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The semicrystalline polymer, poly(chromium bismethylphenyldioctyl-phosphinate), PCrP-C,

contains S =
2

chromium ions coupled by Heisenberg antiferromagnetic exchange

(Jjk = —2.5 K) along the linear molecule. We present susceptibility and specific-heat data on

pressed sheet samples. X-ray diffraction shows that there is preferential alignment of the

molecules in the plane of the sheets, and allows an analysis of the resulting magnetic anisotropy.
There is an easy plane perpendicular to the molecular axis and the anisotropy parameter

(D/k = —0.03 K) is such that a crossover from Heisenberg to XY behavior is observed as the

temperature is lowered. There is no evidence for three-dimensional ordering above 20 mK.
The effect of an applied magnetic field is to induce a flopped spin alignment in the one-
dimensional short-ringe-ordered regime. We present a calculation, based on a transfer-matrix

technique to include both magnetic field and anisotropy within a classical Heisenberg model,

giving good semiquantitative agreement with the experimental data.

I. INTRODUCTION

One-dimensional magnetic systems have been, in

recent years, a fruitful area of study, providing exper-
imental tests of soluble model Hamiltonians and re-
vealing several phenomena arising directly from the
reduced dimensionality. ' 4 Initially the major effort
was devoted to identifying materials which exempli-
fied the various symmetries of spin interaction
(Heisenberg, XY, Ising) different spin values

(S = —,1,. . .) and the two signs of exchange (fer-

romagnetic and antiferromagnetic). ' in most materi-
als studied to date the anisotropy has been sufficient-
ly large or sufficiently small that a clear distinction
between the spin dimensionalities can be made. In
this paper we explore the phenomena associated with

intermediate anisotropy.
First, let us establish what is meant by "sufficient1y

large, " "intermediate, " and "sufficiently small" an-

isotropy. The interaction of the magnetic ion with
the electric fieMs of the ligands around it and an ap-
plied magnetic field (H) is parametrized in the
single-site spin Hamiltonian

~„„=—p,sS g H —DS,2+E(S„2—S„2)+, (1.1)

where S is the (effective) spin value, g is a tensor,

and 0 and Eare the anisotropy parameters. ' In one-
dimensional magnetic systems each ion moment in-
teracts with its neighbors along the chain via ex-
change, 6 J

3C, = —2J XS; S;+) (1.2)

if D is positive ("easy-axis" anisotropy) and much
larger in magnitude than J it is customary to neglect
matrix elements in X„ involving the x and y com-
ponents of the spins and to write the effective Ising
Hamiltonian'

X,' = —2J XS "S,'+t

Conversely for negative D ("easy plane") much
larger than I JI, and for F. small, the XY models is ap-
propriate. So we conclude that sufficiently large
means ID I » IJI ln additio n ID I shou'd be 'arge
compared to the temperatures at which experiments
are performed.

A particularly important phenomenon in one-
dimensional magnets is the absence of long-range
order above absolute zero. ' However, in a real
material the interchain interactions can never be
completely ignored. If this coupling is characterized
by an exchange interaction J' then mean-field
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theory"" shows that for Heisenberg intrachain ex-
change a phase transition to a three-dimensional
(3D) long-range-ordered state occurs at a tempera-
ture T3o —( ~

JJ'~ ) '~2/k. One-dimensional short-range
order starts to build up below the mean-field tempera-
ture TMF —

~
J ~/k, hence there is a regime of one-

dimensional critical fluctuations in the temperature
range T3D & T & TMF. It has become customary' to
gauge the degree of one dimensionality in terms of
the ratio TMF/T3o which approaches 10' for the
"best" examples.

We now argue that sufficiently small anisotropy re-
quires that D and/or E be less in magnitude than J'.
Consider specifically an antiferromagnetic chain,
J ( 0, with easy-axis anisotropy, D )0. It is well

known that below the three-dimensional Neel tem-
perature there will be a spin-flop transition" for a
magnetic field applied parallel to the easy axis'.

Hsp —
V~ JD ~/ps. As we shall show in detail below,

in the regime of one-dimensional short-range order
there may be sufficient correlation along the chain
that a similar phenomenon occurs (through the tran-
sition is, of course, not sharp in the one-dimensional
case, and the high- and low-field regions are not dis-
tinct phases in the thermodynamic sense). If the sum
of anisotropy energies (i.e. , D times the number of
spins) within a coherence length, (, is comparable to
the thermal energy then the spins within that length
will tend to align with the easy axis. If ~D

~
&

~ J~
then at temperatures T & TMF the Heisenberg ex-
pression for the correlation length is appropriate:
( —(~ Jl/kT) a (a is the lattice spacing) and the total
anisotropy energy within a correlation length is

~D~(/a —~lDJ~l/kT. Hence the anisotropy becomes
important in comparison with the thermal energy
below a temperature T~ such that ~DJl/kT„—kT„;
i.e. , T~ —d~ JD ~/k. Around this temperature there is

a crossover from Heisenberg to Ising behavior, the
correlation length grows exponentially with further
decreasing temperature, the susceptibility becomes
highly anisotropic and spin-flop alignment will be ob-
served for fields H & HsF 4~ JD ~/jets applied paral-
lel to the easy axis. This field strength is the same as
in the conventional spin-flop transition of three-
dimensiona1 antiferromagnets because the argument
concerning competition between anisotropy energy
and Zeeman energy of the perpendicular spin align-
ment is still relevant. We emphasize again that there
is no longer expected to be a sharp transition from
one state to another, but rather a gradual change,
smeared by thermal fluctuations.

This qualitative discussion allows us to conclude
that the intermediate range of anisotropy is defined
by

~

J'[ & ~Dl & ~J~ in the case of antiferromagnetic
chains.

The situation for easy-axis ferromagnetic chains is
similar. The temperature below which anisotropy ef-
fects appear is again T~ —J~ JD ~/k, however the
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FIG. 1. Schematic representations of the HT plane for
one-dimensional antiferromagnets with (a) easy-plane and

(b) easy-axis anisotropy. (SRO —= short-range order. ) The
material described in this paper, PCrP-C, corresponds to the
case (a) ~

relevant field value is now the anisotropy field
H„—~D~/y, s. In the remainder of this paper we stickit

concern ourselves exclusively with antiferromagnets.
The situation in the case of easy-plane anisotropy

with Heisenberg antiferromagnetic exchange is simi-
lar to the easy-axis case. A crossover from isotropic
behavior at high temperature to XY-like symmetry
will occur around T„—4l JD ~/k. However, the mag-
netic field dependence is somewhat altered for con-
tinuous symmetry: the magnetic energy now com-
petes with the thermal energy which tends to ran-
domize the spin orientation in the XY plane, rather
than with the anisotropy energy of a correlated clus-
ter. Hence the approach to a spin-flopped-type of
spin arrangement is characterized by a crossover such
that the Zeeman energy of a flopped cluster is com-
parable to kT. The magnetization of the cluster ar-
ises because the spins are canted at an angle p, H/J
away from antiparallelism. Hence, for the J/kTspins
in the cluster the Zeeman energy is H(pH/J)
&& p(J/kT) =(pH)'/kT, and so pHsF —kT

These qualitative descriptions are summarized
graphically in Fig. 1 for both easy-axis and easy-plane
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one-dimensional antiferromagnets.
Many examples of highly one-dimensional magnet-

ic systems have been discussed in the last decade. ' "
Among the most thoroughly studied are:
(CH)4NMnC13, (TMMC), '4 2' which is an S =—
(large enough to be considered a classical rather than
quantum spin system) Heisenberg antiferromagnet
which shows crossover to XY behavior induced by di-

polar interactions'; CsCoC13, ' "an S = —Ising sys-

tem; a™CuNS81,' ' exemplifying an S =
2

Heisen-

berg antiferromagnet, and CsNiF3, 34 38 an XY fer-
romagnet. The ions in these one-dimensional mag-
nets are Mn'+ whose spherical symmetry immunizes
it from anisotropy effects, Co2+ which has un-
quenched angular momentum in octahedral coordina-
tion and is therefore a prime candidate for Ising in-

teractions, Ni + which has large spin-orbit interac-
tions, and Cu2+ which, with its quenched angular
momentum 5 = —, ground state, exhibits Heisenberg

interactions. Intermediate values of anisotropy,
~D) & )J'(, are morc likely to be found in ions with

the following properties: nonzero orbital angular
momentum quenched by the crystal field of its en-
vironment; an excited state, not too high above the
ground state, which possesses orbital angular
momentum in a cubic environment; coordination
which is close to, but not exactly, cubic in order that
spin-orbit interactions can produce anisotropy in

second order. Both octahedral Cr3+ (d3) and
tetrahedral Co'+ (d ) meet these requirements"
since both have a A2~,,~

ground state with an orbital

triplet, T2~,,~ lying approximately 2 eV higher. The
two anisotropy parameters (D and E) are given in
second-order perturbation theory by the expressions

where h. ( —10' K) is the spin-orbit coupling, 5
(-104 K) is the A Tligand field sp-litting in a cubic
field, and g; (typically -10' K) are the splittings of
the excited orbital triplet due to departures from cu-
bic symmetry. Hence [D[ —~E~ -10 ' K might be
expected. This energy is comparable to the intra-
chain dipolar coupling which tends to favor XY
behavior. The one-dimensional material which con-
tains these ions should therefore have interchain in-

teractions, J', on the order of or less than 10 ~ K.
In this paper we describe a polymeric phosphinate

of chromium (PCrP-C: see Sec. III) which meets all

the criteria discussed in the preceding paragraph, and
which indeed reveals symmetry crossover behavior in

the short-range-ordered paramagnetic phase. %e
shall show th8t this 1s 8 material w1th D 4 0 and,

E —0 (effectively) so that the low-temperature
behavior is XY-like, and a spin-flopped alignment is
achieved for fields H » kT/p, a

Section II contains a more detailed theoretical
analysis of these ideas based on a transfer-matrix

treatment of the classical Heisenberg chain including
both anisotropy and an applied field. In Sec. III we
present details of the molecular and magnetic struc-
ture of the material studied. Section IV contains a
description of the experiments used to reve~l the
magnetic thermodynamic behavior. The: experimen-
tal results are presented and discussed in Sec. V,
making comparison with the theoretical predictions.
Section VI contains a summary.

II. THEORY

The Heisenberg Hamiltonian for a one-dimensional
array of spins, [S;], i = I, . . . , N, Sn+, ——5, , including
terms for single-site anisotropy (easy axis or easy
plane) and the Zeeman interaction, is given by

(2.1)

where J is the exchange energy, D is -the single-site
anisotropy, and H is the applied field. The Hamil-
tonian for anisotropic exchange or for dipolar cou-
pling may be rewritten in this form if the anisotropy
is small, ~lD/J~ ((1.3 The ID Heisenberg Hamil-
tonian in zero field has been considered in various
analytic approximations and using numerical
methods. ' ' Several exact solutions for the ground-
state properties of the quantum chain exist, " 4' but
the only exact results"' '0 for thermodynamic quanti-
ties are classical, i.e., all spin comrnutators are set to
zero, which corresponds to having infinite spin. An
analytic solution for zero field and no anisotropy was
first given by Nakamura ' and later independently by
Fisher. 48 Numerical calculations using the transfer
integral technique exist which include either anisotropy
or magnetic field. Joyce uses an anisotropic ex-
change, Loveluck et a/. " include single-site anisotro-
py, and Blume et a/. "have an applied field. Walker
et a/. "apply the results of a transfer-matrix calcula-
tion with anisotropic excha'nge to the susceptibility of
TMMC. They discuss, but do not explicitly show,
the behavior in a weak magnetic field.

Another classical technique, employed by Selke
and Pesch, " is the 1/n expansion (where n is the spin
dimensionality). Perturbation from the spherical
model, n = ~, are analytically ca1cu1ated with an ex-
pansion to 1/n. Their calculation includes both
single-site anisotropy and a magnetic field. However,
this method should be viewed with suspicion since in

the limits of zero field or zero anisotropy, the results
only agree qualitatively with the more accurate
transfer integral calculations.

As shown by %'eng, 54 and later by Blote, 44 55 the
classical susceptibility becomes a better approximation
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as the spin of the quantum system increases. We
note, in their work, that classical susceptibility never
overestimates the spin- —, result by more than 15%.
On the other hand, the classical magnetic specific
heat ' is much less and its application to real systems
should be approached with extreme caution.

Encouraged by the accuracy of the classically calcu-
lated susceptibility and motivated by the PCrP-C data
below, which exhibit anisotropy as well as magnetic
field dependence, we undertook a calculation using
the transfer integral method in which both terms
were included. For classical calculations the Hamil-
tonian [Eq. (2.1)] is rewritten

X=—2JS(S+I) $s; s;, —DS' X(s,')'
1 1

correction. With this "renormalization" and no an-
isotropy, the high-temperature, T &) J, classical
derived susceptibility is the same as its quantum
counterpart.

For clarity and completeness, we include a descrip-
tion of the transfer-matrix approach" as it applied to
the Hamiltonian (2.2). The symmetrized kernels2

r

A (s, , s;+t ) = exp J' s; s;+( + ( s,') '

+ (S;n.( ) + (S; +S;+( )
D'

„. 2
H'

2

(2.3a)

—g(((,(t(JS(S + I)H ps,', (2.2)

where [ s, ] are unit vectors with commuting com-
ponents. Setting the magnitude of the spin equal
dS(S+1) in the first and third term is a quantum

J' = 2JS(S + I ) /k T

D'= DS2/kT

H' = pg[((S ( S + I ) ] ' 'H/k T

enters the partition function

(2.3b)

(2.3c)

(2.3d)

dII(
Jr

d02
J) Jt

df1(v
(2.4)

which shows that Z(v is formally the trace of the Wth

power of A. The eigenvalues A.„of the integral equa-
tion,

)(.(,„=(rr/2J')'"l(„(, (J') (2.10)

I

The eigenfunctions are the spherical harmonics Y(,„
and the eigenvalues are

dO;
J A (s;, s;+, )(](„(s,)

' = X„(](„(s;+() (2.5) where I(+&/2 is a modified Bessel function of the first
kind:

give the partition function in the thermodynamic lim-

;,S2 sinh J'
max 00 (2.1 I)

Z = lim X ()(.„)~ = lim ) ~,„.
(V ~oo (V ~oo

n

(2.6)

(

d 1 d ~maxX= N~kTdH
A, ,„dH (2.7)

Instead of Eq. (2.5), an integral equation with an
unsymmetrized kernel was solved, giving an identi-
cal eigenvalue spectrum.

The molar magnetic susceptibility and specific heat
are given by

(
oo (

4

,X.X, (2(+I)

' 1(/2

8(",„Y(,„ (2.12)

exp(D'cos'8+H'cos8) = X
, , (2I+I)

1/2

F( Y(p

(2.13)

To solve the full kernel, first use the completeness
of the spherical harmonics:

( I

C =Ngk d T d ~max

dT ~ }(.m,„dT
J

(2.g)

In Eq. (2.13) only the m =0 terms need be con-
sidered since there is no (t dependence. Now, suppose
that only one value of m appeared in Eq. (2.13):

where h. ,„ is the largest eigenvalue of (2.5) and N„
is Avogadro's number. The solution in the special
case O' = H' =0 reproduces Fisher's results. 48 We
reproduce it here because the eigenvalue spectrum
will be used later. The integral equation reduces to

I(n,n
= X~lm y/m

l-. p

(2.14)

Using the additional theorem, the product of (2.13)
and (2.14) can be expressed as an expansion in

spherical harmonics.

dO;
exp J's; s, +~, Y( 0; =A.( Y(,„O;+~ exp(D'cos'8+ H'cos8)(I(„= $ C(" Y(,„

I 0
(2.15)

(2.9) Again, only one value of m enters; the integral equa-
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tion can now be viewed as having the D' = H' =0
kernel, (2.9), operating on (2.15). Since the spheri-
cal harmonics are eigenfunctions of the D'= H'=0
kernel, spherical harmonics with different m's are not
coupled by the full kernel.

Another important simplification occurs since, in
one-dimensional systems with short-range interac-
tions, there can be no long-range order at finite tem-
perature. As parameters of the system change (tem-
perature, magnetic field, etc.), a phase transition oc-
curs when the maximum eigenvalue crosses another
eigenvalue which then becomes the new largest
eigenvalue. When D' = H' =0, the largest eigenvalue
corresponds to the eigenfunction Woo. As D' and H'

are "turned on" the eigenfunction expansion, (2.15)
continues to contain only m =0. Furthermore, the
corresponding eigenvalue remains the largest eigen-
value for all values of D' and H'.

The calculations proceed by operation on Eq.
(2.15) (setting m =0) with the D' = H' =0 kernel.
Then, using the orthogonality of the spherical har-
monics, the following matrix equation for the eigen-
values, A.„, is obtained:

(2.16a)

5-

X
(lO cm /mole) 3-

0 I I I I I I

0 4 8 I2 l6 20 24
Temp (K)

x
(lO cm /mole)

5-

4-

I+I

M„, = XIo X F, (I I
I '.I )

.j=II-I'I
(2.16b) 0 I I I I I . I

0.0 0.2 0.4 0.6 0.8 I.O l.2 T(K)

(2.16c)

where )tttt, BI/, and F, are defined in (2.9), (2.12),
and (2.13), respectively, and the Ps are Legendre
polynomials. Since the matrix elements, M, de-

crease as I and I' increase, it is possible, in practice,
to truncate the infinite matrix and still obtain an ex-
cellent approximation for the largest eigenvalue. To
calculate the susceptibility, the maximum eigenvalue
is calculated for a sequence of fields and the deriva-
tives in Eq. (2.7) are determined numerically. Simi-

larly, a sequence of temperature points can be used
to calculate the specific heat, Eq. (2.8).

As the ratios I/kT and H/kT increase, it is neces-
sary to use larger matrices. With the parameters ap-

propriate to PCrP-C, J/k =2.78 K, D/k = —0.03 K,
and S = —,, a 20 & 20 matrix gave 1% or better accu-

racy for the susceptibility (comparing the 20 x 20 to a

much larger matrix) in the temperature and field
ranges T «1 K and H ~ 50 kG. The accuracy in the
limit D = H =0 was also checked against Fisher's
analytic solution and was within 1%. Using a Prime
400 minicomputer, the time to diagonalize the re-
quired number of matrices larger than 30 & 30 starts
becoming excessive and is the major limitation im-

posed on the ratios J/kT and H/kT
The results of the calculations are displayed in Figs.

2—4. The parameters were chosen in order to facili-

FIG. 2. Temperature dependence of the initial susceptibil-
ity for fields applied parallel to the easy axis (xll) and per-

pendicular to the easy plane (X&) of a one-dimensional clas-
sical antiferromagnet: Jlk = —2.8 K and lD/Jl =10
These values were chosen to facilitate comparison with the
experimental data on PCrP-C. (a) and (b) show different
temperature scales.

tate comparison with the corresponding experimental
data. Since the magnetic field is always along the z

axis the easy-axis case corresponds to a parallel sus-
ceptibility and the easy-plane to a perpendicular sus-
ceptibility. Thus, we have only theoretical behavior
(Fig. 2) for two of the four measurable responses: Xs

and Xt for each sign of D We expect Xt(D. )0) to
behave quite similarly to the easy-plane perpendicular
susceptibility since both involve competition between
Zeeman and anisotropy energy. On the other hand,
since the XY system has continuous symmetry,
X~~(D (0) will be more comparable to the isotropic
(Heisenberg) case.

The effect of applied magnetic field is shown in

Fig. 3. The increasing susceptibility signals the onset
of a flopped spin alignment. At low temperature
when D & 0 a peak begins to develop at
pH=—~l JD l. Thi,s is associated with the increasingly
sharp transition to the spin-flopped state of an easy-
axis antiferromagnet. By contrast the easy-plane case
[Fig. 3(b) 1 shows no peak because the realignment
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FIG. 4 Excess specific heat (see text) for (a) easy-axis
and (b) easy-plane anisotropy at several different fields.
iDSJi =2 ~ 1o-'

FIG. 3. (a) Field dependence of the susceptibility for
easy-axis anisetropy, D )0. )D/J) =3 X 10 2. lb) Field
dependence of the susceptibility for easy-plane anisotropy,
D &0. [Dg[-2x10-2.

takes plao! continuously with increasing field at all
ten pemtures.

FiIMre 4 displays the results for the specific heat.
%e plot the difference in the values with and without
anisotropy since wc expect that, although the abso-
lQte value for the classical calculation is grossly in er-
ror at low temperature'e, the excess specific heat asso-
nated with the symmetry crossover should be at least
QLlalftitivelj cofr@ct. Note that for the easy-axis case
H, which is pa!'allel to that axis, tends to lower the
crossover temperature (i.e., to favor perpendicular
spin alignment), whereas for the easy plane the tran-
sition to XY behavior is enhanced. This is precisely
what one expects on the basis of simple arguments
conc4:fling the effect of the Zeeman contribution to
the energy balance. Strictly speaking, therefore, the

hatched lines at kr =VJD on Fig. 1 should not be
vertical.

Note also the difference in magnitude of the excess
specific heat for the two cases: it is considerably
larger for the easy-axis system. Although we have
not examined the entropy change in detail, this
behavior is qualitatively what one expects on the
basis of the change in number of degrees of freedom
for spin orientation.

III. CHARACTERIZATION OF
POLY(CHROMIUM PHOSPHINATE)

A. Chemistry

The phosphinate anion, (OPRR'0) where R and
R' are hydrocarbon groups, is well known to form
bridges between transition-metal cations, ' leading in
many cases to a linear polymeric structure in which
the magnetic ion is an integral part of the backbone
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FIG. 5. Molecular structure of poly{chromium-
bisrnethylphenyldioctyl-phosphinate), PCrP-C. Me =—CH3,
@=-C,I-I,; oc~ =CSH„.

(b)

of the molecular chain. Earlier studies57 have
shown that the chromium trisphosphinate, 6'

Cr[02P(CH3)(C6H5) ]2[02P(CSHt7)2] is a semi-
crystalline linear polymer of high molecular weight.
[Following Ref. 58 we shall refer to this material as
PCrP-C (see Fig. 5).] Samples were prepared in the
manner described previously. ' At the last stage of
phosphinate addition, the reaction mixture was

pressed to yield flexible sheets of order 0.5 mm

thickness, from which specimens were cut.
These sheets were found to form gcls readily, ab-

sorbing nonpolar solvents such as chloroform and to-
luene. The expansion associated with this gelation
occurs primarily perpendicular to the sheet, indicating
a high degree of anisotropy in molecular model struc-
ture is highly linear with relatively few cross-links
between the individual chains.

S. Structure

X-ra powder-pattern photographs, using Cu K
(1.54- ) radiation, were taken with two orientations
of the incident beam relative-to thc sheet. %hen the
incident beam is perpendicular to the sheet [Fig.
6(a)1 the scattering is azimuthally symmetric, with

sharp diffraction rings corresponding to spacings
4.52(2), 7.81(2), 13.4(1), and 26.8(5) A. The widths
of the 4.52-A rings correspond to cohcrencc lengths
on the order of 100 A or greater, and may be resolu-
tion limited. The other rings arc relatively broader.
Stretching of the sheet [Fig. 6(b)] produces anisotro-

py with the intensity of the 4.52-A scattering concen-
trating along the axis of alignment, while the remain-
ing features become stronger in the equatorial plane.
Thts bchav1of 1ndtcatcs that, thc shortest spac1ng 1s ln

a direction along the molecular chain, awhile the other
values arc interchain separations. Comparison of the
spacings with the Cr-Cr separation in a crystalline
dimeric chromium phosphinate and examination of a

molecular model constructed on the basis of phos-
phinate group geometry known from other crystalline

complexes reveals that thc 4,52-A distance should bc
identified with the distance between chromium atoms
along the polymer chain.

FIG. 6. X-ray diffraction geometry. (a) Normal in-

cidence, unstretched sheet. {b) Normal incidence, sheet
aligned by stretching. (c) Parallel incidence.

Diffraction patterns taken with the incident beam
parallel to the unstretched sheet [Fig. 6(c)] show
considerable anisotropy. The 4.52- A scattering is
concentrated in the plane of the sheet, whereas the

0
7.81- and 13.4-A rings are more intense in the per-
pendicular direction. These features indicate that in
the process of pressing the film from the reaction
mixture considerable alignment of the molecules
takes place, and that the structural coherence is
greater along the chain than transversely.

0
The intrachain Cr-Cr distance, a =4.52 A, results

in a dipole-dipole interaction p'p, q ja'k =0.03 K.
%'e have made several attempts to align the poly-

mer further by stretching the sheets. As mentioned
above, this produces a small amount of anisotropy in
the structure, but we have not been able to achieve
elongation beyond 180'lo and the resulting alignments
are insufficient to enable detailed analysis of the an-
isotropy of various physical quantities. On the other
hand, the anisotropy produced in pressing the sheets
is evident in susceptibility and ESR measurements.

C. Magnetic properties

Low-field static magnetic susceptibility measure-
ments were repeated previously. 58 6~ In Fig. 7 we
show new data taken in one case with higher resolu-
tion than before (using a Faraday balance) ' and in
the other cases to lower temperature (using an ac in-
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FIG. 7. Initial susceptibility of PCrP-C. The Faraday bal-

ance measurements were made on unaligned samples.

and X;„refer to ac magnetic field directions out of and in

the plane of the sample sheets. For clarity only about half
of the ac data points are shown below 20 K.

duction bridge, to be described below). These data
reveal the behavior expected of a one-dimensional
Heisenberg antiferromagnet. The susceptibility data
are discussed in detail below,

ESR spectroscopy, at X band, has been per-
formed. 6' The temperature dependence and the an-

isotropy of the linemidth mill be the subjects of a fu-
ture publication. In this paper we shall make refer-
ence to the g factor: g =1.974(3) and is, within the
resolution, isotropic.

D. Optical adsorption

UJ

~~ o.e-
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V)z'. 0.4-
K~ 0.&-
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1 I I I

l4 000 l6 000 I 8 000. 20 000 22 000 24 000
FREQUENCY (cm )

FIG. 8. Optical spectrum of PCrP-C associated with the
15000-cm ' band.

The visible adsorption spectrum of PCrP-C. &Fig. 8)
shows to tmo broad bands centered at 15000 and

22000 cm ', which are typical of octahedrally coordi-
nated Cr III, and are responsible for the green color

g =2(1 —4it/6) (3.1)

Substituting the free-ion spin-orbit coupling parame-
ter A. =91 cm ' and 5=15000 cm ' gives g =1.95
which does not overestimate the observed g shift too
badly, g =1.974. ' The anisotropy parameter is given
by39

(3.2)

~here 5 is the orbital splitting among the T2, levels.
A value for D of a few times 10 2 K is typical for
chromium and indeed has been observed in a dimer-
ic phosphinate which was examined in our laboratory
as a crystalline model compound. "66 The predicted
contributions to the anisotropy are thus D/k ——0.1

K from dipolar fields and lD l/k -0.1 K from the
crystal field. As we shall show, these values are of
the same order of magnitude as the anisotropy ob-
tained by comparing experimental data to the numer-
ical calculation,

l
D l/k 0.03 from the susceptibility

difference in and out of the sheet in the temperature
range 1 —10 K, and lD l/k & 0.03 from the suscepti-
bility rise below 0.5 K.

The fact that the 'T2, level is split into three
nongenerate levels must produce an E anisotropy
parameter. Although there is some evidence in the
magnetic data that E is present, it does not result in a
dominant effect. The reasons for the suppression of
E will be discussed below.

of the polymer. The 15000-cm ' band corresponds
to the A2, - T», transition of the chromium ligand
field levels. The molecular structure suggests that
the threefold orbital degeneracy of the excited 4'„,
level is completely removed, the octahedral symmetry
of the oxygen ions being distorted along two axes.
The chain is one of these axes, as can be demonstrat-
ed by building models with the normal phosphinate
anion bond lengths and angles. The second axis is
provided by the inequivalence of the three bridging
anions; the organic groups on two of them are methyl
and pheny) whereas the third has two octyl groups.
(The observed structure in the adsorption band prob-
ably arises from complicated Pano effects64 among the
electronic levels and vibronic states, and does not
give direct information on the lifting of the degenera-
cy.)

If the dipolar fields were absent the distortions
mould split the 432, ground state into a pair of Kra-
mers doublets. Also, if the quantization axis for
splitting the +—, levels from the +—, levels is parallel

to the chain axis, the spin levels remain in doublets
mith dipolar fields present. Using crystal-field theory,
which may not be strictly applicable due to the over-
lap of the chromium and oxygen orbitals, the splitting
between the doublets can be calculated. Checking
the g-value shift shows that the theory" gives reason-
able results.
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IV. EXPERIMENTAL METHODS

The magnetic properties of PCrP-C were investigat-
ed with a variety of experimental techniques. Using
a Faraday balance, an ac mutual inductance bridge
and a superconducting quantum interference detector
(SQUID) magnetometer, the susceptibility was meas-
ured from 20 mK to room temperature. Data for the
other standard thermodynamic quantity, specific heat,
were also extended into the mK range.

A. ac mutual inductance bridge

An ac mutual inductance bridge operating at 25 Hz
was used to measure the differential magnetic suscep-
tibility from 1.0 to 100 K in static fields from 0 to 50
kG. The bridge design is similar to that originally in-

troduced by Hartshorn, ' but several improvements
have been incorporated.

The electronics are shown in Fig. 9. The real and
imaginary parts of the sample susceptibility can be
measured simultaneously. The sample is moved back
and forth between two secondary coils and the differ-
ence voltage is recorded in order to cancel back-
ground signals, even if they are slowly drifting,

The glass tail of the cryostat (Fig. 10) fits inside
the mutual inductance coils. The temperature inside
the tail can be adjusted from 1.0 to over 100 K.
Helium gas at one atmosphere maintains thermal
contact with the sample. With the setup shown it is

possible to keep the sample temperature constant
within 0.1 K as it moves up and down. Below 4.2 K
the inner tail and 1-K pot are filled with liquid heli-
um and pumped. Using a manostat the sample tem-
perature can be held constant to within 0.01 K.

An important criterion in the design of this ap-
paratus is the combined use of a mutual inductance
bridge and a superconducting magnet. This intro-
duces several problems. Extreme care must be used
to suppress microphonic noise. Also, the diamagnet-
ic superconducting wire produces a large background
signal which is very dependent upon the magnet's
temperature and past field history. After changing
fields, the background may drift for hours. To elim-
inate this signal it was necessary to move the sample
back and forth between the secondary coils and take
the difference signal. The background is also very
noisy. This noise, which is probably due to flux
jump, grows exponentially with either increasing pri-
mary field or temperature. It was reduced to an ac-
ceptable level by cooling the magnet to 2 K. Even
then, the magnet noise was the major limitation on
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FIG. 9. Circuit diagram of modified Hartshorn bridge
used for differential susceptibility measurements. The sam-

ple is moved between the secondaries of M1. M2 is a refer-
ence mutual inductance. T2 and T3 are ratio transformers
used to null the imaginary and real parts, respectively, of the
susceptibility signal. T1 is a PARC 190 low-noise
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FIG. 10. Temperature controlled insert: a—pumping
line; b—vacuum jacket; c—He condenser; d—lead seal; e—4

auxiliary heater; f—glass insert; g—1-K pot; h —capillary fill

line; i—glass-to-metal seals; j—broil foil; k—heater; 1 and
l)1—double-wall glass tail.
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the system's sensitivity. The resulting sensitivity is
of the order 10 ' (dimensionless susceptibility) and is
the same (within 10%) for the real and imaginary
channels.

TABLE I. Comparison of statistics obtained in fitting sus-
ceptibility data 6 ~ T ~ 300 K to predictions of classical and

3
quantum (S =

2
) antiferromagnetic chains. Quoted stan-

dard deviations of the fitting parameters are statistical.

8. Faraday balance

A Faraday balance with a computer data acquisition
system was used to measure the low-field, 8 ~10
kG, susceptibility from 4 to 300 K. Kulick and Scott
have described the setup elsewhere. ' The electrobal-
ance has 0.1-pg sensitivity leading to a resolution of
0.1% for samples whose susceptibility is greater than
a few times 10 ' cm. '

g
J/k (K)
Std. dev.

R2

F test

C lassical

2.010(1)
—2.775 (5)

1.8 x10 4

0.999 84
1.1 x 106

3S = —quantum
2

1.979(1)
—2.486(3)

1.0 x10 4

0,999 95
1.8 x 106

C. SQUID measurements

Low-temperature measurements, 20 to 700 mK,
were taken with a SQUID magnetometer6s in seyera
fields ranging from 3 to 469 G. It was operated in a

dc mode in which at each field the SQUID responds
to changes in magnetization as the temperature is

swept. The sample filling factor was calculated by ap-

proximating a cylindrical sample with a coil having
the same outer dimensions and using mutual induc-
tance tables.

D. Specific heat

Specific heat in zero field was measured from 80
mK to 2.8 K using the quasiadiabatic heat pulse
method. ' To shorten the internal equilibrium time,
gold was evaporated on both sides of the sample
sheets and the bundle of sheets was wrapped in thin

copper foil.

V. EXPERIMENTAL RESULTS AND
DISCUSSION (REF. 71)

the g value obtained from ESR spectroscopy. ,
gas„=l.974(1), is in much better aggreement with

the S = —, g value, g~ =1.98, than with the classical
3

value, g, =2.01. Since the Faraday balance measure-
ments have an absolute accuracy of order 0.1%, this
is a significant distinction. Hence we conclude that
we are seeing the (small) quantum effects of finite
spin, and that the numerical calculations of Blote55

provide an accurate description.

Note that the effect of quantum fluctuations is

quite similar to that of static disorder, as discussed in

Ref. 58, for the classical model. The susceptibility is
increased, and, for fixed J, the maximum shifts to
lower temperature. In view of the quality of the fit
to the S =

2
calculation, and the high degree of cry-

stallinity observed in the x-ray diffraction and
birefringence of PCrP-C we believe that, the discus-
sion of Ref. 58 notwithstanding, disorder (i.e. , ran-
domness in the exchange) is not an important factor
in determining the magnetic properties of this poly-
mer.

A. Magnetic susceptibility; T g 6 K

In Fig. 7, magnetic susceptibility data from the
Faraday balance and ac inductance bridge are shown.
The higher-resolution Faraday balance data were fit-
ted from 6 to 300 K using (i) the analytic expres-
sion48 for the classical (S = ~) Heisenberg antifer-
romagnetic chain and (ii) numerical results" for the
quantum S = —, chain. 6 K is the lowest temperature

at which the effects of anisotropy, which are not in-

cluded in either model, do not adversely affect the
fit. Fitting parameters and statistics are presented in

Table I. The quantum model yields a slightly, but
statistically significantly, better fit, with the
discrepancies in the classical model being most ap-
parent at lower temperature (see Fig. 11). Moreover,
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= 3/2

45
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FIG. 11. Comparison of classical and quantum fits to stat-
ic susceptibility of PCrP-Cr. Data were fitted for 6 ~ T
~300 K. (See text and Table I.)
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B. Magnetic susceptibility; I & T & 6 K C. Field dependence of susceptibility

Below about 6 K the effects of anisotropy begin to
be evident. The initial susceptibility ac measure-
ments (H„& 100 6, Hd, =0) for the oscillating field
in the plane of X;„and normal to X,« the sample
sheets are shown in Fig. 12 (compare Fig. 2). In ord-
er to deduce whether the observed anisotropy arises
from easy-axis or easy-plane behavior it is necessary
to recognize that, because the chains are not com-
pletely aligned but have azimuthally random orienta-
tion within the sheet, both X;„and X,« involve partial
averages of X~ and XII. The difference X;„—X,« is

therefore less than X&
—Xli.

If one assumes complete alignment of the
molecules within the plane of the sheet, and uses the
fact that the x-ray data imply completely random dis-
tribution ot the chains with respect to rotation about
their own axes, then the appropriate averages are
easy axis:

In Fig. 13 is shown the dependence on applied stat-
ic magnetic field of the susceptibility parallel to the
sample sheet (x~„) and perpendicular to it (X,„,).
Compare these data with the numerical results depict-
ed in Fig. 3. The behavior of x;„(H) and x,„,(H) is

typical of a one-dimensional antiferromagnet above
its three-dimensional Neel temperature. The suscep-
tibility increase at high fields is indicative of a gradual
crossover to spin-flopped alignment, in which the
moments, which already possess short-range antifer-
romagnetic order, are driven perpendicular to, with

slight canting towards, the field. Since the order is

only short ranged the field overcomes not only aniso-
tropy but also thermal agitation. The absence of any
tendency for X(H) to show a peak [cf. Fig. 3(a)] and
the fact that the crossover field, Hsq, is proportional

x;„=(3xg+ xiii)/4

x,„,= (xg+ xiii)/2

(5.la)

(5.1b)

easy plane:

x;„=(xi+ xi')/2,

Xout = XII

(5.2a)

(5.2b)

(lO cm/mole)
5-

where X~ and XII refer to perpendicular and parallel to
the easy axis or easy plane, as the case may be. Note
that the easy-axis case requires X~ —

XII to be twice as
large to observe the same difference in susceptibility.
However the initial susceptibility data are not, in

themselves, sufficient to deduce the sign of the an-

isotropy. %e shall return to this point later.
0
0
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T =2.0K
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FIG. 12. Initial susceptibility of PCrP-C obtained with the
ac field perpendicular (Xo«) and parallel (X;„) to the sample
sheet.

FIG. 13. Field dependence of the susceptibility at several
temperatures (a) X;„, (b) X„«. Hs& is chosen as the point
for 50% enhancement of the susceptibility.
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to the temperature lead to the conclusion that the an-
isotropy is easy plane; i.e., D & 0. The Zeeman ener-

gy is thus inducing perpendicular alignment by com-
petition only with thermal energy.

At very high fields (pH &) kT) the susceptibility
becomes independent of orientation and of field
strength: X 6.5 X 10 ' cm /mole. This is the
behavior expected when the Zeeman energy com-
petes only with the exchange energy in inducing spin
alignment parallel to the applied field:

lim X = Ng2ps2/8~ J,
~

pH » kT
(5.3)

This independent experimental result gives J,/k
= —2.8 K, which is in agreement with the fit to the
high-temperature susceptlbiilty (Table I) .

D. Magnitude of D

Having deduced, from the field dependence of X,
that easy-plane anisotropy is acting, we now return to
the temperature dependence of X;„—XDUI in order to
evaluate its magnitude. Quantitative comparisons of
theory and experiment must be made carefully for
two reasons: first, as already noted, the experimental
data does not yield .the full difference Xq

—Xll', second,
the theory gives only Xll for easy axis and X& for
easy plane because the calculation is possible only
when there is a symmetry axis. In addition, the cal-
culations, being classical, are expected to become less
accurate as the temperature decreases.

With all these caveats in mind, compare Figs. 12
and 2. In the latter, D was adjusted (J and g having
been determined by the classical fit to the higher-
temperature data) so that at I K X;„—X,„,
=—(Xq —X~1)/2 as required by Eq. (5.2) [using
the isotropic (Heisenberg) result for X~~]. The an-
isotropy parameter thus obtained is D/k = —0.03 K.
%e consider this estimate to be approximately 500/o

accurate.
Since easy-plane anisotropy prevails the field

dependence of the susceptibility is insensitive to the
magnitude of D and we cannot obtain an independent
estimate from the data of Fig. 13,

One might argue that the peak in X(H) for easy-
axis anisotropy is smeared out by orientational
averaging in PCrP-C. If this were the case then the
magnitude of D ~ould have to be twice as large to
give the observed difference X;„—X,„,. The lowest-
temperature data (1 K) would then correspond
roughly to curve b of Fig. 3(a). We have performed
orientation averaging calculations which show that,
even for a completely spherical distribution, this peak
is not suppressed. Hence easy-axis anisotropy is in-
consistent with the data.

E. Magnetic susceptibility T & I K
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FIG. 14. Low-temperature (T & 1 K) magnetization data
taken with a SQUID magnetometer: M jH vs I/T. The ap-
plied fields are (a) 3.05, (b) I4,3, (c) 33.8, (d) 65.3, and (e)
469 Oe. , The solid lines between 250 mK and 1 K represent
data too close to distinguish,

Since the value of the crossover temperature de-
duced from the above results is T~ —(S2JD) t~2

—1 K, and since knowledge of the 3D Neel tempera-
ture should be useful, we made measurements at
lower temperature using a SQUID magnetometer and
dilution refrigerator. I3ata were taken in the in-plane
geometry with applied static fields ranging from 3 to
470 G. Since the SQUID responds to magnetiza-
tion changes, not magnetization, a constant has been
added to each field run to obtain agreement near 1 K
with the ac inductance measurements. Plotting M/H
vs I/T, Fig. 14, shows that the low-temperature,
T & 100 mK, behavior contains a contribution attri-
butable to isolated Curie moments, saturating for
iarge H/T. There is also a field independent kink at
about T = 200 mK.

The data are interpreted as the sum of the rnagnet-
ization from long chains and a Curie tail, from isolat-
ed spins and very short chains, given by a Brillouin
function. For chains longer than the coherence
length, which at the lowest temperature is hundreds
of lattice spacings, the infinite chain calculation will

apply, and the susceptibility will depend mainly upon
competition between the anisotropy and field and
only weakly on temperature. To obtain this intrinsic
behavior we have subtracted a Brillouin function
from the data of Fig. 14, to give the susceptibility
shown in Fig. 15. Notice that below about T —200
mK the susceptibility begins to level off and becomes
constant, within experimental error, at low tempera-
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FIG. 15. Data of Fig. 14 after subtraction of a Brillouin
function B3~2(H/T) corresponding to an isolated spin con-
centration of 0.06%.

ture. The Curie constant used in the subtraction
varied from 0.0014 cm K/mole at 3 6 to 0.0012 cm
K/mole at 470 6, indicating a concentration of isolat-
ed spins and chains fragments of 0.06%. Thus the
samples used are magnetically very clean, and the up-
turn in X;„at low temperature is not the typical "Cu-
rie tail, " but shows the effects of anisotropy. The
slight variation in the Curie constant probably reflects
contributions from chains which are close to the
coherence length and so have a more complicated
field and temperature dependence.

There is no evidence of an additional anomaly in
the low-temperature susceptibility which could be at-
tributed to three-dimensional ordering.

FIG. 16. Specific heat of' PCrP-C. The theoretical points
are taken from numerical work of Blote (Ref'. 44). The
linear extrapolation is explained in the text. Note the loga-
ri th m ic scales.

T —0.7 K, data very well whereas the semiclassical
result does not. At higher temperature the increase
above the numerical curve is consistent with a T' lat-
tice contribution. At lo~er temperature there is
clearly an additional contribution to the specific heat,
over and above the linear spin-wave term.

The low-temperature data with the linear term sub-
tracted are shown in Fig, 17, on the same tempera-

(10 cm /mole) gLs2.1$
49- 0

F. Specific heat

0
0

Further evidence favoring the description in terms
of crossover from Heisenberg to L Y spin symmetry is

given by the specific heat. The change in entropy as-
sociated with the reduction in spin dimensionality oc-
curs at such a low temperature that the magnetic con-
tribution dominates that from the lattice.

In Fig. 16 experimental data are shown along with

numerical results frorri a quantum S = —, Heisenberg=3
calculation~~ using J0/k = —2.5 K and with a low-

temperature linear extrapolation of those results. In
order to obtain the coefficient of the linear term we
have extended the numerical results smoothly to zero
temperature, while requiring that the total entropy at
high temperature be 5( T ~) = R ln(2S —l). The
coefficient of the linear term thus obtained is 0.084
K ' (i.e., C/R =0.21kT/~ J&~l). This value should be
contrasted with the semiclassical prediction of
Kubo" C/R =0.35kT/~ J~.

The extrapolation fits the midtemperature,

000 ~ 0 ~ e 0 0

h, c/R
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FIG. 17. (a) Field-independent part of the susceptibility
of PCrP-C. The data points are identical to those of Fig.
IS(b), but shown on a linear temperature scale. The down-
turn at low temperature is probably not significant, since the
errors in the temperature scale approach 10%. (b) "Excess"
specific heat in PCrP-C, obtained as the difference between
the data of Fig. 16 and the linear low-temperature extrapola-
tion.
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ture scale as the intrinsic susceptibility data (taken
from Fig. 15). It is clear that the excess specific heat
must be associated with the entropy change involved
in the crossover to an anisotropic magnetic system at
low temperature. Unfortunately quantitative corn-
parison with the results of the classical transfer-
matrix calculation arc not enlightening, but we do see
qualitative behavior in Figs. 2(b) and 4(b) similar to
that of Fig. 17.

There are (at least) three other possible origins of
thc excess specific-heat anomaly, two of which can be
immediately discounted. First is a Schottky anomaly
due to the "P (and perhaps 'H) nuclei in the hyper-
fine field of the Cr ions. The magnitude of this hy-
perfine field has been determined' by NMR to be
4.6 kG, which yields a specific heat two orders of
magnitude smaller than observed. Second, the con-
tribution from isolated electronic moments (e.g. , Cr
lons) ln Ilgand or dlpolar fields would be, on the
basis of the known impurity concentration (0.06'/0),
at least an order of magnitude too small ~

It is more difficult to rule out three-dimensional
ordering due to the weak (dipole-dipole perhaps) in-
teraction between spins on neighboring chains. Such
ordering might be smeared by residual structural
disorder and might not lead to an observable anomaly
in the susceptibility. %e can usc the x-ray data,
which indicates structural coherence parallel to the
chains in excess of 20 lattice spacings, to conclude
that ordering above about 1 K, ~here g/~ =—2I J I

x g(g +1)//&2' =20, would lead to sharp features in

both C and X. Below 1 K the increase in C and X

might be due to a smeared 3D ordering, but we be-
lieve that the overall consistency of the data with the
picture of Heisenberg-XY crossover weighs against
this. Remember that the parameters of the sym-
metry crossover model were obtained from the
higher ( T ) 1 K) data.

In the absence of any direct evidence of a Ncel

temperature down to 20 mK, we can put a lower limit
on the "one-dimensionality factor" TMF/T3o ) 10'.
This make PCrP-C "better" 'than TMMC, where

TMF =80 K and T30 =0.85 K, "and comparable to
o.-CuNSal, where TMF =3 K and T30 & 3 mK.

G. %hat happened to E&

The structural evidence implies that thc chromium
environment mas distorted sufficiently that an aniso-
tropy parameter F. should be present. Yet in our
description of the data we found no evidence that F.

is important. %e believe that this is duc to the fact
that there is some degree of disorder in the orienta-
tion of the E axis in the XY planes perpendicular to
the molecular axis. This mill arise because thc octyl-
phosphinate groups, which break thc threefold sym-
metry around the chain axis., are randomly located.
Hence, when the coherence length of thc antifer-

romagnetic order exceeds thc correlation length of
this structural arrangement the anisotropy energy as-
sociated with E will tend to average to zero.

Conversely at higher temperature the anisotropy
energy acting on a small cluster of spins will be the
sum of the D and E contributions and thc onset of
anisotropy will appear more quickly, This is precisely
what is observed qualitatively by comparing Fig. 2(a)
with Fig. 12. Put another way: a larger anisotropy
parameter is required at high temperature than at low
to reproduce the observed difference between X;„and
XOU1.

VI. CONCLUSION

The experimental data on PCrP-C may be summar-
ized as follows:

(i) The initial susceptibility is that of a Heisenberg
antiferromagnetic chain at high temperature and
shows increasing anisotropy belo~ about 6 K.

(ii) The susceptibility increases with applied field in

a manner consistent with easy-plane anisotropy, i.e.,
p, HsF —kT and there is no peak.

(iii) The crossover from isotropic spin symmetry to
XY behavior which commences at about 6 K is not
complete until below 100 mK, as observed in the
low-temperature susceptibility and specific heat.

These experimental data and the theoretical
analysis presented in Sec. II shoe that, within the
short-range-ordered paramagnetic state of a one-
dimcnsional antiferromagnct, there is a rich variety
of behavior which springs from the competition
among exchange anisotropy, iceman and thermal en-
ergies, For thc material which we have examined,
PCrP-C, the exchange interaction

~
J~/k =2.5 K giv-

ing a mean-field temperature of order 20 K. The an-
isotropy is found to bc easy plane with a magnitude
~D~/k —0.03 K, which value is consistent with the
expectations of both single-site anisotropy and dipolar
interactions. The characteristic temperature, T&, sig-
naling the crossover from Heisenberg to XYsym-
mctry is thus computed to be of order 1 K, but we
note that the crossover region is rather wide, extend-
ing from approximately 100 mK to 6 K. (The calcu-
lation shows that similar behavior may be expected in

the change from Heisenberg to Ising behavior for
easy-axis anisotropy. )

%C have found no evidence fof thc Onset of a
three-dimensional ordering at low temperature,
although we cannot completely rule out the possibili-
ty that the, transition is smeared by residual disorder.
The primary argument against such a picture lies with
the good, albeit only semiqualitative, agreement
between the theory of anisotropy and experiment.
Therefore one concludes that PCrP-C is an example
of a system in which anisotropy is more important
than three-dimensional coupling. This anisotropy,
enhanced by collective exchange effects, leads to a
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crossover in spin symmetry above the Neel tempera-
ture. The origin of the anisotropy lies in part with

the distortion of the chromium environment from oc-
tahedral symmetry, and in part with the dipolar in-

teraction along the chain. Similar effects have been
seen, but not so thoroughly explored, in
TMMC' "'"and in CsMnC13 2H20."'

Given that the spin symmetry is continuous (n =2
for XY and 3 for Heisenberg), the effect, at low tem-
perature, of increasing magnetic field, is to induce a
continuous change to a spin-flopped-like alignment.
The characteristic field associated with this change is

predicted and found to be proportional to tempera-
ture. It would be amusing to find an easy-axis one-
dimensional antiferrornagnet in which, below
kT~ —&~ JD ~, the spin-flop field is given by

pH» ~
I
JD

The overall agreement between the experimental
data and the numerical results, although convincing,
is by no means perfect. We attribute this discrepancy
to the fact that the calculation deals with a classical

model so that quantum fluctuations are not taken
into account. The classical results are known to be in

extreme error for the low-temperature specific heat,
and we have shown also that discrepancy in the sus-
ceptibility between classic'al and quantum models
amounts to some 10% near TMF: and increases at
lo~er temperature.
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