2x, = d —2(d —y, ) = u/v (2.7)

Therefore the eigenvalue that corresponds to ran-
domness, near the pure system fixed point, is given
by a/v, where n, v are the pure system exponents.

the effective Hamiltonian of the replicated system is

given by

r
n

H,„„=X X e (r)+6$e (r)a&(r)+r,a- 1 e',P

(2.5)
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This scaling argument applies near the pure-system
limit, and is pertinent to the relevance of randomncss
near the pure-system fixed point. If o. & 0, random-
ness is relevant, and the behavior of the random sys-

tem will in general differ from that of the pure sys-

tem. In this case the renormalization-group trajec-
tories can take the system to a stable random fixed
point "'4 Note that at this fixed point the replicas
are coupled, and therefore the scaling analysis

presented here is not applicable there. Therefore, we

cannot conclude, on the basis of scaling, that the sta-

bility of a random fixed point is determined by the

sign of the respective specific-heat exponent. If there
is a stable random fixed point, it is in general charac-
terized by a fixed distribution of couplings. &his
means that at each length scale there is a continuous
distribution of interactions between spin regions or
block spins. It is not obvious that close to such a

critical system a description in terms of a single corre-
lation length is appropriate. %e would rather expect
a distribution of local correlation lengths. Without
the assumption of a single local correlation length the
arguments of Harris do not hold any longer. %e
conclude that the pure system is stable against ran-

domness if a & 0. Ho~ever, we cannot see that at a
stable random fixed point o, will always be negative.

The scaiing of randomness [Eq. (2.7)] at the pure

system is not necessarily satisfied by approximate cal-

culations. Indeed, in the literature we have not
found any real-space renorrnalization methods which

give this scaling exactly. Thus one of our aims was

to restore the scaling relation y„=a/v in the context
of an approximate position-space renormalization-

group calculation. To achieve this we assume that
(a) our renormalization-group recursion relations re-

place n = b" bonds K, by a single new bond E',
where b is the standard length rescaling factor. An
additional assumption is that (b) aII bonds are
equivalent; i.e., the recursion relation that determines
the new coupling has the form

K'=F(K, ,K, , . . . , K„), (2.8)

with F invariant under permutation of the indices
l lp ~ ~ ~ pno

The bonds K; are assumed to be taken from a ran-

dom, independent distribution, characterized by aver-

age value Jf: and standard deviation o-&,

(K, ),.„=K, ((K, K)(K) —K)).„=(—r~2S;j . (2.9)

appear with sizable probability, one can expand Eq.

If the distribution is narrow, that is only those values
for which

[SK, //K=]K, -Ki/K « I

(2.8) to first order in SK,

K'=f(K) = F(K, . . . , K) .

Near thc pure-system fixed point K one has

(2.11)

(2. 1 2)

Also, since we assumed all bonds to bc equivalent,
we have

9F 1 by by —d

gE; g.- g n
(2.13)

Therefore near the pure-system fixed point (i.e.,
K, = K'+ SK;) the recursion relations for the random
system have the form

K' =K'+ S' "XSK,
-

(2.14)

thereby generating a new, renormalized bond distri-
bution. The variance of the new distribution

(~,')'= ((K'- K")').,„,
can be found from Eq. (2.14), using Eq. (2.9), and is
given by

(o ' )'= &" "(o. )' (2.16)

Therefore, viewing the variance 0-~2 as the scaling
variable that measures randomness, this analysis
yields

y, =2y —d =n/v (2.17)

and the scaling relation (2.7) is satisfied. It is impor-
tant to note that we expanded the recursion re:lation
about the average value of K, . This is valid only if
the width of the K; distribution is narrow; in particu-
lar, if no bond takes, with large probability, a value
that deviates significantly from the average.

This condition is not satisfied when bond dilution is
considered. In that case a system which is almost
pure is characterized by a small concentration of
bond impurities, which, however, take values that are
not close to the average value K. To obtain the scal-
ing relation (2.7) for the dilute case a further as-
sumption has to be made about the function
F(K~, . . . , K„), namely (c) for K ) K~ ) 0:

F(K,K, . . . , K) & F(Ki,K, . . . , K) )Ki . (2.18)

Consider now the dilute-bond case where each bond

rr

K'=F(K. . . . , K)+ X SK, +O(SK, ') .
BK; /c. =K

(2.10)

The first term is the recursion relation of the pure
(nonrandom) system, e.g. ,
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can have the value K with probability p, or the value
zero with probability q =1 —p. For small q, we can
follow the bond distribution to lowest (first) order in

q, under consecutive applications of the renormaliza-
tion-group transformation.

We now show, that under repeated iterations of a
properly defined renormalization procedure, this
bond distribution maps onto one which is sufficiently
narrow, so that an expansion such as Eq. (2.10) is

possible, and the analysis that follows is applicable.
To see this, note that after one iteration we have

r

F(K,K, . . . , K), (P= 1 —nq+0(q2)
K' = F (O, K, . . . , K), (P = nq + 0 (q')

other values, (P=O(q ) (2.19)

where 0'is the probability.
Using assumption (c) we note that subsequent ap-

plications of the transformation will drive the two

largest values of the coupling K' towards each other,
while the relative weight of the smaller coupling in-

creases. After I iterations, this weight is given by

q, = n'q+ 0 (q'). For small enough q, this weight is

still small enough so that values with probabilities of
O(q12) can be neglected. So after I iterations we

have, to leading order in q&, the distribution

(2.20)

Using our assumption (c), we note that K2 will ap-

proach K& from below, so that after I iterations

bK=Ki —K, «K . (2.21)

~I22 = qIRLK2 (2.22)

Further iterations reproduce the correct 'scaling

behavior; one gets

(2.23)

where the second relation is obtained by expanding
F(K,, K, , . . . , K~) about K2=K, , as was done for
the case of a narrow distribution. Thus, we obtain

Therefore, under I repeated applications of a prop-
erly defined renormalization-group procedure, a sys-
tem with a small fraction of missing bonds maps onto
the regime of a narrow bond distribution that was
discussed above. Once in this regime, expansions
such as Eq. (2.10) can be used, with

distribution dominated by the two largest values of
the coupling. Under iteration the weight of the small-

er of these increases, while their separation decreases.
Eventually one maps into a region in which the
separation is small enough so that the recursion rela-
tions can be expanded about the most probable cou-
pling, and the scaling relation (2.7) is obtained. This
picture makes physical sense; if a small fraction of
the bonds is missing, one should expect, after one
step of renormalization, that missing renormalized
bonds (K'=0) occur with very low probability.
Forcing the renormalized distribution into a two 5-
function form with one coupling fixed to have the
value zero, "will yield a procedure that violates the
scaling relation. For scaling to hold, the distribution
has to be such that allows the "competition"
between increasing weight and decreasing difference
between the dominant couplings.

III. POSITION-SPACE RENORMALIZATION METHOD

In the previous section we saw how scaling of ran-
domness near the pure system can be exactly. repro-
duced by simple position-space renormalizations. In
this section we describe such a renormalization
transformation. We generalize the Migdal-Kadanoff
recursion relations' for inhomogeneous systems' "
to random Potts models. The important part of the
method is a simple parametrization of the renormal-
ized bond distribution such that the transformation
satisfies the Harris criterion. We start from the
Hamiltonian of Potts spins S; = 1, . . . , q on a square
or triangular lattice

PH = X Kings, .s,.
&Ii &

(3.1)

H contains only nearest-neighbor bonds K„(in units
of the temperature) which are randomly distributed
with probability distribution P (K„). "

The version of the Migdal recursion relation' we
use is illustrated in Fig. 1. First, every other bond is

shifted. For instance, this gives new bonds

K)2 = K( + K2, K34 = K3+ K4 (3 2)

Then those Potts spins which are connected to only
two neighbors are summed over, giving new nearest-
neighbor couplings for the remaining Potts spins.
This decimation is conveniently, expressed by the ra-
tio of the two eigenvalues of the transfer matrix,

T (S;,S, ) = ex p(Kings, s, )

( ')2 p2y —d 2 (2.24)
e.g. ,

and the scaling relation (2.7) is again obtained.
In physical terms, for the bond diluted case we ob-

serve the following. Initially, the system flows to a

e~ —1r(K) =
e~+q —1

(3.3)

where q is the number of Potts states. Thus the new
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l, 2

FIG, l. Illustration of the renormalization procedure: In the first step every second bond is moved and added to the non-

shifted bonds. In the second step the summation over the spins on the edges is performed, giving the renormalized interactions

for the remaining spins.

coupling K' is given by

t(K') =t(K)+Kg)t(K3+K4) (3.4a)

of t'=t(K') by

P (t') = (I p')—g(t' t,
'

)—+p'g(t' t,' ) ,
— (3.5)

Finally, after rescaling with a factor b =2, we obtain
again the random Potts model as defined by Eq.
(3.1), but with a renormalized distribution of cou-

plings K,,',

P'(L) =
J g dK; P (K;) 8(L —K'(K), Kt, K3,K4))

4

where t~', t~,p' are determined by setting the first
three moments of P(t') to be equal to those of the
"full" distribution6 P'(t'). This leads to the recur-
sion relations

(3.4b)
1 8P= —.1—
2 (4g 3 + 82)1/2

t

(3.6a)

One sees that this method leads to the same equa-
tions for the square and triangular lattices. " Howev-

er, the pure Ising critical temperature K, and the per-

colation concentration p which are easily obtained
C

from Eq. (3.4b) are closer to the exactly known

values of the triangular lattice than to those of the
square lattice.

It is easy to see that the recursion relation (3.4a)
-satisfies the conditions of Sec. II which are sufficient
to reproduce the Harris criterion. Thus, following

the full distribution of the couplings numerically we

would find the correct scaling behavior near the pure
system. However, calculations with full distributions
consume much computer time. , and statistical errors
make the determination of second derivatives such as
the specific heat very difficult, if not impossible.
Also the discussion of fixed point distributions and
their eigenvalues needs additional approximations.
%'e employ therefore a simple parametrization of the
renormalized coupling distribution.

Let us start with two bond strengths K] and K~
distributed randomly with probability 1 —p and p,
respectively. Equation (3.4a) gives renormalized cou-

plings K' with different weights p; which are easily
calculated. For instance, the new coupling may take
the value K~ obtained from

t (K,' ) = [t (2K') t (Kf + K)) ]

with probability pq =4p'(1 —p), etc. (for details see
Ref. 6). We approximate the new distribution P'(t')

t/'
p

= (t') + [8 + (4A'+8')'t'] (3.6b)

with

A = (t') —(t')',
8 = (t') —3(t') (t) +2(t')',

(3.6c)

(3.6d)

where ( ) means an average over the renormal-
ized full distribution P'(t').

This parametrization satisfies the Harris criterion.
In linear order in 1 —p, P'(t') is just a two 5 function
distribution which is reproduced exactly by the distri-
bution of Eq. (3.5). Therefore our approximation
contains the competition between increasing weight
and decreasing difference between couplings which is

responsible for the scaling of randomness (see Sec.
II). After a sufficient number of iterations the bond
differences are small, and the second moment scales
like b'~ ". Since we transfer the exact second mo-
ment to the distribution P(t') of Eq. (3.5), our pro-
cedure has the correct scaling behavior in this case,
too. Furthermore, on the percolation line (K, = O~,

Kq = ~), the Migdal recursion relation (3.4) gives
only zero and infinite bonds with renormalized
weight p', Thus in this case we obtain the same
results as in Ref. 6, namely, a percolation fixed point
with a critical exponent which describes the forma-
tion of geometrical clusters at the critical concentra-
tion. , The numerical results based on this procedure
for various random Potts models are discussed in

Sec. V, to which the reader may proceed directly,
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IV. DUALITY, GEOMETRICAL ARGUMENTS,
AND POTTS MODELS WITH COMPETING

INTERACTIONS

In this section we apply a duality transformation to
the random-bond Potts model. On this basis an exact
critical line is derived. Second, some heuristic
geometrical arguments are presented, that relate per-
colative and thermal critical properties. In particular,
an exponent g, that governs a purely geometrical pro-
perty, is estimated on the basis of thermal considera-
tions. Finally, we consider Potts models with com-
peting positive and negative bonds, randomly distri-
buted.

2'() ) q —1

J2 qlnq p —p,
for p ~p, (4.4a)

1 dT.

T, (1) dp,
2Jq

(1+Jq ) ln(1+ Jq )

model with infinite and finite bonds distributed at
random. Such a system is the dual of the dilute bond
case, for which results concerning the critical line
near the pure and the percolation limits are
known. ""Using these results, we obtain for the
case of randomly distributed finite bonds K2 = PJ2
(with probability p) and infinite bonds K, ~ (with
probability 1 —p)

A. Duality

Consider the Potts model on a square lattice, with

positive couplings K~, K2 distributed at random &pith

probabilities 1 —p and p, respectively. The dual K
of a coupling K; is given by'

One should note that in such a random system the
clusters connected by infinite bonds can be represent-
ed by a single Potts spin: these, in turn, are connect-
ed by couplings of finite strength, creating some kind
of random lattice of Potts spins.

K. K.
(e ' -1)(e '-1) =q (4.1)

B. Geometric picture of transitions near percolation

Replacing each coupling by its dual we get (on the
dual lattice) a system with couplings K~' and K;,
distributed at random, with probabilities 1 —p and p.
The free energies of the original system and its dual
have the same singular part, and therefore one can
write

F, (K,K, ,p) =F, (K,', K,', 1 —p) (4.2)

so that if there is a single singularity as a function of
p, it has to occur at p = 1 —p, e.g. , p = p, = —.This

exact result for the percolation concentration is well

known. '0 Consider now a system with p = —, , and

K2) K~ & 0. This system is self-dual at K~' =K2
(which implies also K~ = K2'); therefore, the critical

line at p = —, is given by the implicit equation

(4.3)

In Sec. V we compare this exact result with phase
boundaries obtained by an approximate calculation.

The duality relations (4.1)—(4.2) can be used to
obtain information about the critical lines of a Potts

This relation can be used to derive an exact critical
line for the random-bond Potts model at the percola-
tion concentration p = —,. Such a line has been

derived for the Ising model by Fisch. ' First, consid-
er the case K& = 0, K2 = ~, that corresponds to the
bond diluted system at T =0, and, therefore, to the
geometrical bond percolation problem. Using Eq.
(4.2), one gets

F, (0, oo,p) = F, (0, ~, 1-p)

r(K') = r"(K) (4.5)

where n is the number of spins in the chain and

(4.6)

is the ratio of the two eigenvalues of the transfer ma-
trix.

Since n is different for different chains, K' is dif-
ferent, too. Thus the diluted model has the same
singular free energy as a random-bond model for spins

Consider again a bond-diluted Potts model, this
time on an arbitrary lattice in d dimensions with
nearest-neighbor interactions. Just above the perco-
lation concentration we have many finite clusters and
one infinite cluster. We expect that summation over
the Potts spins in the finite clusters does not change
the singular part of the free energy. The same holds
for summation over chains of spins which are con-
nected to the infinite cluster at one end only. Thus
for a discussion of thermal critical properties it is suf-
ficient to consider only the backbone of the infinite
cluster. "' ' Near po this backbone consists of large
loops of chains of spins which are connected to each
other by nodes of mainly three bonds. According to
scaling theories, ""the average shortest distance
and the average distance along the chains between
these nodes diverge at p, as powers of p —p„with
critical exponents v and (, respectively. We can now

easily sum over the spins in the chains, i,e., spins
with two neighbors only. This gives a new interac-
tion K' between spins at two adjacent nodes. For the
Potts model K' can be expressed in terms of K as



at the nodes of the infinite cluster's backbone. These
nodes form a lattice with random structure.

Equations (4.5) and (4.6) aiso give us an estimate
for the critical temperature. To a first approximation
we may take into account fluctuations of the chain
lengths n by replacing n in Eq. (4.5) by some effec-
tive value no, which diverges near p, like" "'b'

p p»
no=A

Pc
(4.7)

Thus, the random-bond system of the node spins is

approximated by an average coupling Eo given by

r (Ko) = r '(K) .

The node la«ice will bc critical at some coupling K„,
and Fq. (4.8) can be inverted to obtam the critical

coupling E, of the original random system, e.g. ,

r(K,.) = [r(KO, )] (4.9)

The lattice structure of the node spins is not expected
to vary drastically as a function of p near p, . The im-'

portant part of the variation is taken into account via

the divergence of the distance between nodes, Eq.
(4.7). Therefore we can assume that near p, the crit-
ical coupling of the node spins is constant, to leading
order in p —p, . Since K, is large for p near p, Eq.
(4.9) can be expanded to yield, to leading order in

p p,, r

with

-x (p) p p»
e ' =A

p»

iinr(K„) i

(4.10a)

(4.10b)

(Inr (Ko, ) (
= In(1 +q/8) (4.11a)

Aq

It should be noted that comparison of Eq. (4.10a)
with exact bounds derived by Bergstresser'3 immedi-

ately yields g = 1, thereby yielding a purely geometri-
cal exponent on the basis of thermal and geometrical
considerations, "'b'

Equations (4.10a) and (4.10b) give us a relation
between a thermal phase transition and a pure
geometrical property characterized by the coefficient
A and exponent g. The same arguments hold for the
bond dilute XY model. '4 There the low-temperature
variable is K ' instead of e

Equation (4.10a) has also been derived by scaling
arguments. " Our position-space approach has the
advantage that we do not have to assume a certain
number of length scales and that we can give an esti-
mate for the coefficient A. We mentioned above that
near p, the node lattice has a coordination number
very close to 3. Thus it should be a good approxima-
tion to replace Ko, by the critical temperature of the
Potts model on a honeycomb lattice, 26 given by

with

8 =2' cos[-'tan '(4/q —I )'~'] (4.11b)

Using Eqs. (4.10—'4. 12) we find

ln(1+ q/8) (q —I )

q lnq
(4. 1 3)

with 8 given by Eq. (4.11b). Since A, is believed to
be lattice independent, 4 A should not depend on the
lattice either. Solving Eq. (4.13) we find for q =2, 3,
and 4 the values A =0.396, 0.382, and, 0.375 respec-
tively. For larger q, A increases to the value 0.5 for

q = ~. Thus A is relatively insensitive to q which
gives us confidence in our estimate, which yields for
no, the average number of bonds that connect adjacent
nodes of the infinite cluster's backbone

p»
no —0.4

p p»

We have shown that both duality and decimation
map different random systems. onto each other. This
supports the idea that if there is a sharp phase transi-
tion, we have a large universality class of random
systems. We want to mention that there are random

systems which belong to other types of universality
classes, like spin-glasses" and random field models. '9

C. Frustration in Potts Models

We now briefly discuss effects of competing in-

teractions in random Potts models. Ising models with

randomly distributed positive and negative bonds
have many new and interesting properties. These
models describe spin-glasses very well. 28

For the moment let us consider only bonds with

equal strengths and random sign. For Ising models it

has been shown that the concept relevant to physical
properties is "frustration"0" described as follows.
Consider a closed loop of bonds. If it is not possible
to arrange all spins in such a way that the energy as-
sociated with each bond is lowest, then the loop is

called frustrated. A measure of the frustration is the
product of bond signs around the loop. It is negative
if the loop is frustrated.

When a pure ferromagnct is diluted with frustrated
plaqucttes, the transition temperature decreases.
Domany32 has given a physical picture to estimate the
concentration where thc ferromagnetism disappears

Then, if we know A~ we can calculate A by Eqs.
(4.10). If our approximation makes sense, A should
be independent of the number q of Potts states, since
A is a geometrical property only. From the replica
method A, . is given by"

lnq

q —1
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Here p, =0.59 is the concentration for site percola-
tion. " Equation (4.14) gives p0=0.826 which agrees
very we}1 with Monte Carlo estimates "'
0.8 ~ po ~ 0.85.

Now consider Potts models with general q. First,
note that the gauge invariance of the Ising model,
which leaves the frustration invariant, is lost for

q W 2. This means, for q W 2, that a change of the
spin variable at one site cannot be compensated by a

change in the sign of bonds surrounding it. Thus the
ferromagnetic-antiferromagnetic symmetry in the
square lattice holds only for q = 2, the Ising model,

,Second, consider decimation. Summation over one
spin with two neighbors leads to a new coupling K'
for the neighbors given by

r(K') = r'(K) (4.15)

with t (K) given by Eq. (4.6).
So t(K) is a measure of the effect of interactions.

Therefore let us compare the ratio t ( K)/t (—K) in

order to study the importance of negative couplings
with respect to positive ones. One obtains

t( K) 2 —q+(q ——1)e "—e»

r(K) 2 —q+(q —1)e» —e" (4.16)

At low temperatures, i.e., for + K + ~, this ratio
approaches —(q —1) '. Thus for large q, at low tem-
perature, negative bonds are renormalized to zero
bonds. At high temperatures, in linear order in K,

0 0

Q C

FIG. 2. Two ground-state configurations of Potts spins,
the signs denote the signs of the interaction K5. . . the Potts

I ~J

variable is denoted by a, b, c. In the Ising case (no state c is

allowed), both squares are frustrated. In the three- or
more-state Potts model, however, only. the left square is

frustrated.

completely. He argues that ferromagnetism can oc-
cur only if the unfrusrrared plaquettes percolate. Con-
sider the square lattice. Then there are two types of
frustrated plaquettes, shown in Fig. 2, which occur
with probabilities 4p3(1 —p) and 4p(1 —p)', respec-
tively (p is the concentration of positive bonds).
Neglecting small correlations, " the unfrustrated pla-

quettes percolate when p & po given by

1 —4po3 (1 —po) +4po(1 —po)3 =—0.59 . (4.14)

0.8-

0.6-

CL 04-
I-

02

0 0.2

Pc

0.4 0.6 0.8 I.O

FIG, 3. Critical temperature as a function of concentra-
tion p of J2 bonds for different number q of Potts states,
Since J& is negative, there is an antiferromagnetic phase for
small p and q.

V. NUMERICAL RESULTS

This section presents the results of the Migdal-
Kadanoff renormalization transformation for the
bond-random Potts model in two dimensions. %e
use the parametrization and the recursion relations
described in Sec. III.

the ratio is —1 independent of q. Thus we expect,
that the slope dT, (p)/dp at p = 1 is only slightly sen-
sitive to q, in agreement with Ref. 4, whereas the low
temperature T, (p) is shifted to lower concentrations
with increasing q.

Third, note that frustration is strongly reduced
when going from q =2 to larger q. From Fig. 2 it is
obvious that any loop which contains more than one
negative bond is not frustrated. For instance this
leads to a phase transition in the q = 3 state antifer-
romagnetic Potts model on a triangular lattice. " Only
when one single bond is negative, no spin alignment
that satisfies all bonds is possible. Using Domany's
percolation arguments to derive po for q & 2, we see
that only the plaquette in Fig. 2(a) is frustrated. Us-
ing the same argument that led to Eq. (4.14), one ob-
tains pa=0. 7 for the square lattice. Thus for q & 2

the ferromagnetic phase at low temperatures is ex-
tended to much lower concentrations, in agreement
with the decimation arguments given above.

In Sec. V we also see that the position-space renor-
malization shows this effect; namely, that for low
temperatures the ferromagnetic phase extends up to
higher negative bond concentration, as the number of
Potts components increases (see Fig. 3).
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A. Random Fixed Point

We consider a q-component Potts model with J~
and J2, distributed at random with probabilities 1 —p
and p, respectively. As mentioned in Sec. II, the re-
cursion relations given by Eqs. (3.6) are conveniently
expressed in terms of the variables t~ = r( J~ /ksT),
rq= r(J2/ksT), and p, with r given by Eq. (3.3).
Note that t =0 for zero bonds and t = 1 for infinite
bonds (T=0). Figure 4 shows the space (t~, tq, p).
We can always choose t~ ~ t2. For t~ = t2,p is not de-
fined, and for p =0(l), r (2r~) is not defined. There-
fore the pure critical system, given by

r(K„) = r'(2K, )

corresponds to the entire dotted line in Fig. 4.
Furthermore, we know the percolation fixed point
from Ref. 6, located at p =0.38, In our three-
dimensional space it is threefold unstable, with all
three scaling powers given by y =0.611, independent
of the number q of Potts states. This shows that the
crossover exponent from percolation to thermal criti-
cal behavior is unity, independent of the direction in

coupling space.
Between the pure line and the percolation fixed

point we have a critical surface which separates the
ordered ferromagnetic phase from the paramagnetic
one. Details of the phase diagram will be discussed

below. We have already shown in Sec. II that our re-
normalization procedure satisfies the Harris scaling of
the randomness. Indeed, for negative specific-heat

/

exponent o.,„„,of the pure system (q ( 6.8 in our ap-
proximation) we find only the pure critical fixed
point, located at J~ = J2 and p =0.48. In this case the
whole critical surface flows under the renormalization
iteration into this fixed point. So the pure line is not
a line of fixed points. Our recursion relations give a
uniquely defined pure fixed point in the limit of van-
ishing randomness.

Increasing the number q of Potts states beyond
q =6.8 we obtain a positive value for n,„„,. In this
case we find a new random fixed point spliting off
from the pure one. Now the whole critical surface of
the random system flows into this random fixed
point. Its location changes with increasing q as
shown by the arrows in Fig. 4. When o,,„„,goes to
unity (q ~ in our approximation") the random
fixed point approaches the pure system again but not
at the pure fixed point.

The random fixed point has one relevant eigen-
value which gives a new specific-heat exponent a„,. „

for all random systems crossing the critical sur-
face. This means that the random system has a
divergent specific heat. In Table I the properties of
this new random fixed point are shown for o.p„„,
values which correspond to Ising, three- and four-
state Potts models. '" Figure 4 shows the difference
Ap A d as a function of n„„„. We expect the
largest effect for the three-state Potts model. In this
case o.~„„,= —is reduced to o.„,. „d„=0.24. When

n,„„,goes to one, the system approaches a first-order
transition. " In this case we see from Fig. 5 that the
random system also approaches a first-order transi-
tion.

O. l 0 I I I I I

0 pc
t

t2 0.08

C
O

0.06

I

0.04

FlG. 4. Parameter space of our renormalization equation
(3,6). t

& 2 are essentially bond strengths, p is the concentra-
tion of t2. The pure critical system is described by the dot-
ted line. The other two lines sketch the critical temperatures
of the usual (zero-bond) percolation (t& =0) and the infinite
bond percolation (t& = 1). The whole critical surf'ace spans
between these three lines. For ApUfz & 0 the critical surface
flows to a new random fixed point. With increasing n, this
fixed point splits off the pure fixed point and moves along
the dashed line.

0.02

0
0.2 0.4

~ pure

0.8

FIG. 5. Difference between the random and pure
specific-heat exponents as a function of the pure one.

I.O
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TABLE I. For o(p«e & 0, the critical behavior of the random-bond Potts model is governed by a

random fixed point. The fixed-point bond distribution in the form of Eq. (3.3), is parametrized in

terms of J~/J2 (where J, = k& TK, ), p (the concentration of J2 bonds), and T,/T, p„„. ap„„, and

A ndom are the respective specific-heat exponents.

+pure random Ji/J2
Te/ Tt. pure

(p = 1)

0
1

3
2

3

1

0

0.24

0.60

1

1

0.5

0.48

0.51

0,49

0.15

0.04

0

1

0.57

0.50

1

%e find that both op«e and n„„d, increase as a

function of the number q of Potts states. So, keeping
the bond configuration (for instance the cluster
geometry for diluted systems) fixed, the divergence
(versus finiteness) of the specific heat is the same for
both pure and random systems. This seems to be
plausible. However, it is in contrast to scaling argu-
ments of Ma. ' These arguments allo~ a negative
o.„a„d„only, i.e., only a nondivergent sPecific heat.
Also, expansions near four dimensions' "and a re-
cent application of the scaling field approach in three
dimensions" give a negative n for the random Ising
model. At the moment we cannot explain this con-
tradiction. It would be useful to investigate this
problem by other means, for instance Monte Carlo

methods, series expansions, and experiments on ad-
sorbates on surfaces which belong to the three-state
Potts universality class. '

B. Phase Diagrams

Figures 6 and 7 show cuts through the critical sur-
face, now in units more appropriate for experiments,
namely, the critical temperature in units of T, (pure)
(only J, present) as a function of 12 bond concentra-
tion p and the ratio of the two bond strengths J~/J2.

I.O

1.0
0.8

0.8

0 Q

CL

0.4
I—

0.6

N

0.4

0.2

0.2

0—
0 0.2

lt

04
l

0.6
I

0.8 1.0

0-I 0
Jl /JP

FIG. 6. Critical temperature as a function of concentra-
tion p of J2 bonds for different bond ratios J&/J2(q = 2),

FIG. 7. Critical temperature as a function of bond ratio

J&/J2 for different concentrations p of J2 bonds. The
dashed line gives the exact critical line at p, for the square

lat tice ( q = 2) .
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For J& = 0, i.e., the diluted system, T, (p) is very
similar to the corresponding results of Ref. 6. We
can also discuss T, (p) for nonzero J, with concentra-
tion 1 —p. For p =0 one has trivially

T, (0) =—T, (1)J)
2

(5.2)

T, (p) for different ratios J(/J2 is shown in Fig. 5.
Just below p„T, is very sensitive to a small coupling
ratio. This is also seen in Fig. 7 which shows T, as a

function of coupling ratio for different concentrations

p of J2. We used q =2, but in general the phase di-

agram is rather insensitive to the number q of Potts
states.

For 0~p ~p, the J2 bonds do not percolate. In
this case one has a ferromagnetic transition only for
positive J~. However, for p ~ p, we have also shown
the phase diagram for. a ferromagnet with a fraction
of negative bonds. Note that the Migdal recursion
relations which we use here do not have a spin-glass
fixed point" in two dimensions. For J(/J2= —1 we

see from Fig. 6 that ferromagnetism is suppressed
below p0 & 0.87. It is interesting that our simple ap-

proximation yields a p0 which agrees with values ob-
served for the square lattice using several other
methods (see Ref. 32 for a discussion of po). For
the square lattice at p, we know the exact phase
boundary from duality, Eq. (4.3). Figure 7 shows

that our results at p, agrees well with the exact result.
Figure 3 shows the effect of negative bonds as dis-

cussed in Sec. III. For q =2 we have the symmetry

(J(,J, ) ~ (—J(, —J2) leading to an antiferromagnetic
phase at small p. For p =0, i.e. , the pure antifer-
romagnet, we obtain a transition for q & 3.03. This
shows that entropy effects may lead to an ordering of
one sublattice with the other one being disordered.
However, the antiferromagnetic transition for q = 3 is

destroyed by a very small concentration of positive
bonds. The ferromagnetic transition shows the ef-
fects discussed in Sec. IV; for small negative bond
concentration we see only a small change in T„(p)
with q. However, for small T, (p) and q ) 2 the
space boundary turns towards larger negative bond
concentrations than that of the Ising case.

g is an average over the constants g given by the de-
cimation

K )+K2 K3+K4
g =2ln(e ' '+e 3 "+q —2) (5.4)

to be averaged with the bond distribution Eq. (3.4),
which gives six different terms for g. The specific
heat is given by

p2
'd'I
()P2

(5.5)

10

C3

loo

Figure 8 shows the specific heat of the pure system
with o.,„„,= —, which should correspond to the three-

state Potts model. ' From the simple log-log plot the
exponent can be observed below r = (T —T, )/T,
= 10 . However, fitting a straight line between
10 ' & t & 10 ' gives an effective exponent u = 0.42.
Indeed, this exponent has been observed in recent
computer experiments of the pure three-state Potts
model for t & 10

Figure 8 also shows the specific heat for the ran-
dom (positive) bond Potts model near the random
fixed point. One should note the slow crossover to
the true (random) critical behavior: only for r & 10 '
can the random exponent o. =0.24 be observed.
Between 10 ' & t & 10 ' one finds an effective ex-
ponent of 0.37. In the critical diluted system, also
shown in Fig. 8, the renormalization flow needs
many steps to approach the fixed point. This gives
an additional analytic contribution to the specific

C. Specific Heat

(5.3)

In Sec. V A we have seen that for positive pure
specific-heat exponent o,~„„, the random system has

new critical behavior. However one would like to
know whether the. new random n can be observed in

experiments. Therefore we calculated the specific
heat with the renormalization transformation Eq.
(3.6). The free energy, averaged over the bond con-
figurations, is given by6

/( }Jt}) X 6 (n+(&dg(r (n& r
—(n&

n-0

lo-'

lo-'
I I

lO IO

(T—V, )r T,

loo IO

FIG. 8. Specific heat of a random Potts model. The pure
1

system has an exponent a = —,which corresponds to the

pure three-state Potts model. Furthermore, the specific heat

of the system at the random fixed point and of the diluted

system (p =0.6) are shown.
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IO

Q
lo-8 lo-6 lO~ IO ~

(T- T,)r T,

loo

FIG. 9. Specific heat of a random Potts model, which

corresponds to a random Ising model (logarithmic diver-

gence of the pure system). The figure shows the pure sys-

tem, a diluted one (p =0.6) and a system near the pure
fixed point (J&/J2=0. 9, p =0.5).

VI. SUMMARY

This paper discusses critical properties of quenched
random Potts models. In particular, we consider the
two-dimensional random bond remodel on a regular
lattice with two bond strengths K~ and K2 distributed

heat. Thus analyzing the log-log plot between

10 '& t & 10 ' an effective exponent n=0. 15 is

found which is smaller than the asymptotic value

o, =0.24. We note that the critical amplitude is small-

er for the diluted system than for the one at the ran-

dom fixed point. Figure 9 shows the specific heat for

the o„„„=n.„,„d, =0 system as a function of log~pt.

Introducing randomness at the pure fixed point in-

creases the amplitude of the logarithmic divergence.

We could not find any corrections to critical behavior

due to the marginal randomness. In the dilute sys-

tem the logarithmic dependence of C disappears for
reasonable values of t. However, C still increases ra-

pidly as t goes to zero. Only very close to the perco-

lation concentrations p, we see a maximum of C
above T, . For larger concentrations the contribution

of clustering effects is only a broad satellite on top of
the critical contribution with no peak of its own.

This differs from the results in Ref. 6. There the ap-

proximate recursion relation gave a negative o. for
the Ising model which underestimated the critical

contribution to the specific heat, Here we study a

system with the exact exponent o, = 0.

randomly with probabilities 1 —p and p, respectively.
By duality transformation and geometrical argu-

ments different random Potts models are mapped
onto each other. This supports the idea of a large
universality class of random systems. We derive an
exact critical line at the percolation concentration for
the square lattice. For the diluted system (K~ = 0)
we show how the geometrical properties of the infin-
ite percolating cluster determine the thermal phase
diagram. Using known results of phase diagrams, we
obtain estimates of the exponent and amplitude of
the scaling law of the chain length in the infinite
cluster.

Negative bonds in a ferromagnet create so-called
"frustration" which reduces the transition tempera-
ture and leads, at least in higher dimensions, to new
"spin-glass" phases. We show that negative bonds in

Potts ferromagnets with more than three states per
site create much less frustration than in Ising models.
This leads to the fact that in Potts models with a frac-
tion p of negative bonds, T, (p) decreases strongly for
small p, but then turns back and decreases weakly for
larger p, in contrast to Ising models.

Critical properties of random systems near the pure
system are described by the Harris criterion. This
means, that a measure of randomness scales like n/v,
the pure specific heat and correlation exponent,
respectively. As a consequence, the random critical
behavior is different from the pure one for o. ~0
only. We derive this result with the replica method.
Furthermore we show how the Harris criterion can be
seen in approximate position-space renormalizations.
We see that it also holds for the bond-diluted system,
where the difference in bond strengths (zero and fin-
ite) is large. Following the renormalization flow we

see that the Harris criterion arises from a competition
between increasing weight of randomness and de-
creasing difference in bond strengths.

This picture helps us to find a simple three param-
eter position-space renormalization which gives the
exact scaling of randomness near the pure system,
Since the equation contains the number of Potts
states as a continuous parameter q we can observe
what happens when n goes from negative values to
positive ones, We see that for a & 0 a new random
fixed point splits off from the pure one. The whole
critical surface (except the pure systems) flows to this
random fixed point. This means that the random
system has a new specific-heat exponent o.„,„d, . We
find that n„,„d, is smaller than cx,„„,but positive.
Both o.„„d, and o,„„„,increase with increasing q,
which is in contradiction with scaling arguments of
Ma, Also, if one assumes a single correlation length
near T„n„,„d, should be negative according to
Harris. Whether a system at a random fixed point,
i.e., a random-bond distribution at every length scale,
can be described by a single correlation length,
remains doubtful. Thus we hope that our results
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stimulate other investigations of random three- or
four-state Potts models using different methods.

By our renormalization method we also obtain
nonuniversal properties. Thus we calculate phase di-

agrams and specific heat of random Potts models for
different K], K2, and p values. %e found that the
true critical behavior that characterizes the random
system emerges only very close to T„because of
slow crossover'. For models with o,,„„~0the specif-
ic heat is dominated by the critical singularity, as op-
posed to Ref. 6, where a narrow peak superimposed
on a large analytic background was found.

Nore added in proof. The possibility of a positive
specific-heat exponent o. in a random system has
been discussed by D. J. Bergman, A. Aharony, and
Y. Imry, J. Magn. Magn. Mater. 7, 217 (1978). The
value of the crossover exponent $ quoted by Harris

and Lubensky in Ref. 11 is not correct. The correct
value agrees with the exact one [Eq. (2.17)] $ = a/v
[A. Aharony (unpublished)]. We thank A. Aharony
for bringing these points to our attention.
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