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Recent experiments on rare-earth intermetallic compounds have given us data on the contri-
bution from conduction electrons to the magnetization and hyperfine fields at rare-earth nuclei.

Analyses based on isotropic bilinear exchange interactions between the 4f and conduction elec-
trons have not been 'able to explain the systematic variation of' these contributions across the
rare-earth series. To explain these variations it is necessary to take into account the full 4f
conduction-electron exchange interaction (higher-rank couplings) and the crystallographic sym-

metry at the rare-earth sites. In some cases, it is necessary to include the spin-orbit coupling of
the conduction electrons. The conduction electrons in the rare-earth intermetallic compounds of
interest are primarily of 5d and 6s character. In this paper we derive expressions for the orbital
and spin polarizations of these conduction electrons and their contribution to the hyperfine field

and magnetization. %'e take full account of the site symmetry, which is cubic for the com-

pounds of interest, and the complete 4f-5~/ conduction-electron interaction.

I. INTRODUCTION

Two recent series of experiments on rare-earth di-
aluminides have provided us with evidence that there
is an orbital as well as spin polarization of the con-
duction electrons in these intermetallic compounds.
%'e expect this phenomenon to be relatively
widespread in many rare-earth intermetallic com-
pounds, e.g. , the RAg, RZn series. In this article we

give a complete theoretical analysis of these orbital
effects first from a group-symmetry viewpoint and
then on the basis of specific models for the conduc-
tion electrons and the rare-earth conduction-electron
interaction. In an ulterior paper the expressions
developed in this article are planned to be used to
analyze the extant data and determine the size of the
orbital effects coming from the conduction electrons.

From polarized neutron-diffraction studies on the
rare-earth dialuminides (RAID) at temperatures
below their Curie points, Boucherie and Schweizer
determined the magnetic form factors for several of
the rare earths (R: Nd, Sm, Ho). ' By analyzing
their data they have decomposed the form factor into
one part coming from the highly localized 4f elec-
trons and another more diffuse part coming from the
5d and 6s conduction electrons. By extrapolating the
form factor down to zero scattering vector and com-
paring their results with magnetization measure-
ments, they have decomposed the total magnetization
into a part due to the 4f electrons M&& and another

part from the conduction electrons M,,„„d, In addition
by fitting the magnetic form factors to their data,
Boucherie and Schweizer have been able to deter-
mine the wave functions for the 4f electrons in the
magnetically ordered states of the compounds.

%e have analyzed the contributions of the conduc-
tion electrons and find that (i) there are orbital as
well as spin polarization contributions to the rnagneti-
zation from these electrons and (ii) these contribu-
tions are not simply proportional to the orbital and
spin moments of the rare-earth 4f electrons. '

From a different viewpoint, Berthier et a/. , Vi-

jayaraghavan et al. ,
4 and Dintelmann et al. 5 used nu-

clear magnetic resonance to measure the hyperfine
fields at the rare-earth sites in the dialuminides (R:
Pr, Nd, Sm, Gd, Dy, Tb, and Er). Berthier, Devine,
and Belorizky' used a decomposition of the hyperfine
field at the rare-earth nucleus in one part coming
directly from the 4f electrons H4&, another part from
the conduction electrons at the rare-earth sites, i,e.,
the self-polarization field H„, and a third part from
the moments at different sites, i.e., the transferred
hyperfine field. From their preliminary analysis of
the data they concluded that the variation of the
self-polarization field across the rare-earth series
could not be explained by only a spin polarization of
the conduction electrons; it is necessary to admit an
orbital polarization of the electrons. In addition they
found that H„ is not directly proportional to the orbi
tal and spin moments of the 4f electrons. However
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their analysis was hampered by their inability to reli-
ably separate the 4f and conduction-electron contri-
butions to the hyperfine field, because the 4f contri-
bution to the magnetic moment or (i, )4, is only
known for the four rare earths cited in the work of
Boucherie and Schweizer, i.e., R: Nd, Sm, Gd, and
Ho. Therefore before we can separate out the self-
polarization field it is necessary to have a reliable ex-
trapolation scheme to determine the (i, )4, 's for the
remaining rare earths. Although the total magnetic
moment per rare earth is known from magnetization
measurements, the contribution from conduction
electrons M„„&must be removed to determine
(i, )4~. The results of Berthier et al. 3 pointed to the
need for a formula that gives us the variation across
the rare-earth series of the conduction-electron con-
tribution to the magnetization. In this way the
analysis of the composition of the hyperfine field in

these compounds is closely related to the studies of
Boucherie and Schweizer which separate M4& and

Mconti

Our principle aim in this article is to present vari-

ous formulas which give the variations across the
rare-earth series of the conduction-electron contribu-
tions to the magnetization, and hyperfine field at the
rare-earth nucleus. As we have seen it is necessary
to know the former in order to determine the latter.
In Sec. II we use group-theoretical arguments with a
minimum number of assumptions to obtain these
variations as a function of the multipole moments of
the 4f electrons. As many unknown parameters
enter the expressions (compared to the data avail-
able) it is necessary to make further assumptions so
as to reduce the number of unknown parameters.
We show that by making additional assumptions
about the general nature of the conduction electrons
we are able to reduce the number of parameters.
However, the general symmetry arguments presented
in Sec. II do not provide a microscopic description of
the mechanisms which give rise to the polarization
and consequent contributions from conduction elec-
trons to the magnetization and hyperfine fields.
Therefore in Sec. III we present a calculation of these
effects based on specific models of the conduction
electrons and of the rare-earth conduction-electron
interaction. Based on these models we are able to
describe the variation of both M„„&and H„across
the rare-earth series with seven parameters. A test
of the validity of these formulas must wait till we
have enough data on the 4f electron wave functions.
Then we will be able to determine the ability of our
formulas to accurately fit the experimental data on
the variations across the rare-earth series of M„„&
and H, p.

The theory we develop in the following sections is
valid for all rare-earth intermetallic compounds, but
the expressions have been explicitly evaluated only
for those compounds where the rare earth is in a site

of cubic symmetry (Oq or Tq), e.g. , RZn and R Al, .

The extension to other point-group symmetries is

straightforward.

In this section we study the general form of the
self-polarization hyperfine field H,„, i.e., the addi-
tional hyperfine field from the 4f electrons at the
same site as the nucleus in question due to the pres-
ence of conduction electrons. As part of this study
we will also find the various terms that contribute to
the orbital and spin polarizations of the conduction
electrons.

To maintain maximum generality we make only
the following assumptions:

(i) The self-polarization hyperfine field coming
from the conduction electrons is induced by their ex-
change interaction with the 4f electrons. The generic
form of the rare-earth conduction-electron (k-f) in-

teraction is given as

X ( —)'Y„.(L) Y„„(1 )

x (2b„S s + —,c„)

where L, S refer to the 4f shell and 1, s to the con-
duction electrons. The exchange interaction parame-
ters a„can in principle be determined from the atom-
ic Slater integrals G~. The useful coupling coeffi-
cients b„and c„defined by Huang-Liu, Ling, and Or-
bach are given in Table I for all rare earths.

'

Note
that we use the same convention as in Ref. 6, i.e.,

Tr Y„"„(1)Y„„(1 ) =1

With this normalization we have, for example,

Y, ( 1 ) = [I(I + 1)(2/+ 1)/3) ' 'I,

(2)

(2a)

The exchange Hamiltonian Eq. (1) is quite general as
long as one limits ourself to the exchange of a pair of
electrons at one site.

(ii) We assume that the, conduction electrons near
the Fermi surface do not have an orbital angular
momentum exceeding 1=2. For rare-earth interme-
tallic compounds this assumption has been found to
be valid. Band calculations have nqt shown that
there are many elections of f or g character, but rath-
er that conduction electrons have predominantly 6s
and Sd character.

(iii) We consider cubic site symmetry, although
the analysis could be readily adapted to other site
symmetries.

While the explicit form of the hyperfine interac-
tions will not be necessary in the following analysis it
will be useful to help us determine the physical
mechanisms giving rise to the various contributions
to the self-polarization field. The Hamiltonian

II. GROUP-THEORETICAL SYMMETRY ARGUMENTS
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TABLE 1. Projection factors defined in Eq. (1).

Y„„(l;) =c„Y„„(L)

C0 ('4

Ce3+

P.r3+

prri3+

Srn3+

Dy3+

Ho'+

Er3+

4)1

4 /'2

4)3

4(5

4 /'6

4 /'7

4(8

4 /'9

4(10

4(11

4) 12

4 g-13

1 5
3 ——

2 2

514
3 9

6 ——
2 2

624
5 5

5 ——
2 2

330
7 7

0 ——
2 2

336
5 15

5 ——
2 2

628
3 15

6 ——
2 2

516
1 7

3 ——
2 2

2..5071

4.0883

5.4511

6.2678

2.6458

11.2821

13.6277

14,9905

15.0428

13

1.9821

2.5495

1.9821

2.5495

2.5495

1.9821

1.0653

—0.4438

-1.0653

1.0653

0.4438

—0.4438

-1.0653

—0.8876

—0.8876

—0.8876

—0.8876

—0.9085

—0.6371

+0.6371

0.9085

—0.9085

—0.6371

0.6371

0.9085

X Y„,( l, ) s, = b„Y„„(L)S

Ce3+
pr3+

g d3+

Prn'+
Srn3+
Eu3+
Gd'+
Tb3+
Dy3+
Ho3+
Er3+

TI3+
Yb3+

1

1.2536
1.3628
1.3628
1.2S36
1

0.3780
1

1,2536
1.3628
1.3628
1.2536
1

1

0.9910
0.8498
0.6374
0.3964
0.1667

-0.1667
—0.3964
—0.6374
—0.8498
—0.9910
—1

1

0,5326
0.1479

—0.1109
—0.2131
-0.1667

-0, 1667
—0,2131
-0, 1109

0.1479
0.5326
1

1

0
—0.2959
—0,2219

0
0.1667

-0.1667
0
0.2219
0.2959
0

1

—0.4542
—0.2124

0.1593
0.1817

-0.1667

-0.1667
0.1817
0.1593

—0.2124
—0.4542

1

describing the hyperfine interaction between the con-
duction electrons and the nuclear spin is

X„r=A [l ++20/7[Y2( I ) x s]'+k s} I . (3)

The first two terms describe the orbital and magnetic
dipole interactions, while the last term represents the
contact and core-polarization contributions. The pro-
duct [ Y2,( I ) x s ]' represents a second-rank orbital
angular momentum harmonic coupled to a spin to
form a vector (tensor of the first rank). In future

calculations we leave A and k as unknown parameters
and determine them by fitting to available data.

Kith the above assumptions the general form of
the interaction between the 4f electron's moments
and the nuclear spin via the conduction electrons at a
site of cubic symmetry is written

Oe, -X g(kyar) [[Y"'(C) x S'»])",&] ' x I ' . (4)

The ranks of the orbital operators go from 0 to 4
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only, because of our assumptions about the inter-
mediate state not having orbital character greater
than I =2. The spin rank is either zero or one
corresponding to the two types of terms entering the
exchange interaction Eq. (1) and the rank r of the
coupled orbital and spin operators must be odd to
have the proper time symmetry. %hen the represen-
tation D (r) of the group 0 (3) is decomposed into
cubic group representations, only the part that
transforms as a time odd 14 vector is retained. The
representation 1 4 is contained once for r = 1, 3 and
twice for r =5.

The interaction Eq. (4) can be recognized as an in-

variant under the cubi~ group and only those parts of
the operators referring to the 4f electrons that
transform under the representation 14 are retained.
As shown in Table II there are eight different combi-
nations of k, p, and r that enter the self-polarization
Hamiltonian; thus without further assumptions this is
the number of parameters needed to describe H„
which is the field acting on the nuclear spin when
one takes the expectation values of the 4f electron
operators in Eq. (4). Most of the parameters g(kpr)
can be identified with one of the three contributions
to the hyperfine interaction Eq. (3), but as seen from
Table II there are three parameters which have con-
tributions from both the spin and dipole terms. %e
could have included in Eq. (4) the direct hyperfine
interaction between 4f electrons and the nucleus; it

would contribute to three terms, ((011),$(101),
and $(211). However, as we will eventually be using
Eq. (4) to explain the variation of self-polarization
field across the rare-earth series, the direct hyperfine
interaction from the 4f electrons is expressly omitted
from this equation.

There is another form of the self-polarization in-
teraction which is more appropriate when we make
some assumptions about the nature of the intermedi-
ate states. If we focus on conduction electrons with d
character (those with s or p character are not split at
sites of cubic symmetry and will not alter the conclu-
sions we draw) they will be split by the cubic crystal
field of the surroundings. %hen we neglect this
splitting the expression for X,~ Eq. (4) reduces to an
isotropic form like Eq. (3) where the orbital and spin
operators are. replaced by those referring to the 4f
electrons. However, if the crystal-field splitting of
the d electrons is greater than their spin-orbit cou-
pling, it makes sense to classify the orbital operators
referring to the d conduction electrons in Eqs. (1)
and (3) according to representations of the cubic
group before they are coupled to the spin operators.
This scheme of coupling the orbital and spin opera-
tors of the d conduction electron reflects itself in the
classification of the 4f electron s operators ln Eq. (1)
in order to keep Eq. (1) in an invariant form. Thus
in this scheme the hyperfine interactions induced by
the 4,f electrons by their interaction with the conduc-

TABLE II. Parameters entering the general self-polarization hyperfine interaction for cubic symmetry Eq. (4),

x =X&(kp.)1(y" s),",1 "I4.I 1

kpr

The tensor of rank r must always be time-odd.

Parameters g(kpr)
Possible combinations'

Hyperfine interaction Exchange interaction

k=0 p 1

k=1 p=0
k=2 p=l

g(o»}
g(101)
g(2»)

Spin only Hp&

Orb«t only H«p
Dipole contribution H2«

Spin only apbpS s
Orbit only a «c«L ~

1

a2b2 Y2 (L) V2{ 1 )S s

k =2 p'=1
k=3 p=0
k=4 p 1

g(213)
((303)
$(413}

Dipole contribution H2«
Orbital part H «p

Spin and dipole Hp«+H2«

a2b2 Y2 (L) V2{ 1 ) S s

a3c3 Y3 (L) V3{ 1 )
a4b4 Y4'(L) ~ V4( 1 ) S s

k 4 p=l
k~4 p~l

g(415)
('(415)b

Spin and dipole Hp«+ H2«

Spin and dipole Hp«+
a,b, V,'(L) V,(1)S s
a4b4V4'(L) V„( l )S s

'The coefficients a„, b„, and c„refer to the exchange interaction Eq. (1). The coefficients Hp«, H«p, and H2«refer to the spin,

orbital, and dipole contributions to the hyperfine field, see Eq. (3).
"The presence of two parameters $(415) and g'(415} for r 5 comes from the fact that there are two independent representa-
tions I & in the reduction of D~5~ in the cubic group.
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tion electrons is written

X»=X)' '(kp)([Y"'(L)] xS }„'xl', (5)
kpy

where the ranks k and p are the same as for Eq. (4)
and the representations I „ that can appear are y = I,
3, 4, and 5. In Table III we list the nine possibilities.
As shown below these nine parameters g'r'(kp) are
related to the eight parameters g(kpr). Each parame-
ter g'"'(kp) is associated with a specific contribution
from the hyperfine interaction except for $'"(01)
which has contributions from both the 6s as well as
the 5d electrons and g'"(4l) which has contributions

from the spin and dipole terms in Eq. (3).
Although we use the index y to enumerate the

number of parameters g'r'(kp), it should be noted
that this index has no meaning in the coupling
scheme appropriate to the rare-earth electrons, i.e.,
LSJ. Therefore we really have

([(Y ) & x S ] )« = XQ " (kpr) ([(Y'x S&)'] )«,
r

(6)

where the coefficient @'~4'(kpr) is a combination of
Clebsch-Gordan coefficients for the cubic and three-
dimensional rotation groups

r tI„ Ip k p r
y'& '(kpr), . =42r+I—x(—)" ' ' (I',j}kq) . (rq'}I' i)

, J J 0 j

The symbol (I',j }kq) defined in Eq. (14) gives the
linear combination of spherical harmonics Y« to
make up a Kubic harmonic I „, see Ref. 7. By plac-
ing the relation Eq. (6) in Eq. (5) and comparing the
ensuing expressions to Eq. (4) we find that

g(kyar) = Xg'~'(kp)y'~4'(kyar) .

The form Eq. (5) is useful if details of the inter-
mediate (conduction-electron) states are known. For

l

example, if they are not spin-orbit-coupled states the
dipolar term does not contribute to g"'(4l) and
g"'(4l), and we have one fewer parameter, i.e. ,
eight. If in addition only sd-t2„states need be con-
sidered g'3'(2l) =—g"'(2l) and there are seven in-

dependent parameters. Finally, if only Sd-e, states
need be considered, only I"

» and I 3 are possible and
we have only four parameters g"'(01), ('3'(21),
g"'(41), and g"'(41).

To determine the variation of the self-polarization

TABLE III. Parameters entering the general self-polarization hyperfine interaction for cubic syrn-

metry, Eq. (5),

X» ——Xg{»{kP)[(Y")rxsr], r'xi 4 .
r r r

kpy

The sum of the ranks of the tensors k +p must be odd to satisfy time symmetry,

parameters g'y'{I p)
Exchange

interactions Eq. (1)

Contributions from"
Hyper fine

interactions Eq. {3)

011
140
231
2 5 l

340

g" '(01)
g&4)(10)

g&'&{2))}
g(5){2{)j
g(4) (30)

Ho»

H»0

aoboS s

a»c»L ~ l

a,~, I V,'(L) V,(l}jS s

a3c, v, (L) v3( l )

431
4 5

441

g(» )(41)

g[')(41) t

~(s)(41} I,

g('~{41),

Ho»+ H2»

a4bqt Y4'(L) V4( l }]S s

'The coefficients a„, b„, and c„refer to the exchange interaction Eq. (1). The coefficients Ho»,
H»0, and H2» refer to the spin, orbital, and dipole contributions to the hyperfine field, see Eq. (3}.
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field across the rare-earth series it is necessary to
evaiuate the average the 4f electron operators enter-
ing Eq. (4) over the appropriate crystal- and
molecular-field states. This is done in four steps.

(1) The n 4f electron operators are projected on
the ground state given by Hund's rule in the
Russell-Saunders coupling scheme.

and

n

X Y„„(I;) =—e„Y„„(L)
i ]

X Y„„(I;) s; = b Y„„(L)S
i 1

(9a)

(9b)

The values for b„and c„are given in Table I. Some
of these have been given previously.

(2) The orbital and spin operators are projected
onto the total angular momentum manifold J of the
ground state.

d3

Ce3+
Pr3+
Nd3+
Pm'+
Sm'+
Eu3+
Gd3+
Tb3+
py3+
Ho3+
Er3+

Tm'+
Yb3+

0,9035
0.8863
0.8569
0,8038
0.6838
0

1.2748
1.1721
1,1229
1.0934
1.0719
1,0498

0.8571
0.8497
0.8170
0.7488
0.5811
0

1.1095
1.1058
1.0823
1.0617
1.0415
1.0102

0.7825
0.7948
0.7583
0.6698
0.4438
0

0.8876
1.0106
1.0227
1.0148
0.9959
0.9476

TABLE IV. Projection factors defined by Eqs. (10b) and
(10c).

Y„(L)= d~(J) Y„(J )
where

(LSJ II Y„(L) II LSJ)
(J II Y~ II J)

J J p,

L L S( 1)L s+++PI(2J + I)

(10a)

(lob)

finition we find,

[ Y„„(L)x S ]" =N', (J) Y~ ( J )

where

iV" (J) = [S(S+1)(2S +1)/3]' 'M" (J) (13a)

and the curly bracket represents a 6j symbol. In
Table IV we list the values for d], d2, and d3. For
the spin-dependent terms we find

[ Y „(L)x S,']' = (iLvlq ~p, lrm)M"„~ (J) Y„(J )

(1 la)
~here the term in angular brackets is a Clebsch-
Gordan (vector coupling) coefficient, and

(10c)

and

In Table V we list the values of those recoupling
coefficients which will be needed for the expressions
in Sec. III. The recoupling coefficients d] and No&

can be expressed in terms of the Lande gJ factor.

J(J+1)(2J+1)
L (L +1)(2L + I)

T

L L p,

M„", (J) =(2J+1)J2p, +143 S S 1 (lib)
J J r

J(J +1)(2J + 1)
3(2L +1) (gJ —I) (13b)

The curly bracket represents a 9j symbol. From
the definition of the irreducible tensors, Eq. (2) we
have

(3) We determine the proper linear combinations
of spherical harmonics that make up the Kubic har-
monics I 4

S, = [S(S + 1)(2S + 1)/3] ' 'So (12)
[ Y"( J ) ]; = X (I »i ~ rm) Y' ( J ) (14)

and

S+ = + [S(S + 1)(2S + 1)/3]'i'S+ (
2

Therefore when we recouple the orbital and spin
operators S = (+ I/J2)S+, S, by using the above de-

Apart from a normalization factor the coefficients
(l,i ~rm) have been given by Watanabe for the
values of r =1, 3, and 5 we need. ' In Table VI we
list some of the Kubic harmonics needed to study the
self-polarization field. In case there is more than one
J state to consider, e.g. , SmA12 we write

1 't

r
[(Y„(L) x S )"]; = X(I &i Irm) [ Y„(L)x S ]"=X(I »i ~rm)( —I)&+ 42r+1 Y„„(L)S», (14a)

m m
vq
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TABLE V. Projection factors defined by Eqs. (13a) and (13b).

N )P) Np') N2,
2 3 3

N4i
5

Ce3+
Pr3+
Nd3+
Pm3+
Sm3+
Eu3+
Qd3+
Tb3+
Dy3+
Ho'+
Er3+

Tf0
P b3+

0.5345
0.9909
1.4210
1.7974
2.0226
1.3093

-3.5406
-2.7524
-2.1174
-1.5407
—0.9924
—0.4629

-0.2259
—0.4671
—0.6870
—0.8593
—0.9009

0
6.4807
2.5495
1.8532
1.4005
1.0228
0.6779
0.3499

0.4949
0.8697
1.2255
1.5329
1.6775
0

-2.3274
-1,9907
-1.5703
—1.1468
—0.7282
—0.3194

—0.2020
—0.4471
—0.6637
—0.8» 1

—0.7645
0

2.8244
2. 1013
1.5986
1.1762
0,7917
0.4286

-0.1620
—0.3933
—0.5887
—0.6933
—0.5491

0

2.7563
2, 1879
1.6937
1.2604
0.8624
0.4904

0.5663
0,8795
1.1818
1.3916
1.2278
0

-1.0512
-1.3046
-1.1250
—0.8372
—0.5143
—0.1870

—0.0681
—0.2600
—0.3984
—0.4514
—0.1477

0

}.9329
2.0755
1.7266
1.3319
0.9455
0.6015

TABLE Vl. The Kubic harmonics for Eqs. (22), (23), and (24d) in terms of spherical harmonics
quantized along the three principal directions of a cube.

X (r,il I 9)Y„.

(Y, ), 4

[100)
[»}j
[1}0]

Yio

( Y3), 4

[looj

[1}})
[1}0)

Y3p

—(2/3) [ Ygp+ (410/4)( Yg) —Y) ))]
—( I/4) [ Ygp

—415/2( Yyg+ Yg p)1

( v, ). '

[}oo)

[1»)
[1}ol

J7/12 [ Y„+45/14( Y«+ y, ,) ]

—(2/3) J7/12[ Y4, + J}O/7( Y43 Y4 3)]

(I/4)v 7/12[ V4p MIO( Y~)+ Y4 p) 345/14( Y44+ Y4 4) ]

I

'
[}00)

[1}o)

Y5p + (3/M70) ( V54+ Y5 4)

—(2/3) [ Vgp+ (8/470) ( Y5) —Yg g)]
—(I/4) [ Y5p

—& 42/5( Y5~+ Y5 )) —(9/470)( Y54+ Y5 4) ]
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where we have used the 3j symbol to decompose the
product of orbital and spin operators.

(4) Finally the operators Y' ( J ) or [ Y„x5"]" are
projected onto the eigenstates of the 4f electrons

( Y" ( J ))4, . To determine the states in the magneti-

cally ordered phase of the compounds one must take
into account the molecular field acting on the 4f elec-
trons in addition to the crystal field. If more than the
ground state is occupied the thermal average of the
operator over the occupied states must be taken. De-
tails of the wave function for the occupied states of
the 4f" electrons for several rare earths have been
obtained by Bourcherle and Schweizer from their
determination of the 4f electron contribution to the
magnetic form factor. ' In those cases where this data

is not available from experiment, it is necessary to
determine the 4f electron states by simultaneously
diagonalizing the crystal- and molecular-field Hamil-

tonians, and then taking the average over thermally

occupied states.
If we assume the parameters g(kpr) or P(kp) do

not vary across the rare-earth series, and following

the above steps we are able to use Eqs. (4) and (5) to
determine the self-polarization fields (the expectation
value of X„over the 4f electron states) for aii the

rare earths. Needless to say there are too many

parameters in general (eight or nine) and we are
forced to make further assumptions to obtain a tract-
able expression. In Sec. III we describe three model

calculations which reduce the number of parameters
considerably. The ensuing expressions contain
fe~er parameters, but the assumptions are restrictive
and reduce the general applicability of the expres-
sions.

%e can also use the above arguments to determine
the number of parameters needed to describe the
contribution to the magnetization from conduction
electrons, The Zeeman interaction between an exter-
nal field and the conduction electrons is

V4 I 4
+mag = mcond

' H = ~cond ~ +
As rn„„q represents the magnetic moment induced in

the conduction electrons by their interaction with the

4,f electrons we can write

4 X gm(k+&) [( yk x ge)r] 4

These are all the possible combinations of 4.f electron
operators that transform as the I'4 representation of
the cubic group and. are time-odd. Thus from sym-
metry alone the same number of parameters f enter
the general expressions for the contributions to the
magnetization from the conduction electrons as for
the self-polarization field. Note that if conduction
electrons with different orbital characters, i.e., -spd,

are present, they contribute to g (kpr) but do not
produce additional parameters. Thus the most gen-

eral expression for the magnetization of the conduc-
tion electrons is given by the eight parameters
g"(kpr) or the nine parameters g'~'(kp) and these
parameters describe the variation of the conduction-
electron contribution to the magnetization across the
rare-earth series.

' If details of the conduction elec-
trons are known or assumed, we can use Eq. (1) to
directly find the number of parameters that enter Eq.
(15). By using the explicit interaction Eq. (1) we

drastically reduce the number of unknowns, however

we must have details of the conduction-electron
structure.

As we saw in Sec. II there are a large number of
parameters that enter the general expressions for the

hyperfine field and orbital and spin polarizations of
the conduction electrons. To arrive at a tractable
analysis of the experimental data it is necessary to
reduce the number of parameters. Therefore we

must resort to specific models of the conduction elec-
trons and of the rare-earth conduction-electron in-

teractions.
In the following calculations we make the following

approximations:
(I) The conduction electrons of Interest are of Sd

and 6s character. The 6s electrons have only spin po-
larization while the Sd have orbital and spin contribu-
tions. %e further assume there is negligible overlap
between Sd electrons localized at different rare-earth
sites (tight-binding approximation). The Sd electron
does strongly interact with other conduction electrons
and forms a virtual-bound state (vbs). As there is

usually less than one Sd electron per rare earth, we

further neglect the intra-atomic Coulomb interactions
U and J between d electrons,

(ii) The rare-earth Sd conduction-electron interac-

tion is described by the 4f Sd intra-atomic Coulo-mb

interaction. The integrals entering the interaction
could be evaluated from the 4 f-Sd Slater atomic in-

tegrals F& and G~. %'e will use these atomic integrals

only to determine the ratios of the higher-rank in-

teractions with respect to the bilinear interaction.
T'his allows us to determine these interactions by fit-

ting them to the data with only one exchange param-

eter. For the 4f 6s interaction we h-ave one parame-

ter which is determined by fitting to the data.
(iii) The polarization of the conduction electrons

by the rare-earth 4f moments is calculated by using
linear-response theory. This method was originally

used by Caroli, Caroli, and Fredkin, then by Dworin
and Narath, 9 and most recently by Huang-Liu, Ling,
and Orbach. 6 In previous calculations the Sd vbs was

polarized by the Zeeman interaction and the intra-
atomic interaction between Sd electrons were taken
into account, i.e., the Coulomb direct and exchange
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+ 8 (s, )„+C (s, ), (16)

Thus the calculation of H„reduces to one of finding
the orbital and spin polarizations of the conduction
electrons and the expectation value of the dipole
term [ Yq(T) x s]'. Thus in this approach we find the
contribution of the conduction electrons to the mag-
netization as well as to the hyperfine field

Mamd = o'B [ ( lz )» + 2 ( ( s, )» + ( s, ), ) ] (17)

In Eqs. (16) and (17) only the components of the
conduction-electron operators parallel to the internal

interactions represented, respectively, by the integrals
U and J. In our application we neglect Uand J and
the Sd vbs is polarized by its interaction with the
rare-earth 4f electron's moments which themselves
are polarized in the magnetically ordered states of the
compounds under consideration.

(iv) We consider separately the effects of crystal-
line field and spin-orbit coupling on the Sd vbs, and
the splitting of the Sd vbs and 6s states into spin-

up —spin-down bands. In reality all three effects oc-
cur, however the lack of detailed knowledge of the
nature of the conduction electrons does not permit us
to simultaneously take them into account. When we
split the conduction electrons into two spin bands we
implicitly break time-reversal symmetry. The results
derived in Sec. II were based on the assumption that
time-reversal symmetry is preserved. Therefore
terms not present in Eqs. (4) and (S) will appear
when we consider the splitting of the conduction
electrons into spin-up and spin-down bands.

On the basis of the above assumptions we find the
contribution of conduction electrons to the hyperfine
field, i.e., the self-polarization field, by calculating
the expectation values of the operators entering Eq.
(3) for Sd and 6s electrons,

H, 0=A ((l, )»+v'20/7([ Y2(1) x s]o)»I

molecular field appear; the other components are ei-
ther zero or very small and may safely be neglected.
The average for the s electron (s, ), is straightforward
and is written in our notation as

=p —AF (19)

where A is a conduction-electron operator which cou-
ples to a field F, then to first order in F, the response
associated with another conduction-electron operator
B is given as

(8) —(B)F— =0X QBF

XBq = X (n1IB In2) &n2IA Ilr1)S(n1n2) (19a)
n]n2

The states I n ) are eigenstates of the unperturbed
Hamiltonian&0 and S(n1n2) is the susceptibility
which can in principle be calculated if enough is

known about the states and spectrum of p, but
which we will consider as unknown in our work and
will assume to remain constant as we go across the
rare-earth series. The operator A for our calculation
are those terms in Eq. (I) referring to the conduction
electrons, i.e., Y„„( I ) and Y„„( I ) s, and the field F
is the remainder in Eq. (1) after one takes the expec-
tation values of the rare-earth 4f electron operators
over the appropriate crystal- and molecular-field
states, That is to say we write in our case

(5.) =4tobo&01 ( Yfo(J))4fX

where ap is the isotropic 4f-6s exchange constant and

X, the susceptibility of the 6s electrons.
To calculate the d electron averages entering Eqs.

(16) and (17) we use linear-response theory. The
expectation values (l, )», (s, )», and ([ Y2( I ) x s ]p) „
are the response of the conduction electrons due to
the "perturbation" of- the 4 f-5d exchange interac-
tion, Eq. (I), i.e., if we write the Hamiltonian for the
conduction electron as

4 p 4

—AF—= Ã(4Fl 5»
———2 X $ ( )"a„b„Y„,( I ) s—(Y„„(L)S)4»—

—, pc~ $ ( —)"Y„„(1)(I'„„(I))„,
p, =p v = —

)u,

(20)

Now we evaluate the expectation values by using
Eq. (19b) in three different limits for the unper-
turbed Hamiltonian Xp. First when the crystal-field
splitting of the Sd electrons is most important, second
when the Sd band is split into spin-up and spin-down
bands, and third when spin-orbit coupling is impor-
tant so we have two bands with j = —and —.In3 5

2 2'
each case we have three susceptibilities S(n] n2) but
their meanings are different as they refer to different
limits of the eigenstates of the conduction-electron
Hamiltonian [).

Finally the operators B are those for which we want
to find the expectation values, i.e., (l, )», (s, )», and

( [ Y2( I ) x s ]p)». In summary we can rewrite Eq.
(19a) as

(8, )5» ———X &r11IB, I 112)&112I&i4f)5» In, ) s(n1nz)
n]n2 (19b)

when we set to zero the expectation values of the
operators in the absence of the 4f Sd exchange in--
teraction, and the components of the vector operator
B perpendicular to the molecular field.
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A. Strong crystal-Geld limit

In this case the eigenstates of the Sd electrons are labeled by the cubic group representations eg and t2g and the
spin. As me neglect the spin polarization of the band and the spin-orbit coupling, the susceptibility depends on the
orbital labels e, and t2g, and Eq. (19b) is written

(~.) =—X X (Wi~ill, I42~2) &02~2lxt~f&s. lei~i&s(dt42) ~

@]ttfg fry
]F1 2

(21)

where the $'s are the Sd —eg and t2g orbitals and m refers to the 5d spin. If one resorts to the details of the
virtual-bound-state model, one can write the susceptibilities S(pf@2) in terms of the energies and linewidths of
the t2, and e, states, see Ref. 6. By piacing the 4f 5d exchan-ge interaction Eq. (20) in Eq. (21) we find'0

(l, )q = ate~([ Y~(L) ],4) [S(tt) +4S(te) ] — a3c3([ Y3(L) ],~) [S(tt) —S (te)]
10 10

(s, ) q
= ( Yo(L)S, ) [3S(tt) +2S (ee) ] —46/Sa4b4(( Y4) 'S, ) [S(tt) —S(ee)1 (23)

We have classified the 4f electron orbital operators according to the cubic grouP rePresentations. The axis of
quantization z is along the direction of the molecular field. As this direction varies from one rare-earth com-

pound to another we give in Table VI the explicit forms of the operators in terms of the spherical harmonics re-

ferred to the three principal cubic axis, i.e., [100], [110],and [111].
For the dipole term it is not possible to give one expression, as Eqs. (22) and (23), valid for all principai axes

and we must give a separate expression for each principal direction. For the molecular field along [100] we find

([Y~( I ) x s]0).

7 V2/5a2b2[( Y20(L)S ) [3S(ft) +4S (ee) ] 2
J3/2([ Y2] (L)S— Y2—t(L)S+])[3S(ff) +4S(te) ]]

,
'

v2a4b4 ((Y4—0(L)—47/10[ Y44(L) + Y4 q(L)]]s, ) [S(tt) S(ee)—]

4 5
(([ Y4, (L) —J7 Y4 3(L)]S +c c.})[S(tt) —S(te)] (24a)

For [111]we find
f

([Y,(T) x s ]&'))„=——,'42/5apbg ( Y20(L)S, ) [3S(tt) +4S(te)] — (Y2i(L)s —Yp i(L)s+)
2 6

x[9S(ft)+4S(te)+gS(ee)] — (Y (L)S + Y (L)S )[S(fe)—S(ee)]
3

+ ,', J2a,b, 4( {Y,o(L—)——,
' 47/Io[ I'43(L) —Y4—3(L)])S,) [S(tt) —S (te) ]

+ (Y4)(L)s —Y4 t(L)s+) [S(tt) —5S(te)+4S(ee)]
2 5

+ (Y4,(L)S,+ Y4 2(L)S )[—7S(tt)+SS(ee) S(te)]—
2 5

+J7/5(Y„(L)s + Y, ,(L)S ) [—2S(tt)+S(te) +S(ee) l
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Finaliy for [110]we find

([Y, ( 1) x s lo), = ——,d2/Sa2b2[( Y2O(L)$, ) [3$(tt) +3$(te) +S(ee) ]

2
~3/2 ( Y21(L)$— Y2—j (L)$+}[3$(tt) + 2$ (fe) + 2$(ee) ]

+43/2( Y2 )(L)S —Y„(L)S,+ [ Y22(L) + Y2, (L)]S,) [$(ee) —$(te)]]

56
a4b4 (Y40(L)$, ) [$(tt) 6-S(te)+5S(ee)]+ (Y4, (L)S —Y, , (L)S,)

2 5

x [3$(tt) —5S (te) + 2S (ee) ]

+ (Y, , (L)S —Y~, (L)$+) [7S(tt) 5$(—te) —2$(ee)]
2 5

+v'2/5([ Y42(L) + Y, 2(L)]S,) [7S(tt) 6S(te) ——S(ee)]

+ —', v'7/5 ( Y„(L)S —Y, ,(L)S+) [—3S(tt) + S(te) +2S(ee) ]

+ —,'47/5( Y, ,(L)S —Y„(L)S,) [S(tt)+$(te) —2$(ee) ]

+347/10([ Y44(L) + Y~ ~(L) ]S,) f —3S(tt) +2S(te) +S(ee)]

For most rare earths we can confine our attention to one J manifold and write the orbital and spin operators in

terms of total angular momentum operators. By using Eqs. (10) and (13), and remembering we only want the
"time-odd" terms that transform according to the I'4 representation, see Eq. (5), we find"

(l, )„= a, c(d(([Y)(J)],') [S(tt)+4S(te)] —— a3dc3(s[Y (3J)],') [$(tt) —S(te)]
~io '''

10
(22a)

(s, )„= aoboNJ~ ([Y~( J )],4) [3S(tt) +2S(ee))
5

I

+ —,
' 47/10a, b, ([2N43, [Y,( J )], ' —KSN4s, [ Y,(J )],' ']) [S(tt) —S(ee)],

([ Y2( 1 ) x s ]o)q = —„a2b2N, '~ ([Y~( J )],4) [15S(tt) +12S(te) +8$(ee)]

+ a2bpN23) ( [ Y3( J ) ], ') [S(te) S(ee)]—
+ a,b,N,', ([ Y3( J )], ') [7S(tt) —3S(te) 4S(ee)]—

21 2

,', v'2/5a~b~N4s) g A—(S(ij)) ( Ys ( J ) + Ys ( I ) )

In Table &I we list the Kubic harmonics [ Yk( J ) ], in terms of the spherical harmonics for z along the three
principal cubic axes. %hen the representation D' ' is decomposed in terms of the cubic group the representation
I'q appears twice; for this reason we have two different representations for [ Ys( J ) ], , and the specific combina-
tion in Eq. (23a) cannot be found from symmetry alone. The combinations given ln Table VI have been found
to be the appropriate ones from our calculations. In addition in Eq. (24d) the harmonics Y, ( J ) come from dif-
ferent parts of Eqs. (24) and it is further not possible to write down one combination of susceptibilities associated
with the harmonics Ys( J ) that applies to all three principai cubic direction. For this reason we give them expli
citly for each direction. For [100] we find
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XA (S(ij))( Y5 ( J ) + Y5 ( J ) } [2S(tt) +3S(te) —5S(ee) ] & Yso( J ) }

for [111]we find

+ 3w'7/10 [2S( tt) 3—S ( te) +S (ee) ] & Y5, ( J ) + Y, „(J ) }

X~ (S(tj» & Y5 ( I ) + Ys- ( I ) &
= ——,

'
I [IIS (tt) —15S (te) +4S («) ] & Y ( J ) &

and for [110]we find

+ 47/10[S (tt) + 6S(te) —7S (ee) ] & Y„(J ) —Y, ,( J ) )}, (25b)

XA,„(S(ij))& Y5„(J)+ Y5 ( J)) = —,
' [23S(tt) 60—S(t e)+37S( ee)](Y 5(oJ )&

+ —,
' v'2 l/10 [13S( tt) —12S (te) —S (ee) ] & Y52( J ) + Ys 2 ( J ) &

+-', v'7/10[ —S(tt)+4S(te) —3S(«)]&Y54( J) + Y5 g( J ) } (25c)

%hen we make the simplifying assumption that the susceptibilities do not depend on the crystal-field level, i.e„
S(tt) =S(te) =S(ee) =- 4',

we find from Eqs. (22) —(24)

&1 &, =ilOa, c, 3& Yo(L) }= a, 3 &L, &4, , &s, }d =~5aobo&& Yo(L)S.& =~5/7aog&S. }4t .
70

&[ Y,(i ) x s]o'},=-42/5a, b, g& {Yo(L)S,--, i3/2[ Y»(L)S —Y, , (L)S+])&4f = a,b, S&[Y, (L) x s ]o~}„.

(26)

In this limit we f'ind the same results as those found by using isotropic exchange. The effect of the crystal-field
splitting can be seen by comparing Eqs. (22) —(24) to Eqs. (26). It makes the 5d electron expectation vaiues
dependent on higher powers of the 4f-5d exchange interaction.

B. Spin-split bands

Below the magnetic ordering temperature it is conceivable that the conduction electrons are separated into two
bands, one with predominantly spin up, the other spin down. If one assumes the susceptibilities S(n~n2)
depend only on the spin indices and not the orbital variables, the expectation value for the conduction-electron
operators, Eq. (19b), is

&8, &,t = —X &m)tr) (.8, (m2a2} &mtcr2(X(4, )qd )m)a )}S(o(o.2) (27)

Here m labels the Sd orbital variables and o. the spin. There are three different susceptibilities S++, S, and
S+ . When we place the 4f-Sd exchange interaction Eq. (20) in this expression we find,

t

&l, &„=4 / 52) a(c& Y(ILo)& XS +2~10a,b, &Y,o(L)S, & XaS
t t

=45/2aicidi& Yio( J))(Sp++S )+410/3aibi W o, +W&W2, & Y„(J ) & (S„-S ),2J+1

&s, &»= — aoco XaS + aobo&Yo(L)S, } XS5
' ' iS

2 2L+I 0' 4T

' ]/2

aoco(S++ —S—) + - -aobooi & Yio( J ) & (S+++S—) ~

1 5 Js
4 2L+1 2 (29)
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and

([Y2( I ) 34 s)0)d= ~ —c2( Y20(L)) XaS —b2( Y20(L)S, ) XS + J3/2b2( Y2, (1 )S Y2 ~(L)S )

/

5 2
J2b2N2) ( Y)p( J ) ) (S+++S + 3S'+ ) J3b2N2) ( Y30( J ) ) (S++ + S 2S4. )

is
2

C2d2 ( Y2p( J ) ) (S4-+ —S )
I

(30)

The difference in the susceptibilities S depends on the spin polarization of the conduction bands. It disappears

as one approaches the magnetic ordering temperature and reaches a maximum at low temperatures. If one makes
the assumption that the various susceptibilities are equal we find Eqs. (28)—(30) reduce to Eqs. (26).

The 6s conduction band will also be spin polarized and a splitting into spin-up and spin-down bands also
develops. %'hen one takes this into account for these electrons one finds,

(s, ), = —,ap (S++ —S—)+boNoi ( Yio( J)) (S++ +S—)
242L + 1

(31)

where ap denotes the isotropic 4f 6s exchange co-.nstant and S' the susceptibilities for the 6s bands. If one
takes the spin splitting of the 6s band into account this introduces another parameter, in addition to that needed
in Eq. (18) to describe the spin polarization of a degenerate 6s band.

C. Spin-orbit coupled bands

Finally, if the spin-orbit coupling of the conduction electrons is sufficient to split them into separate bands which

we nominally label by their values j = I + —, we find for d electrons that three susceptibilities are needed. The ex-

pectation values for conduction-electron operators Eq. (19b) is now written

(8, )d = —X (jm; IB, lj 'm, ) (j 'm, l~l4fisdljm, )s(jj')
jm.

.j
, I
i m

.j

where Sy23/2, S3/2q/~, and Sq/25/2 are the three different susceptibilies. When we place the 4f-Sd exchange in-

teraction Eq. (20) in this expression we find,

(32)

aire(Yio(L)) $(—)'" "&ill Yi( I )ljl') &i'llY~( I )llj &S(jj')
, . I

+ aobo( Yo(L)S, & X(—)'+' +'(jll Y~( I ) llj'& &
j'll s llj &S(jj ')

3

+ a2b2([Y2(L) 34 slo) X( )' '+'&jllY~( I )llj'& &j'Il[Y2( I ) 24 l'Islj &s(jj')
3 , . I

=
5

~2/5a &c&di ( Y&0( J ) ) (9S3/23/2+ 2S3/25/2+ 14Ss/25/2)

4 1

5 5
apboN01 ( Yio( J ) ) (3S3/23/2 + 4S3/25/2 7S5/25/2)

+
5

V7/Sa2b2N2', ( Y(0( J ) ) (3S3/23/2 —
S3/25/2

—2S5/2 5/2) (33)
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&s, &„=-,a, c, ( Y„(L)& X (—)/+"'&J II s IIJ') (J'll Y, (T) llj )S(jj')

+
3 5

~o&o& Yo(L)S, ) X'(—)"'"(i I I s I IJ') {i'II
s I IJ &S(Ji')

+ —,'u2&2&[Y2(L) x s]o) X(-)'" "&jll s IIJ'& &i'll[Y2(1) x s]'IIJ)s(iJ')

1

5 10
& 1c1d 1 ( Ylo( I ) & (3S3/23/2+ 4S3/25/2 —7S5/25/2)

1+ -

globo&ol

& Ylo( I ) & (2S3/23/2+ 16S3/25/2+ 7S5/25/2)545

', ~7J5.,/, W„&Y„(X»(S„„„-»„„„+S,/„/, ), (34)

([Y,(1)x -s]ol)„= ' „„(Y„(1.)& X(—) ' "&Jll[Y2( I ) x s]'llj'& (j'll Yl(T)llj)s(ii')

+ u bll( Yo(L)s, ) X (—)"' "&i I I [ Y2( I ) x s ]'
I li'& (i'I I s I IJ &s (JJ')

3 5

+ —,'b &[Y (L) S],'& X(—) ' '"&jll[Y,(T) ]'llj &&j'll[Y,(T) s]'llj&S(jj )

25
~7/212 lc ld1 ( Ylo( I ) ) (3S3/23/2 S3/25/2 2S5/25/2)

——,', ~7"~o~oll ( Yl.(I )) (S3/23/2-2S3/2»2+S5/25/2)

+
25 & 262+21 ( Ylo( I ) ) (14S3/23/2 + 7S3/2 5/2+ S5/25/2) (35)

%e note that all three expectation values depend only
on (J, )&4 independent of their origin, i.e., (L, ), (S,),
or (Y2(L) x S]o). 1n this model spherical symmetry
is preserved and, for this reason the expectation
values of all time-odd vectorial quantities depend
only on (J,). When one makes the assumption that
the three susceptibilities S(jj') are equal we find
Eqs. (33)—(35) once more reduce to Eqs. (26).

IV. DISCUSSION

In Secs. II—III we outlined the theoretical analysis
of the contributions of conduction electrons to the
magnetization and the hyperfine field at the rare-
earth nucleus in cubic compounds. Our principal aim
is to underline the existence of orbital contributions
from conduction electrons to M„„d and H p On
symmetry arguments alone eight parameters g(kpr)
Eq. (4) are needed to describe the hyperfine field
and another eight ( (kpr) Eq. (15a) are needed for

the magnetization. There are not enough experimen-
tal data to determine the 16 parameters nor can we
anticipate this in the future. It is necessary to reduce
their number and in Sec. III we have shown how this
can be done when we make assumptions about the
conduction electrons.

When we place the expectation values (I, )d, (s, )„,
and ([ Y2( I ) x s ]')„derived from our model calcula-
tions, i.e., Eqs. (22)—(35), in Eq. (16) for the self-
polarization field H„and Eq, (17) for the
conduction-electron contribution to the magnetization
M„„d we have a considerable reduction in the
number of unknown parameters. In the expectation
values Eqs. (22)—(35) the isotropic exchange con-
stant ao can be put into the susceptibWities S(n]n2)
and the ratios of the exchange constants a„ to ao are
known from the atomic Slater integrals. The cou-
pling coefficients b„, c„,d„, and %„[are given in

Tables I, IV, and V, and the expectation values of the
4f electron operators must be evaluated in the
crystal- and molecular-field states of the rare-earth
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ions. In this manner we see that for M,,„d we have
three unknown parameters aoS z for the Sd electrons
and one aoX, for the 6s electrons, ' or a total of four
unknown parameters. These same unknown parame-
ters appear in the expression for the self-polarization
field when we insert the expectation values
(I. )d, (s, )d, and ([ Yq( I ) && s jo)„ in terms of the
aos & and ao Xy in Eq. (16). To determine the self-
polarization field three additional unknown parame-
ters are needed, i.e., the coefficients A, 8, and C
entering Eq. (16).' In total only seven parameters are
needed to fit both M,,„d and H,„ if we resort to one
of the specific models in Sec. III. This is a consider-
able reduction from the 16 parameters ( needed in

general.
The vaIidity of the expressions derived in Sec. III

can be tested by attempting to fit the data on H„and

M,,„d, see Refs. 1 —5, to the seven unknv~n parame-
ters. In the next article we evaluate the expressions
fof H p and M,,„d based on Eqs. (22) —(35) and com-
pare them to the extant experimental data on the
rare-earth dialuminides (R = Nd, Sm, Gd, Tb, Dy,
Ho, Er).
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