
PHYSICAL REVIEW B VOLUME 23, NUMBER 1 1 JANUARY 1981

Dislocation-mediated melting of anisotropic layers
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Using the ideas of Kosterlitz and Thouless to describe dislocation-mediated melting of two-

dimensional (2D) crystals, we consider the melting of anisotropic 1 ayers of molecules. Depend-

ing on the symmetry of the Burgers vector of the dislocation most prone to unbind, new types
of melting behavior occur. In the most interesting case, the properties of the melted ph use are
described by three characteristic lengths. There are crossovers between regimes of 2D solidlike,
2D smecticlike, 2D nematiclike, and quasi-isotropic beh ivior. At the melting temperature,
there are divergences in the inisotropic properties of the cryst tl due to one type of disloc ition

being free, but the other type being effectively bound. In the presence of' an incommensurate
crystalline substrate, the 2D smectic properties may be stabilized at large dist inces giving rise to
a distinct smectic phase. Similarly, 2D smectic order m iy be stabilized by the interactions
between the layers of a 3D smectic giving rise to a distinct "bismectic" ph ise, intermedi &te

between the smectic-C and -8 phases. Consequences of these results for v irious scattering ex-
periments have been calculated. The general theory of' disloc itions in tn inisotropic 2D solid is

worked out in detail in Appendix A with explicit calcu1ations for the interactions between disloca-

tions and the stress and displacement fields associated with them.

I. INTRODUCTION

A. Purpose

The theory of dislocation-mediated melting of
two-dimensional solids has recently made much pro-
gress based on ideas due to Kosterlitz and Thou-
less. ' ' The theory has been developed in greatest
detail for the melting of a regular triangular crystal
where the elastic properties are the same as for an
isotropic, two-dimensional solid. In the present
paper, we consider the melting of two-dimensional
(2D) crystals of lower symmetry, where the elastic
properties are anisotropic. W'e analyze properties of
the system just above melting, and find behavior
which differs in many important ways from that of
the regular, triangular solid.

Phase transitions in isolated layers of smectic liquid
crystals are an important potential application of
two-dimensional melting theory. Many such systems,
however, will be more anisotropic than the regular
lattice. In particular, smectic layers may be formed
of rodlike molecules, whose axes are aligned along a
vector at an angle away from the normal to the
layer. ' The molecular tilt will lead to a distortion of
the lattice even if the molecules would otherwise
tend to form'a regular, triangular lattice. 8 The pro-
jection of the orientation. vector onto the plane of the
layer will generally have a preferred direction relative
to the bonds in the solid. In the simplest case which

we consider in detail, the molecules align either along
or halfway between the bond directions and the solid
retains a rectangular symmetry with two perpendicu-
lar symmetry axes (see Fig. 1).

A layer of nonspherical molecules adsorbed on a
crystalline surface may form an anisotropic 20 solid. '
If the adsorbate lattice is incommensurate with the
substrate, ' ' its melting may be described by the
theory of the present paper, with some modifications
discussed below.

Anisotropic solids have the possiblity of very in-

teresting behavior„since all elementary dislocations"
are not equivalent, as they are in the regular triangu-
lar solid. In the uniaxial solid, two equivalent dislo-
cations, hereafter labeled type I, have their Burgers
vector along a reflection symmetry axis and four
dislocations (type II), equivalent with each other,
but inequivalent with the first type, lie at angles of
+pa from the reflection axis. The x axis is taken to
be the reflection axis coincident with the elementary
lattice vector (see Figs. 2 and 3).

The solid phase has dislocations which are tightly
bound in pairs, When the temperature is raised, the
pairs unbind and destroy the crystalline order. The
entropy associated with the creation of a:dislocation is
bS = ka in(R'/a') where a' is the core area and R'
is the system area. The energy increase of the sys-
tem is hU = —,K in(R/a), where K is determined by

the lattice constant and the elastic constants. Thus
the free energy b F = 5 U —TAS favors the creation
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FIG. 2. Six elementary Burgers vectors for the lattice in

Fig. 1(b). The type-I lattice vector lies along the x axis, and
the type-II dislocation Burgers vector at angles of +@0 with

the x axis. (b) The reciprocal-lattice vectors are shown.

FIG. l. (a) Side view of a layer of tilted molecules is
shown. (b) Top view of the 2D solid phase (smectic-H
layer) is shown. The arrow heads indicate the upper end of
the rodlike molecule. %e have assumed here that the
molecular axis projection on the xy plane tend to point along
one of the six nearest-neighbor bond directions, so that the
arrows form a chain, lying head to tail. Dotted lines indicate
bonds of the triangular lattice formed by the centers of the
molecules. (c) Same as (b), but here the molecular axis
projection lies intermediate between two nearest-neighbor
bonds. The arrows line up side by side in rows. In this
case, as in (b) there is one bond direction which lies in the
relfection plane through the x axis. In this case the molecu-
lar axis projection lies halfway between nearest-neighbor
bonds, but the reflection symmetry of y remains for elastic
properties.

Direct-Lattice Vector

(a)

of dislocations above the temperature determined by

k~ T = —K For the anisotropic solid, the coefficient
K depends on the dislocation type, and we shall use
the symbols It'~ and K~~ for type I and type ll. [For-
mulas for Kl and Kll, in terms of the lattice constants
and elastic moduli are given in Eqs. (2.14) and
(A29).]

Reciprocal- Lattice Vector

(b)

FIG. 3. (a) and (b) are the same as Fig@. 2(a) and 2(b),
but for the lattice in Fig. 1(c).
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Applying the entropy argument of the previous
paragraph, either type-I or type-II dislocations would
unbind at lower temperature, depending on the rela-
tive magnitude of the K . Thus, if Ktt is less than

Kt, a priori type-II dislocations should unbind at a
lower temperature than type I. But since a pair of
type-II dislcoations oriented at angles of +$0 from
the positive x axis, is indistinguishable from a single
type-I dislocation when observed with a resolution
large compared to their separation, it follows that
type-I dislocations will also be unbound. %e call this
"type-II" melting. If Kt is less than Ktt, a more
complicated situation arises; This is called "type-I
melting. " Over a large range of lengths, type-I dislo-
cations are free, while type-II dislocations are bound.
Nevertheless, the presence of type-I dislocatioris
screens the logarithmic interaction between a pair of
type-II dislocations, such that both types of disloca-
tions are free at sufficiently long lengths.

If the molecules in a liquid-crystal layer lie side by

side as in Fig. 1(c), the type-I Burgers vector is the
short lattice vector. It seems particularly likely that
type-I melting will occur in this case.

For both type-I and type-II melitng, the phase just
above T is characterized by algebraic decay (quasi-
long-range order) of orientational correlations, in the
limit of large lengths. The melted phase may be
described loosely as a two-dimensional nematic"
where the role of the director in a nematic is taken

by the projection n of the molecular axis onto the xy
plane. (Unlike a true nematic, the orientations n

and —n are distinguishable in the present case. Since
the orientation of tilted molecules defines a unique
direction in the plane, rather than an axis with two

equivalent ends as in a true nematic, the elementary
disclination is 360' in the present case, rather than
180' for a true nematic. However, the elastic proper-
ties of the two systems are identical. )

In the case of type-I melting, on the intermediate
length scale where only type-I dislocations are free,
we may describe the system as a two-dimensional

smectie: The centers of the molecules are arranged in
"rows" parallel to the x axis, and it is meaningful to
discuss displacements perpendicular to the rows.
Properties of a two-dimensional smectic have been
discussed recently by Toner and Nelson. ' At fixed
lengths, the smecticlike behavior goes smoothly over
to nematiclike behavior without a phase transition as
the temperature is raised further above T .

If the temperature is raised sufficiently, one will

eventually reach a point where disclinafions appear in

the molecular orientation and bond orientation fields,
and the quasi-long-range orientational order is

lost."' This second transition will not be discussed
here; rather we shall concentrate on the properties of
the nematic phase, at various intermediate length
scales close to the melting temperature T . (See
however, the discussion in Sec. III C below. )

B. Results for type-I melting

As the temperature approaches the melting tem-
perature T from below, all elastic constants remain
finite. For the case of type-I melting, the two com-
pliance coefficients S~~~~ and S~q~q (see Appendix A),
approach their melting-point values with a square-
root singularity, while the other compliances have
dominant regular behavior with very weak singulari-
ties which will not be detectable experimentally. The
constant Kt, defined above, is a relatively complicat-
ed function of the compliances, but approaches the
universal constant 4, when measured in units of

Above melting, there are three characteristic
lengths, gq, g~, and (s. These obey

(, ~ exp(r '"),
(N ~4s

$1 ~ exp(constgs2)

(1.2)

(1.3)

It should be remarked that an alternative to the
dislocation-mediated melting theory, discussed here,
is that melting may proceed via a first-order transi-
tion, directly from a solid to a fluid. Various com-
puter experiments have been performed to study the
melting of simple 2D crystals, made by point particles
interacting with r " and Lennard-3ones potentials and
first-order transitions have been claimed in many
cases. There is still controversy regarding this point,
however. " "

This paper is divided into four major sections. The
results of the research are summarized in the remain-
ing section of the Introduction. In Sec. II, we present
the details of the investigation of the anisotropic
melting analysis as applied to the uniaxial solid. The
application of the theory to general anisotropic sys-
tems, as well as extensions to 2D layers on substrates
and to layers stacked in a three-dimensional smectic
is discussed in Sec. III. Section IV contains a discus-
sion of the problems involved in using x-ray or neu-
tron scattering data to investigate the phase transi-
tion.

The equations determining the effect of disloca-
tions in a general 20 anisotropic medium have to our
knowledge never been worked out in detail. ' ' The
energy between dislocations and the stress and dis-

placement fields generated is calculated in Appendix
A using a very simple approach based on Fourier
transforms. In Appendix 8 we calculate the proper-
ties of the nematiclike regime by considering it as a
solid with free type-I and -II dislocations. In Appen-
dix C, the results of Toner and Nelson'" are used to
calculate properties of the 2D smectic and the 2D
smectic-to-nematic crossover, using the smectic Ham-

iltonian as a starting point.
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where r ~ ( T —T ) and p is a nonuniversal number
greater than zero defined in Eq. (2.37). On a length
scale L smaller than (s, the system retains the prop-
erties of the two-dimensional solid. %hen
gs & L & g~, the system may be described by a
smecticiike Hamiltonian, with molecules arranged in

rows parallel to the x axis'

H 0 1 g d2 gu 2 Q u

kB T 2 gy gx2
(1.4)

Here u =—u~ is the displacement of the rows in the y
direction. dislocations with Burgers vector in the x
direction are unbound, but there is a vanishingly
small density of dislocations with Burgers vector
components along the y direction, corresponding to
the occurrence of incomplete rows (see Fig. 4). The
length h. in Eq. (1.4) diverges as gs2, while the elastic
constant 8 remains finite, when T T+. The con-
stants Band A. are computed in Sec. II.

On a length scale L » g~, all types of dislocations
are free, and the system is nematiclike, with effective
Hamiltonian" '

where P(r) is the angle between the x axis and the
projection of the molecular axis in the xy plane. (The
local orientation of nearest-neighbor bonds will be
locked to the molecular orientation, so that @ may
also be interpreted as a fluctuation in the bond orien-
tation field. ) For molecules aligned side by side, as

in Fig. 1(a), K„ is the Frank constant for splay in the
molecular orientation, and K„ is the Frank constant
for bend. The definition of splay and bend is re-
versed for the end-to-end orientation shown in Fig.
1(b).

Close to T, for type-I melting, the "bare" Frank
constants K„and K„, measured on a length scale
L = g& will be very anisotropic, with K„o» K~~. In
particular as T T

K.' ~ ts',

Ky cc gg

K~o~K o
~

sP

(1.6a)

(1.6b)

(1.6c)

Fluctuations in the orientation field renormalize K„
and K~ in such a way that they become equal at very
long lengths, L & $1. The mechanism for this effect
is discussed by Nelson and Pelcovits. ' The value of
(I may be enormous for moderate values of t, and
this quasi-isotropic regime may be very difficult to
observe in practice.

If observations are made at a fixed length scale L,
large compared to the molecular spacing, one may
pass through all of the above regimes with increasing
temperature. Solidlike behavior would occur for tem-
peratures slightly above T, smecticlike behavior
when gs(T) & L & g~(T) and nematiclike behavior
when gs(T) becomes less than L. The quasi-
isotropic behavior may be observed if one can reach a
regime with $1(T) & L. This behavior is summarized
in Fig. 5. Of course, these different regimes are not

FIG. 4, Schematic diagram of a 2D smectic. There is
short-range translational order within a row and longer-
range order between the rows. An elementary dislocation in
the smectic has a Burgers vector component pointing in the

l

y direction equal to the amount by which the contour (heavy
line) fails to close. The x component of the Burgers vector
has no significance in the smectic.
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FIG. 5. Four regimes relevant for type-I melting are
shown as a function of temperature and 1/L, the inverse of
the experimental length scale. For high temperatures, the
system is quasi-isotropic, with one Frank constant. When
the temperature is lowered, L falls below the isotropic length
scale (I and behavior can be described by a 2D nematic, if
L & (&. When the temperature is lowered further, there is
a crossover to a smecticlike phase and finally when L & (&,
we see behavior appropriate to a 2D solid. The temperature
T~ is the melting temperature which is observed by an ex-
periment on an infinite-length scale.
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4s' (1.7)

separated by sharp phase transitions and represent
different regimes of the same 20 liquid-crystal phase
with short-range translational order and quasi-long-
range algebraic decay of orientational order.

It is a peculiarity of two-dimensional smectics that
phononlike fluctuations in the displacement of the
molecular rows are large enough to destroy correla-
tions in the translational order parameters er

for separations larger than a length tc~, which we
term the phonon correlation length of the smectic. It
turns out, however, that tc~ is not very different in

magnitude from the correlation length (s, which
determines the crossover from solidlike to 2D smec-
ticlike behavior.

The x-ray structure factor" above T will have a
series of diffuse Bragg rings having a width in re-
ciprocal space comparable to 1/(s,

nonuniversal constant. The nonzero elastic constants
all display weak singularities of the type t", with

v = —, . The coefficient K]], again a relatively compli-

cated function of the compliances, approaches the
universal constant 4, and the structure factor S(q)
diverges with a half-width which scales like gs

' at all

Bragg points.
The only 20 solid for which the dislocation picture

give v not equal to —, is the regular, triangular

solid. ' '" General anisotropic lattices„square, and
rectangular lattices all have v = —,. Only in the isotro-

pic triangular solid do interacting triplets of disloca-
tions affect the behavior at the melting temperature,
and give the anomalous value to v=0.369 . . . For
all lattices without a reflection symmetry, the disloca-
tion melting picture gives behavior consistent with

type I as discussed in Sec. III B.

C. Type-II melting

l

L

Solidlike
r P-Frank

j constant
netnatic

In the case I|:ll & K[, type-II dislocations are more
likely to unbind that those of type I. But since a

type-I dislocation can be constructed by adding two
type-II dislocations, it follows that the renormalized
core energies of the type-I dislocations are roughly
t~ice the type-II core energy. Although some aniso-
tropy remains, there are no real divergences in aniso-
tropic behavior as the temperature approaches the
melting temperature. The behavior for this type of
melting is summarized in Fig. 6 ~ In particular, there
is no smecticlike phase, and the Frank constants obey

K c ~ K,~ ~ (st

as T approaches T . The ratio K„cjK~c approaches a

D. Anisotropic solid

The study of dislocations in a general anisotropic
medium is very complicated„compared to that of iso-

tropic media. ' Considerable simplifications occur
in the elasticity theory, when the dimensionality is re-

duced from 3 to 2, however. The number of elastic
constants for a general anisotropic solid in d dimen-

sions is —,d (d + 1) (d'+ d + 2), so reducing the

dimensionality from 3 to 2 reduces the number of in-

dependent elastic constants from 21 to 6. Many of
the Green's functions associated with dislocations can
be calculated explicitly. The details of these calcula-

tions are presented in Appendix A. The results, par-

ticularly in the Fourier-transform representation, are

surprisingly simple, even for the most general aniso-

tropy. For the uniaxial solid, the reflection symmetry
causes all odd elastic constants to be zero and only

S[]]],S]2]2, S[]22, and S2222 remain nonzero.
It is well known that a 2D solid cannot support

long-range positional order although the phase can be
well described by continuum elasticity theory. " The
absence of long-range order in the displacement field

shows up in the structure factor S ( q ) and the
Debye-Wailer correlation function Co (R). In the

absence of dislocations, these are defined by'

r
/

/
/

/

quasi-
Isotroplc

C-„, (R) = (exp}iG [u(R) —u(0)] })

S ( q ) = (Ip-, I') = Xexp[i ( q —CJ) R] C-„, (R)
R

(1.9)

(1.10)

FIG. 6. Three regimes relevant to type-II melting. The
crossovers are similar to that for type I, except now there is

no intermediate smectic regime.

where u(R) is the displacement field at the lattice
site R, while 6 is a reciprocal-lattice vector, and p-,
is the density at wave vector q.
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The large distance behavior of Co(R) is

C-(R) = ((R (/a) "'J ' '

(1.12)

(Here and henceforth, the convention of summing
over repeated Latin indices is implied. ) The tensor

q& is a function of the temperature and compliance
matrix of the solid and reduces to a function times

,the unit tensor for the isotropic solid. There is an
.algebraic decay of the order-parameter correlation
function Co ( R ) which depends strongly on the
reciprocal-lattice vector 0 and very weakly on direc-
tion of R in the lattice. The structure factor near a
reciprocal-lattice vector 6 is given by

g{q) ~ (q G(-[2—g(G)l

showing sharp peaks at the reciprocal-lattice points
instead of the 8-function peaks of a conventional
solid with lang-range order. Note that S(q) has ei-
ther a finite cusp or a divergence, depending on the
magnitude of 2 —rl(G).

%e can define a bond-angle order parameter
%„(R)= e"'&'"' by considering the orientation g(R)
of the lattice relative to a fixed coordinate system.
For a solid with only a reflection axis, n is 2, if the
local symmetry includes rotations of m", otherwise,
n =1. For the triangular isotropic solid, n =6, and
n =4 for the square lattice. The solid displays true
long-range orientational order, so that the correlation
function C„(R), defined by

approaches a nonzero constant as R

E. Relation to other work

Halperin and Nelson ' and Young have studied in

detail the melting of a regular triangular lattice. The
sixfold symmetry of the regular case leads to isotropic
elastic constants and to six equivalent elementary
dislocations. The renormalization group equations
for the regular lattice form a singular limit of most of
the present equations. In particular the term of order
y' in the renormalization for the dislocation fugacity

y causes the value of the exponent v in the regular
lattice to differ from —,. The angular dependence of
the interaction energies between dislocations is
simpler than in the present case.

Nelson and Halperin have also discussed many
features of the possible phase diagrams for a layer of
tilted molecules in Ref. 8, hereafter called (NH).
They describe three possible phases in which there is
long-range order, or quasi-long-range order in the
molecular tilt orientation. One of these phases, la-
beled H in the phase diagram in NH, is an anisotrop-

ic solid with long-range orientational order. This
corresponds to a single layer of a (three-dimensional)
smectic-8 liquid crystal, and is identical to the aniso-
tropic solid of the present paper. A second phase,
described as a locked tilted hexatic phase, and labeled
C in the phase diagram, is identical to the "nematic-
like" melted phase of the present paper, and may be
identified with a single layer of a smectic-C liquid
crystal. This phase has quasi-long-range order in
bond orientations as well as in the molecular tilt
orientations, and the two orientations are locked in
the sense that the low-energy long-wavelength fluc-
tuations require equal simultaneous fluctuations in
both orientations. The melting in the present paper
describes the phase transition between the phases H
and C. The Frank constants E„and E~ of the
present paper are the principal values of the Frank
constant tensor, denoted K~+ in NH. The tensor
character of the Frank constants was ignored in most
of the discussion in NH, partly in order to simplify
the discussion, and partly because the two principal
values are expected to become equal in the limit of
extremely long wavelengths.

In addition to the anisotropic solid H and the
nematiclike locked tilted hexatic phase C, there is
another possible tilted phase, called the unlocked tilt-
ed hexactic, or C' phase, in NH, for which there is
independent quasi-long-range order in the tilt and
bond orientations. Here there are three Frank
constants (denoted 1t.'), E6, and g, in NH) describ-
ing, respectively, the energies of gradients in the tilt
orientation and bond directions, and the coupling
between the two gradients. Each of these Frank con-
stants is itself a tensor with two principal values, if
the wavelength is not too large. The C' phase has
no counterpart in the present work.

The phase diagram of NH suggested that a transi-
tion of unknown character may occur directly from
the solid H phase to the unlocked tilted hexatic C"
phase for a certain range of material parameters. Our
present analysis suggests, however, that at least for
the case of a dislocation-mediated continuous phase
transition, one cannot melt directly from the H to a
C' phase. It was argued in NH that a solid phase
with order in the tilt directions will always have true
long-range order because of coupling to the shear
modes of the crystal, and that the tilt direction is ac-,

cordingly locked relative to the bond orientation in
the solid. A generalization of that argument suggests
that when a small number of free dislocations is ad-
ded to the solid (i.e., the situation is just above
melting), the effective Frank constant E, for the
tilt-orientation fluctuations on the length scale of the
dislocation spacing, will be very large, as will the cou-
pling between the bond and tilt orientations. This
places the system in the range of parameters where
the C' phase is unstable, and we see that a locked C
phase results. The details of the above argument will
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not be given here.
As the temperature is raised above T, a point may

be reached where the nematiclike C phase is connect-
ed to the unlocked C' phase. Further temperature
increase may then bring about a disclination unbind-
ing transition which converts the C into an isotropic
2D liquid (denoted A in NH) with only short-range
orientational correlations. Alternatively, there may
be a preliminary disclination unbinding transition
which converts the C' to a nontilted hexatic phase,
or there may be a disclination unbinding transition
directly from the locked C phase to the isotropic 2D
liquid-phase A. These various possibilities are dis-
cussed in N H.

II. DISLOCATIONS IN THE SOLID

A. Contributions to the compliance matrix

in the absence of dislocations. This can be checked
by using Green's theorem on the displacement field
in Eq. (2.3) to convert the interior integral to a boun-
dary integral. Thus the macroscopic compliance is
equivalent to the microscopic compliance if there are
no dislocations present. In the presence of disloca-
tions pairs, Eq. (2.4) is also a convenient definition
for the compliances, because it defines the macro-
scopic compliance in terms of fluctuations at the per-
imeter of the solid and is therefore the compliance
which is measured in an elasticity experiment. The
purpose of this calculation is to find out how S&&1 is

modified from the bare value when the effects of
dislocations are included.

Assume that there are dislocations with Burgers
vectors b ', b, . . . , b" present in the sample at
r ], r ~, . . . , r „, and that the average particle densi-
ty of the system remains constant. Then u„" can be
decomposed into

t.

uj = uj +$rj (2.6)

Sjkf (ks T/ao )Sjkl (2.1)

S~jgl is the compliance in standard units, i e., area/
energy. The reduced Hamiltonian can be written as

Ha 1
" d'r= —,J, u j( r ) C,jkiu„i( r )

kgT ap
(2.2)

It is convenient to write the elastic constants in

terms of ap and kz T, where ap is the area of the unit
cell in the solid, . Thus

where u& is the strain which minimizes the energy
subject to having the dislocations present [Eq. (A8)]
and @j is the deviation from this minimum. We in-
sert Eq. (2.6) into Eq. (2.2) and add the core energy
contribution by the matrix Ej, defined so that

b; EIbj =F.„„,(b )/ksT (2.7)

gives the correct temperature-reduced core energy for
the elementary dislocations o, The Hamiltonian
takes the form

The full strain field, including dislocations is u& and

C'jki ls the bare (microscopic) elasticity tensor which
is the inverse to the bare compliance Sj„i [see Eq.
(A2c)]. In the absence of dislocations, the fluctua-
tions in u& are related to the bare compliance by

H( ri, . . . , r„)=HE+Ho

HE 1
~ d&r

y T J g ibijCijkl4'kl
B ap

(2.8a)

(2.8b)

d r d'r' (uij( r ) uki( r ') ) = Sijkiao & (2.3) HD
g b,»j"& j( r ~ r ")+ Xe'b; b-'

kg T

where 0 is the area of the system. When disloca-
tions pairs are present, the renormalized (macroscop-
ic) compliance tensor Sjki is computed using'

and

Sjki= '(~j ki) (2.4)

Uj —= —
—, J (u;n, + u, n;) dl (2.5)

The integral is over the boundary of the solid with

free boundary conditions, while n is the normal and
u is the displacement field at the boundary. Ambi-

quity due to the multivaluedness of u is resolved by

placing cuts between members of a dislocation pair,
or equivalently, by defining cuts from each disloca-
tion to the origin.

Because u& can be written as the derivative of the
displacement field, Eq. (A lb), we find that Sjki S'jki

Xb;"=0 (2.9)

This is necessary to avoid infinite dislocation ener-
gies. Thus the partition function Z is calculated us-
ing

Z = Trexp[ —(HE+ Ho)/ks&]

(2.8c)

The interaction energy E"(R) between dislocations is
given by Eqs. (A18) and (A28). The cross terms
between Q j and uj are zero because we have as-
sumed that $;, is the tluctuation about the minimum

D
u,g .

The complete partition function can be calculated
by summing over all possible dislocation configura-
tions which preserve vector charge neutrality
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where across the cut to r ~ is just b", one finds

6 oo

T'=IIJ d& (R) II X ——

R a-1n -0 &a'
a

(2.10)

U,J= UJO+ UJD

U&0= „d'r (t(,&(r)

1
U&D= —ao X (b,"r-~+. b"„")-

(2.12a)

(2.12b)

(2.12c)

subject to the restriction Eq. (2.9), and a ranges over
the (six) types of elementary dislocations of the (tri-
angular) lattice. The free energy and compliances are
calculated as power series in the fugacities y

y =exp( b; b& E-;;) (2.11)

of each type of dislocation o..
To calculate SIJkl in the presence of dislocations, the

effect of the dislocation on UJ must be considered.
By introducing a cut from the origin to each disloca-
tion site r ~, the full strain field uJ including disloca-
tions can be written as the derivative of a displace-
ment field. Using Green's theorem in this cut plane,
using the fact that for the dislocation part

u&D(r) =0, and the fact that the discontinuity of u
I

Sl&k(
= S,jk( + 0 ( Ui& Ukl ) (2.13)

The fact that UJ describes fluctuations about the
minimum in energy causes the cross term (U& Uk()
to vanish. We define

V (8) =b; b& V&(8)

K =b; bJKJ

(2.14a)

(2.14b)

With the definitions of VJ and K„" given in Eq.
(A28), the interaction energy between a + pair of
dislocation of type o. at separation r is given by

E (r ) =IC 1n(r/a)+ V (r") (2.14c)

Equations (2.12) and (2.13) are used to expand the
trance to second order in the fugacities:

The definition I.-"=e,;I;" has been used where e„" is

the antisymmetric tensor. Thus

3
' 3-K

S&k(=S&ok(+ —Xy' e d8 (b; r; +b, r";)(b(,.r(+b( rk) ~
a 1

a a
(2.15)

Here a is the core radius and r" is the unit vector
determined by 8. The ith component of the vector r

rotated by 90' is r;. [see Eq. (A21)l. The second-

order term diverges if any of the K are less than 4,
and this occurs for the same condition on K as for
the phase transition predicted by the entropy argu-
ment of Kosterlitz and Thouless.

B. Recursion relations (2.17b)

I

in Fig. 7. When two of the dislocations (b and c )
coalesce into a as the effective core size is increased,
the pair probability of finding a +a pair changes.
This effectively renormalizes the fugacity of a. These
ideas lead to recursion relations for S„"kI. We define
the following quantities:

t2m v (g)F' = Ib I' d8r";r&e (2.17a)
w2s'

A &(= J d8exp[b; b&~V&(8)]

To study the limit as K approaches 4, we use the
renormalization group ideas of Kosterlitz and Thou-
less. ' The integral Eq. (2.15) can be broken into two

parts:

b

+"a g "a a ue~ a
(2.16)

Here 8 is infinitesimal. The first part is a shell in-

tegral which is absorbed into a redefinition of SJkl ~

The volume integral which remains contributes to a
redefinition of y2, after rescaling the length so that
the volume integral ranges from a to ~ again. The
core size is effectively increased from a to ae~.

There is also another contribution to the redefini-
tion of y . Consider the three dislocations a, b, and c

PV

C

F10. 7. When the core size is rescaled from a to ae, the
dislocations labeled b and c effectively coalesce to an a dislo-
cation. This renormalizes the fugacity of the a-type disloca-
tions.
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The three elementary lattice vectors are b, and r" is
determined by H. The renormalization group takes
the form

C. Type-I melting

1. Below T

y2F22 +2y2 cos2d F22 (2.18a)

2 ' 2 11

dl
=y() 2 sin QOF2

dS 1122 12

dl
=y~~ 2 singo cosgoF2

(2.18b)

(2.18c)

ds1212 1 2 11 1+ —
y(~ (cos'POF2' + sin'QOF2'

Consider the case when K11)4, but K1=4. The
fixed point for Eq. (2.18) will be determined by

K11 ) 4 and K1=4. Because the term
—(K~~ —2) & 0, the fugacity ya is driven exponential-

ly to zero along a renormalization group trajectory so
that the recursions involving y1 and y11 decouple.
The renormalization equations involving y1 simplify
to

—2 sin/0 cos@OF2' )

~y 2F 22 (2.23a)

2

dl
=y&(2 ——K)) + 2yll~ 23

(2.18d)

(2.18e)

dS1212 1

d+1

dl
= (2 ——K, )y,

(2.23b)

(2.23c)

d3'11

dl
=yii(2 ——Kii) + 2yiy~~&12 (2.18f)

The vector b' = b" is determined by po and b' is

oriented at the angle n —Po from the positive x axis
and has the same length as b2. These equations
describe fugacities and compliance tensors as function
of the rescaling variable l.

It is important to analyze the stability of the resul-
tant equations. A' possible mechanism for a
dislocation-driven structural transition occurs if the
compliances renormalize to their stability limit
without the dislocations unbinding. For the uniaxial
solid, this would occur if any of the following stability
conditions were violated"

The renormalization group trajectories. look like those
shown in Fig. 8. The fugacities y1 and y11 are plotted
schematically as functions of

S2222(I)S(I) =
S2222 S~~t~(l)

The superscript
' means evaluated at the fixed point.

The quantities F1", F1, and K11 are functions of the
compliances. Sufficiently close to T they may be re-
placed by the values at T, so they are treated as
constants in the subsequent discussion. Figure 8 in-
dicates trajectories starting from the initial conditions
3'1 =3'1.

) p 2222 ) p S1212 ) p

D = S111152222 S1122 ) 0

(2. 1 9)

(2.20)

If X and p, are real it is easy to check that Eq. (2.19)
is preserved since F" ) 0 and

g2F22 + +2F211 2$P F212 ~~ 0 (2.21)

lim S,p, (T) (~
T~ T

(2.22)

We can also show that if D & 0, then dD/dl & 0.
Thus D is never driven to zero by dislocations, and

any singular behavior contributed by the dislocat1ons
must be an unbinding transition of the type studied
in subsequent sections. The renormalization group
does not introduce any divergences in the compli-
ances. From the explicit expression for K, we find
that K is monotonically decreasing along the trajec-
tory. It follows that a11 compliances remain finite
since K is bounded below by 4. This, together with

the stability conditions is sufficient to assure

FIG. 8. Dotted renormalization group tr 1jectories show
the fugacity y1 as 1 function of S (I) = S2222(/)/S2'222
—S1'111/S1111(/), chosen with initial conditions in the solid.

- The heavy trajectories show y11 and y1 as a function of S for
initial condition y1(0) =y11(0) tt a temperature just above
melting. The upper trajectory is y1 ind y11 is the lower. The
number of iterations required to renormalize y1 from its

starting value to the position 3 is given by /1 + I2 1nd

another p (/1' +/2' ) iter actions renormalize the fuga'city y11

so it is finite at B. The type-I dislocations are effectively un-
bound at A, 1nd all dislocations are unbound at B, so that
between the length scales exp[(/1 +/2 )] and

exp[(/1 +/2')] the system is described as 1 2D smectic.



344 S. OSTLUND AND B. I. HALPERIN 23

Dividing Eq. (2.23b) by Eq. (2.23a), we find

dSi2i2 1 F]
(2.24) dD D

(2.31a)

for large I. For small D, the deviation from the
separatrix obeys

S$212 (I) S1212 (0) 1 F)"
Sfiii (t) —Sf&i& (0)

(2.25)

is a well defined, but nonuniversal quantity. [The
variable t is proportional to (T —T)/T .]

We expand the renormalization group equations
for SJk/ as a function of length scale e' near the fixed
point in terms of y] and D, where

S&~~~(i) =S&'»~ + m(yi+D) (2.26)

Since S&qI is the fixed point value of Sjki it coincides
with the value of this quantity at the melting tem-
perature. The constant m is to be determined, and D
is the-deviation from the critical separatrix deter-
mined by D(i) =0. The quantity D(i =0) is propor-
tional to t since the renormalization group trajectory
flows to the fixed point for D =0. We find

This immediately determines some properties of the
transition. Since the fugacity y& is absent in the equa-
tions renormalizing S]~22 and S»22, the analytic terms
in temperature close to T will dominate the behav-
ior of these macroscopic elastic constants. The other
two compliances, S~]]~ and S~2~2, exhibit dominant
nonanalytic behavior. The ratio

D(i) =D(0)y('/y((1) . (2.31b)

(3.32)
I

Since D (I =0) is proportional to t, we have that
I ~ t ' '. We therefore find that at length scales
L & ae', the system behaves like a 2D solid, since
there are almost no dislocations present at these
lengths. The correlation length is therefore finite in
terms of the rescaled core size ae', so that

~ exp(t ' ')

Note that for S]]~~ and S]2~2

[Sijkl(t) Sijkl] ~ t

(2.33)

(2.34)

There are cusped singularities in these compliances.
Weak singularities occur in the remaining compli-

ances. The equations which renormalize these are

dS 2222

dl
(2.35a)

The trajectory breaks away from the incident separa-
trix and goes rapidly to zero when D (I') =y~(1').
Substituting for yi(1) and D(I) we find that

t mD(0) ~ (I") '

m +m =y2F22dD
6I'I dl

i

dy] ] BKf 1 Ff '9K]

dl 2 9S))]] ~ 4 F]' 9S)2(2

(2.27a)
dl

=yii(2 ——&ir)

From the second of these equations, we see

yti(i ) =yike

(2.35b)

(2.36)

xyi(yi+D) (2.27b)

when the lowest-order terms in y~ and D.near the
fixed point are kept. (An asterisk means evaluated at

Sijki Sjkt ) Then, setting D = 0, we find

m+=+ —8(F ') 4F" +F,"9Kt QK1

'I

—p = 2 1 — cos'$0+ „sin'$,Ib" I'
(2.37)

From Eqs. (2.35a) and (2.35b)

1

where p = —
2Kt~ —2. Using the explicit form for

[Eqs. (2.14) and (A33)], and the fact that Ki =4
at the melting temperature, one obtains

(2.28) dS
(2.38)

dD Fi
dl m

(2.29a)

Since Q&j/QS „, & 0, the constant m' is positive.
Below T, m =m . Equations (2.27) then simplify to

Sijkt ( t) S&jkt m g (2.39a)

Similar equations hold for S~~22. Thus the nonanalyt-
ic contributions to S~]» and S»22 take the form

Fi"
dl m

(2.29b) where

—= aoe' ~ exp(t ' ') (2.39b)
Near the melting temperature

yt(1) = yo

1+constl
(2.30)

The singularity Eq. (2.39a) is extremely weak, and
will not be detected experimentally. Various relations
between g(G) [Eq. (A43)] for different G can be
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derived at the melting temperature by using K|=4,
K~&=4+2p, and Eq. (A40).

2. Above Tm

HD 1 t, lk. b2 (k) —kgb. (k) l2

ksT ' ~, I4Q(k)

+2a2EJb;(k)b, (k) . (2.41)
2

Q (k) is defined in Eq. (A2lc) and is a quartic poly
nomial in (k;/Ik I) ln the Debye-Huckel approxima-
tion the variable b„(k) may be integrated over freely.
After completing the square in b„, there is an effec-
tive interaction between dislocations with Burgers
vector components in the y direction given by

s I 202k 2gc
+ 2a2Er

k'+2a2E' k4Q(k)

x lb, (k) 12, (2.42)

where a', and E„', are the values of the renormalized
quantities at l = l [' + l2',

E' =1

E22 —ln(yll) p (11 + I2

& =Os,

(2.43a)

(2.43b)

(2.43c)

For initial conditions corresponding to a tempera-
ture above T, renormalization group trajectories fol-
low the incident separatrix until l = l~', break away
and join the outgoing separatrix determined by

y ~

= m 4.[S~ ~ ~ ~ ( I) —S ~'~
~ ~ ] for another l2' iteration.

Here yi is again small but of order unity. The length

gs ——ao exp(l~' + I; ) is therefore the characteristic
separation between free type-I dislocations. The
fugacity y~t decreases exponentially, however, even as

y[ is increasing on the outgoing separatrix because
the second yty~~ term renormalizing y~~ in Eq. (2.18f)
is not sufficient to overcome the first term (see Fig.
8). At the length scale gq it is appropriate to make a

continuum approximation for the type-I dislocations
and we treat them in a Debye Huckel approximation
as a gas which effectively screens the remaining type
of dislocation. At this length, the fugacity yt[ is very
small, and is given by

ytt=AI exp[ p(ll +I2 (2.40)
To analyze the phase just above melting we generate
an effective Hamiltonian for the remaining disloca-
tions.

We decompose the original dislocation Hamiltonian
into interactions between x- and y-component
Burgers vectors. In Fourier space, this is the
transform of Eq. (2.8c), and is given by

and Q ( k ) may be evaluated using the elastic con-
stants at T . For small values of the wave vector k,
the term involving O'Q is important only when k is

close to the x direction. Then, using the definition
Eq. (A21c), one finds k Q = k„"S2'222. Equation
(2.42) takes on a form appropriate for the dislocation
Hamiltonian of a 2D smectic '.

(2.44)

where

~=(S2222) ', &'=2~'PiS2222 24SS2222

E22 p(ll +I2 (2.4S)

This Hamiltonian is discussed in the Appendix C,
and in more detail in Ref, 14. The potential energy
between dislocations is short ranged and highly aniso-
tropic.

lf we were to use Eq. (2.41) at the stage where the
length scale equals gs, ignore the discreteness of the
Burgers vectors and integrate over them in the
Debye-Huckel approximation, we would find (see
Appendix B)

(@(k)@(—k)) = (2a2E;,'k;k&) '0 (2.46)

Using this, we would identify the Frank constants in

Eq. (1.5) as

= 2a2gc
(2.47)

1 = exp(/2') exp[ —p (I~' + I2' )]

so that l3 = p (l~' + l2' ). We can now apply the
Debye-Huckel approximation to the remaining
Burgers vectors, and describe the system by a g &s of
free, interaction dislocations of all types. The length
at which this is done determines the mean distance

(N between dislocations with Burgers vectors com-
ponents in the y direction.

We then find the result that at these lengths the

where a and F~ are given in Eq. (2.43). This pro-
cedure is not correct, however, unless E;; is &1. It is

necessary to take the discreteness of b~ into account.
Following the procedure of TN, we work with the
smectic Hamiltonian in Eq. (2.44).

Further length rescaling, rescales yt[ by the area, so
that after l3' more iterations, y~[ is also finite and of'

the order 1. This can be written
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bare values of K and Ky obey

K (' ac gs2, K»0 cc (g' )& K„o (2.48)

The higher-. order terms in the Hamiltonian [terms
such as (V n)"], renormalize the Frank constants
to equality" at very large length scales L & $, given

by Eq. (1.3). For smaller length scales, the
dislocation-renormalized Frank constants K„and Ky
are measured.

For any fixed length scale, as the temperature ap-
proaches the melting temperature from above, the
inequality L ) g~(T) will cease to be valid. The
continuum approximation for the b2 dislocations is
then invalid and the system is effectively described
by the smectic Hamiltonian Eq. (2.44) when L & g~.
When L ( gs, behavior appropriate to a 2D solid oc-
curs.

There is an important difference between the
smecticlike phase considered here, and the smectic
considered in Ref. 14, That smectic occurs only at
zero temperature and as the temperature is lowered
toward zero, the phonons with displacements along
the y directon disappear simultaneously with the
fugacities of the dislocations. In the smectic con-
sidered in the present work, the renormalized fugaci-
ty vanishes as the transition is approached, but the
phonons remain since the temperature is finite at the
transition.

The structure factor S ( q ) shows interesting critical
behavior. Using the formula'

H l~ d2 gu 2 g u

k& T ~ 9y
(2.52)

%e have shown that the type-I dislocated solid gives
the effective energy Eq. (2.44) between type-II dislo-
cations, and Pershan" has shown that the smectic
Hamiltonian Eq. (2.52) leads directly to the same en-
ergy between y dislocations. For consistency, it is
necessary to verify that the dislocated-solid picture
indeed gives fluctuations in the y position of the
molecules in accord with Eq. (2.52).

In the dislocated solid there are two contributions
to the fluctuations in the y displacements:
u =d»+u»D. The smooth "phonon" part P» is deter-
mined directly by Eq. (2,2) via the elastic tensor, and
the dislocation part u»D is determined in Eqs. (A22)
and (A25) by b' dislocations. The y- displacement
correlation function C»»( k) is defined as

C~(k) =—(u»(k)u»( —k)) (2.53)

It is given as the sum of Cyy due to dislocations and
C»P» due to $»:

It is worth digressing to discuss the consistency of
the picture of the 2D smectic regime above T . This
regime can either be though of as a solid, with pho-
nons and free type-I dislocations via the Hamiltonian
Eqs. (2.8b) and (2.8c), or as a 20 smectic. We de-
fine the distance between the rows of the smectic to
be u. The Hamiltonian for the smectic must have the
form:

r rl
S (G) = exp 2I —

&
dr' q-(/') S (G) ~, (2.49) C~(k) = C»»+C»» (2.54)

we find that

S(G) ~g' "' 'S(G)l
1 2

(2:50)

The quantity C»» is calculated in Eq. (A38) as

C»»=(V )2p (2.55)

Since S (G) is finite for a smectic for G both parallel
and perpendicular to the rows, we find

S(G) g2-q(G) (2.51)

There are longer-range correlations in the y direction,
and although the ratio S (G„=O)/S (G„A 0) may be
quite large, all true divergences should be accounted
for by the value of q(G). The width across the
Bragg peak in the y direction is complicated by the
existence of the two length scales gz and gp, for
dislocations and phonons, respectively. The shape of
the structure factor is discussed in more detail in Sec.
IV.

The free energy scales like gs', so there are only
essential singularities in the specific heat which can-
not be detected in experiments, although in analogy
with the xy model, there may be a broad specific-heat
maximum juSt abOve T~.2

CD = ~2~2 —( V ')
yy 2 4 22

ky + E].&S2222kx
(2.56)

(For convenience, the notation E;, =2a2E;,' has been
used. ) The last term in the above expression exactly
cancels the contribution Cyy in the expression for C~
so that

c (/)=
ky'+ E j iS2222ky

(2.57)

This is precisely the correlation function one obtains
from the smectic Hamiltonian Eq. (2.52) after the

The dislocation part requires a bit more work.
The correlation 8~~(k) between type-I dislocations

in the absence of type-II dislocations is given by the
Eq2 ~ limit of Eq. (B2). Using this, together with

the formula (A25) of the y displacement generated
by a type-I dislocation it can be shown that
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identification B = (S2222) ', and B)l.'= El 1. Note that
type-I dislocations do not affect the single valuedness
of the y displacements, so there are no ambiguities in

writing the Hamiltonian in terms of gradients of a dis-
placement.

D. Type-II melting

Type-II melting occurs when K~t ( K~. The fixed
point for the renormalization group is determined by
K~~=4, and Kt & 4. The analysis is similar to that in

the previous section when T & T . For all pairs of
compliances, the relationships analogous to Eq.
(2.25) hold. The ratio, which of course depends on
the particular pair of compliances, is a well defined
but nonuniversal quantity. The singularities in all

compliances obey Eq. (2.34), so that again v = —, .

Furthermore, a special combination

1212 + s1122 2
~cot ( 11~0)s2222 + t'an (ltl0)s1 1 I 1 1

(2.58)

B. Melting of an anisotropic lattice without
reflection symmetry

Except for the square lattice, type-II melting can
only occur in a lattice where two elementary disloca-
tions, equivalent under a symmetry operation, add to
form a third elementary lattice vector. If there is no
reflection symmetry axis for the underlying lattice,
the dislocation-mediated melting must be of type I.

For such a system, the scattering at the reciprocal-
lattice vectors perpendicular to the axis whose dislo-
cations unbinds at lowest temperature, will be most
intense and narrow. The ratio of scattering intensi-
ties and widths of this scattering is given by Eqs.
(1.7) and (2.51). The constant p is again a nonuni-
versal number of order unity. Furthermore, all com-
pliances, including the odd ones, will exhibit cusped
singularities of the type t' '. Special linear combina-
tions of the compliances will exhibit essential singu-
larities, analogous to S~~» and S22» for type-I melting
combinations, but these linear combinations now
depend on the lattice structure. The Frank constants
again diverge according to Eq. (2.38), and the ap-
propriate phase diagram is given in Fig. 5.

has a weaker nonanalyticity of the form t' '. This is
obtained by using yl =y121, apparent from Eq. (2. 18f)
and the recursion relation for this linear combination
which depends only on yt. The relation yt =y~~
must hold throughout the renormalization group' tra-
jectory and is a direct consequence of the fact that
two type-I dislocations add to form a type II. Thus y~
is not-driven to zero and both types of dislocations
unbind at the same length scale. No smecticlike
Phase occurs and we find glv =(s ~ exP(r ' '). Two
Frank constants are measured on the length scale

gs & L (( $2, and both Frank constants diverge like

gs at T . The width of the peaks in the structure
factor diverges as I/gs as the temperature approaches
that of melting. There are essential singularities in
the free energy and specific heat.

C. Effects of a substrate

Nelson and Halperin have considered in some de-

, tail the effect of a substrate on the melting of an ad-
sorbed layer when the adsorbate lattice has hexagonal
symmetry. If the substrate periodicity is incommens-
urate with the adsorbate or if it is commensurate at a
sufficiently high order, the most irriportant effect of
the substrate is to introduce a discrete set of pre-
ferred directions for the adsorbate structure. By ex-
panding about one of the preferred orientations, one
may represent the effect of the substrate by a term in

the Hamiltonian of the form

(3.1a)

III. GENERALIZATIONS TO OTHER SYSTEMS
= —'year (& x u)2

ao
(3.1b)

A. Melting of square lattices

Square lattices exhibit type-II melting, and most of
the results discussed in the previous section remain
valid. In this case S~~~~ =S22», and y~=yt~. Since
there are no canceling triplets of elementary disloca-
tions, v = 2. Equations (2.25) and (2.34) hold for all

compliances except S~~». This compliance exhibits a
t' ' singularity, which is weaker than the analytic
term proportional to f since the first term renormaliz-
ing S1122 is of order yl. Equation (2.51) remains
valid for all G.

where the angle tl( r ) describes the deviation of the
bond orientations from the favored direction and y is
a new effective elastic constant.

The new elastic term Eq. (3.1) modifies the in-

teractions between dislocations in the regular solid by
changing the ratio between the coefficients of the lo-
garithmic and angular terms. This modification has
relatively little effect on the melting transition at the
temperature T where free dislocations appear, but
the coupling to the substrate does affect the nature of
the orientational order in the melted phase. There
should now be true long-range order, instead of the
quasi-long-range order predicted for the hexatic phase
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in the absence of a substrate. The disclination un-
binding transition between the hexatic and isotropic
liquid phases which occurs at a temperature T;

(higher than T ) in the absence of a substrate, may
be suppressed entirely or will be modified substantial-
ly, according to whether there exists one or several
distinguishable favored orientations for the adsorbate
relative to substrate, at temperatures just above T .

If the adsorbate consists of molecules whose axes
are tilted away from the normal to the substrate, the
substrate anisotropy will lead to a set of favored
directions for the tilt orientation as well as for the
orientations of bonds in the adsorbate. Since we con-
sider the tilt orientation to be locked to the bond
orientation, however, we may simply identify the
bond orientation angle 8( r ) in Eq. (3.1a), with the
tilt orientation $( r ), and use this equation to
describe the effect of the substrate. To generalize
many of the formulas of the present paper we use an
asymmetric bare elasticity tensor C&ql,

C(ski = Cijki + f6A 0 (3.2)

where the symmetric part C&~l will be roughly the
elasticity tensor of the unperturbed adsorbate. The
interchange symmetry for ij and kl is no longer valid,
and this is reflected in the inverse tensor S&ql being
determined by

A A
Cijkl~klmn ~im ~Jn (3.3)

Note the difference with Eq. (A2c). Care must be
taken when attempting to understand the singular

0 limit.
It is possible to work out in detail the effects of

term Eq. (3.1) on the interaction between two dislo-
cations separated by a vector R = [R cos(8),
R sin(8) ] in an anisotropic medium. 'o As in the iso-
tropic case, one finds a change in the form of the an-
gular term Vs(8) relative to the logarithmic term
K& In(r/a) appearing in Eq. (A28).

Due to broken rotational invariance, the presence
of a small density of free dislocations with Burgers
vector in the x direction, treated in the Debye-Huckel
approximation, does! not now provide screening suffi-
cient to eliminate the logarithmic interaction between
dislocations with b~ AO. It is plausible that the latter
dislocations remain bound above the first melting
temperature T, until a second transition temperature
T' is reached where the coefficient of the logarithm
falls below the critical value 4k~T. In the tempera-
ture range T & T & T', one predicts quasi-long-
range order for the correlation functions Cp(R) pro-
vided that 6 has no component in the x direction, so
the system may be properly described as a 2D smec-
tic.

The stabilizing effect of the substrate interaction
may be readily understood if we consider the smectic
Hamiltonian Eq. (2.52). The orienting forces lead to

a modified Hamiltonian, of the form

H' 2

+4
k~T ' ~ 9y Qx

(3.4)

At sufficiently long wavelengths, the term propor-
tional to (8'u/Bx')' may be neglected and the Ham-
iltonian has the same form as for a two-dimensional
planar spin model (xy model). It is clear that the in-
teraction between dislocations remains logarithmic at
large distances and that there should be quasi-long-

iG u
range order for the ordering variables e ~ . By anal-
ogy with the xy model, one can readily estabish the
necessary condition for stability of the 2D smectic
phase

(3.5)

where yR and Ba are the macroscopic (renormalized)
values of the elastic constants and d~ is the layer
spacing.

The effect of substrate potentials which lock the
solid into a commensurate layer has been considered
in a separate work. ' Many different phases occur in
this system. True long-range positional order is now
possible, and the phases involve all combinations of
short-range, quasi-long-range, and long-range order
in the two perpendicular displacement variables. The
"floating" solid is identical in its large-distance prop-
erties to the continuum solid studied in the present
research. Reference 30 investigates the properties of
a simple lattice gas which incorporates the central
features of the solid, including dislocations. It is
found that if the ratio of the lattice spacing of the
solid divided by the lattice spacing of the substrate is
less than a minimum value p;„, the harmonic float-
ing solid phase does not exist. The value of p;„ is
243 for a triangular lattice, and p;„=4 for a square
lattice.

D. Three-dimensional stack of smectic layers

The interaction between layers in a bulk liquid
crystal may also stabilize the partial translational or-
der characteristic of the 2D smectic regime. In par-
ticular, the interlayer coupling will tend to lock the
displacements in one layer to those in its neighbor.
One could obtain a bulk phase with broken transla-
tional symmetry in the y direction parallel to the
layers, as well as in the z direction, perpendicular to
the layers. We may call such a system a three-
dimensional bismectic. The x-ray structures factor of
the bismectic will have Bragg peaks on a two-
dimensional lattice of points, laying in the yz plane.
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The leading terms in the energy associated with dis-

placements u in the bismectic may be written as
IV. STRUCTURE FACTOR IN EXPERIMENTAL

SYSTEMS

1

HI3 )
f' Bu( Buk ~ u/ ~ uJ

!

(3.6)

where indices are restricted to the values y and z, and
M and N are tensor coefficients.

An analysis of the effects of long-wavelength ther-
mal fluctuations predicts a finite root-mean-square
displacement in the bismectic, so that true long-range
order exists, and the Bragg peaks should be 8 func-
tions in reciprocal space. " This contrasts with the
situation for an ordinary smectic-A or smectic-C
phase, where quasi-long-range order is found in three
dimensions, Of course, the bismectic phase will also
have long-range order in the orientations of the
molecules.

We may note that the proposed bismectic phase is
identical in its properties to an anisotropic version of
the H~ mesophase of disklike molecules proposed by
Chandrasekhar' and theoretically investigated by
Kats." The effect of interlayer coupling may also be
understood by considering the energy of an isolated
dislocation in a single layer, at a temperature slightly
above the melting temperature T . If the layer melt-.
ing is of type I, then there is an intermediate length
scale on which the layer may be described as a 20
srnectic and the energy of the point dislocation is
found to be large but finite. A point dislocation in

one layer which does no& occur in the neighboring
layers requires a mismatch betwen the displacerhents,
at least along a line stretching from the dislocation
point to the boundary of the sample. Thus, if there
is any coupling between the layers, the energy of a
point dislocation becomes infinite in the limit of an
infinite sample, and isolated point dislocations will

not exist in equilibrium. If a dislocation occurs at ap-
proximately the same point in every layer, then no
mismatch occurs, a dislocation line is formed, and
the energy in each layer is again finite. The total en-
ergy is proportional to the length of the line, howev-
er, so that an isolated dislocation line will again have
infinite energy in an infinite sample.

If a finite density of dislocation points is present in
each layer, screening effects lead to a finite energy
per dislocation. At a certain temperature it will be
favorable to have free dislocations, and the bismectic
phase will be converted into the ordinary smectic-C
phase. Conversely, if the coupling between layers is
sufficiently strong, there may be induced translational
order in all three directions, and the bismectic will be
converted to a three-dimensional solid (smectic-H)
phase.

So(q) —= (2mq) '
I S(q')5(q —q' G) d2qJ

=q '
Jr ds Co(sG)e''r', (4.2)

where Co (sG ) is the correlation function in real
A

space, for a separation R =sG parallel to 6, comput-
ed for a domain aligned with its symmetry axis paral-
lel to the x axis and sufficiently small so that angular
fluctuations are &( 1, In practice, we may choose
this domain size L to be of order of a few times the
correlation length gs.

When G„W 0, the correlations in C-„. (R) decay
with a characteristic length given by gs, due to both
type-I dislocations and phonons, so that the width g,
of the. structure factor Sd(q) obeys

Sq(So) ~4s' . (4.3)

The situation is more complicated when G„=O. In
this case, there are two competing lengths, gp which
describes the decay in the y direction of the displace-
ment order parameter due to phonons in the smectic,
and (r, the decay due to type-II dislocations. The
length (r is given by (N4~3/gq~3 (see Ref. 14). The de-
cay of C& due to phonons is given by the expo'nen-

tial of a square root at large distances along the y
axis'4:

CG'"'"'" (y) m exp[ —(y/(p)' '1

The length gp is proportional to gs, and is obtained
from Eqs. (Cl 1), (C5), and (2.45) with"

(4.4)

(4.5)

where d~ is the layer spacing. There is also an ex-
ponential decay of correlations provided by the dislo-

The structure factor measured in an x-ray or neu-
tron scattering experiment is a direct probe of the
translational correlation function Co(R). We dis-

cuss here the expected results of a scattering experi-
ment for a film at a temperature slightly above the
melting temperature T . We shall concentrate on the
case of type-I melting.

We first discuss the case of a multidomain ("pow-
der") sample. If the domain size is sufficiently large
so that finite-size-effect broadening is negligible, the
experimental structure factor is given by

S (q) = (2n q) '
~l S ( q )S(q —q') d'q', (4.1)

I

where S(q ) is the structure factor of an oriented
domain. If S(q) is dominated by scattering near a
reciprocal-lattice vector G, then S(q) can be approx-
imated by
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APPENDIX A: DISLOCATIONS IN AN
ANISOTROPIC SOLID

bk = f) Wkj dxj (A5)

where the path integral is chosen to be counter clock-
wise once around the dislocation core. Note that wkj

is single valued while u is multivalued.
Equation (A5) can be rewritten using the antisym-

metric tensor e,j, with a~2 = 1 =

bk = )t Wkjtjneni dxl (A6)

where e)„e„l= —5» has been used. Since e„ldxl = dn„ is
the normal. differential to the path, the rest of the
term inside the integral must have a gradient equal to
a 5 function, i.e.,

1. Anisotropic elasticity
Q wk)—6ks(r ) =.,„
QX„

(A7)

W,j——Bu;/Bxj,
1

uij =
2

( Wij + Wji )

(Ala)

(Alb)

Each molecule in the solid is located at a position
r =. u(R)+R. The vector displacement field r is a
function of lattice position R, and measures the devi-
ation of the molecule from the position it would oc-
cupy in the perfect crystal, In the presence of dislo-
cations, u is a multivalued function of position.

We construct the following quantities from the dis-
placement field:

In linear elasticity theory, we use superposition to
calculate propertieg associated with a collection of
dislocations. It is therefore convenient to calculate u„"

and w;, , the Fourier transforms of the differential dis-
placements and stress fields generated by a disloca-
tion at the origin of unit magnitude and direction
along the nth axis. In the following discussion, a
tilde over an expression indicates the Fourier-
transform representation of that quantity.

The conditions (A4) and (A7) in terms of the
Fourier-transform variable k become:

1

Vij = ( W,j Wji) (A 1c) ik)cr,~
=0 (ASa)

~ 'J ~'Jkl ukl

uij SiJkl ~kl

1

~ijkl Cklmn 2
( Simg jn + Sin Sjm )

(A2a)

(A2b)

(A2c)

(The summation convention of summing over re-
peated latin indices is used. ) The elastic energy per
unit area is given by F, where

] 1

2 (J~') = —0 (J Sijkl ~kl

and the net force per unit area is given by

(A3)

The derivative of the displacement field is w;, , and u„"

and v;J are the symmetric and antisymmetric tensors
formed from the differential displacements. ' ' The
stress tensor o,) is related to the strain u) by the elas-
tic tensor C)kl, and the compliance tensor S;,.kl by

«m
lkn Wk)6)n = Sk (ASb)

The Kronecker 5 is denoted by 5;". These equations
are sufficient to solve for u) and o-„", as well as for

E;,, the Fourier transform of the interaction energy
between two Burgers vectors. Condition (ASa)
above, enables us to write

n -n
g j= T)A (A9)

l

k;k)
T(J ~ij (A 1 0)

A is a function of k to be determined, and T;, is the
transverse projection opera'tor. The quantity w„" can
be decomposed into symmetric and antisymmetric
parts

8cT()F= =0
X)

2. Theory of dislocations

(A4) W()
= u(j + V() (A 1 1)

(A12)

Using the fact that the antisymmetric part must be
proportional to e,), we find

l -l
Ui) = 8 6'(j

We now calculate the displacement field, stress and
energy fields associated with a dislocation of Burgers

where B is another function of k to be determined.
Substitution of Eqs. (A9) —(A12) into Eq. (Agb)
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leads to

k„e„mum+ Bk(=i 5 (A13)

R(A +k B =i5;",

Rl —= k„t„mS;m,g Tpt

Multiplying Eq. ('A14a) by a(;k(, we obtain

(A14a)

(A14b)

-m (

k Q(k)
where

Q(k) = TIJS(g((~i(

The stress field can be written

(A15)

(A16)

-m i kll& m

k' Q(k)
(A17)

The interaction between dislocations b "(r() and
b ( r, ) is given by

F." ( r( —r2) = J d'r o J(r —r()Sp(,(o(,((r —rz)

(Alga)

or equivalently

We now substitute for u&, using the compliance ma-

trix, to find

((,q
—— '

S(l~nk;+ a(gkrS;, ~n k k„-,-(A22a)
k Q(k)

iR„-
8 = (A221 )

k'Q(k)
It is often convenient to define a single-valued dis-

placement field u around a dislocation of unit mag-
nitude and Burgers vector along the direction r"„at
the origin by introducing a cut along an arbitrary but
specified direction rp. This single-valued displace-
ment field is obtained by adding a lattice displace-
ment equal to b to the integral of the differential
displacements every time the cut is traversed in the
clockwise direction. Thus u = u, + u„where u, is
the multivalued smooth part of the displacement
field, obtained by integrating ~&, and u, is the mul-
tivalued discontinuous part obtained by considering
the cut. The demand that u, increase by b when
the cut is traversed can be written as

[(rp 0) Ug ]I 8( Jl ds 8( r —rps) . (A23)

Here (rp )&
=——

a&I, (rp)(„ the vector perpendicular to
rp. Equation (A23) is easily checked by integrating
across the cut. The demand that ( rp '7) u, =0 is

necessary, so that the value of u is not altered in a
direction along the cut. Taking the Fourier transform
of Eq. (A23) above, and using the above considera-
tions, one finds

E" (r( —rz) = J d'r u,&(r —r() Cp(f(u(, I( r —rz)
B(u,")(

X,

5 ( n(. )r

k'fp IN
(A24)

Using the convolution theorem for Fourier
transforms, we find that

E = o IJ (—k )$(J((I(rg(( k )

This is easily calculated as

(A 1 gb)

(A 19)
(where (n =1 or 2)

where 5 means the Fourier transform of the ex-
pression in brackets with k being the transform vari-
able. Finally, the Fourier transform of the (singular)
single-valued displacement field is found to be

5J(rp )
un . +em

ikm k (rp k —i a)

E
-nm T" (k)

k'Q(k)
(A20)

k„- = e„(k(

T) =—k-.k-
k2 l J

Q(k) =—4k;krak„-k-Si„
k 4 l g ll m lgnm

(A21a)

(A21b)

(A21c)

We find that the differential displacements are given

To find the displacement field we need to find 8',
which is obtained by multiplying Eq. (A14a) by e„;R„.
We make a further definition to simplify the nota-
tion, henceforth. The subscript j, with a circumflex
over it (j) will mean to multiply that subscript by n,&

and relabel i to j again, i.e.,

—= (u()„+ (u()„ (A2S)

Q (Z) = SiJklzlzjzkzl (A26)

with z(=z, z, = l. Thus, Q(z) is a quartic polynomi-
al in z. Since the coefficients are real, the roots occur
as complex conjugate pairs. Denote these roots by

a(, a( and a, , azz, The polynomial Q(k) factors

One can check that u~ is indeed independent of the
choice of the index m. This expression is used to cal-
culate correlations in the smecticlike and nematiclike
phases.

The quartic expression Q ( k ) appears in all of the
denominators which occur in the Fourier transform
of the tensor fields, and to analyze these expressions
in real space, we need to investigate the zeros of Q.
We define quartic polynomial Q(z) by
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into the fourfold product

Q ( k ) =
4 I(k ajk&) (kz a2k&) I (A27)

[see Eq. {2.19)]. Stability requires that Im(a;) A 0,
which is equivalent to the requirement that S&kI be
positive definite. It is no restriction to choose
Imo. ; ) 0, since the roots occur in pairs.

3. Interaction energy between dislocations

To perform the renormalization group analysis, we
must Fourier -transform Eq. (A20) to find the ener-
gy between dislocatons in real space. Using the fac-
torization, we can perform these integrals using con-
tour integration techniques to find

E" ( r ) = K„ ln —+ V„(H )
a (A28)

1 Imo. 1+ Imo. 2

2m S
~ ~ ~ ~ (I ma

~ ) (I ma ~) I u I
—a 21'

K = 1 Im(a) ') + 1m(uz')
2~ Szz22(lma~ ')(Imuz ') Iu~

' —(u2')'I'

(A29a)

(A29b)

1 Im(u)u~)
12

2m S((()(lma))(lmu2) lu) —anal'
(A29c)

V„(8)=- Re, , + (interchange 1 and 2)
a~" + ' In(u~ cosH+ sin8)

( Imui ) ui u2
(A29d)

The second equation (A29b) is analogous to Eq.
(A29a), with the indices 1 and 2, and a; and a; in-
terchanged. For appropriate choice of axes, K12 can
be made equal to zero since K„ is a symmetric ten- '

sor.

4. Crystal symmetry

I

problem at hand, the reflection symmetry y —y is
valid and every component of the compliance or elas-
tic tensor with an odd number of equal indices van-
ishes, There are therefore four nonzero compliances:
S1111, S2222, S1212, and S1122. The quartic expression
Q (z) can then be reduced to

Q(z) =S~~~~z +2(S~~22+2S~2~2)z +Sz2z2 . (A30)

Considerable simplifications occur in the formulas
when there is a symmetry in the crystal. For the

This can be solved to find the following expression
for the roots of Q (z):

1122+ Slzfz) + I (S 1 }22 + 2S1212) Sl 1 ll 2222].

(l)
= (A31)

Two cases now present themselves. In the first case
(i), the argument of the square root is positive, giv-
ing two imaginary, independent roots. The second
case (ii) occurs when the argument of the square root
is negative, giving roots of equal modulus but com-
plementary phase. The isotropic case gives degen-
erate roots. In all these cases

we compute K„" explicitly as

K 1 1 (2S2222) I (S I 1 1 lS2222)2'
+ (Sl}22+2S1212) ] ' ', (A33a)

and

u1u2 = S2222/S I 111
2 2=

uf + a2 =—(2S l ] I 1
+ 4S )2 )g )/Si ( ) )

(A32a)

(A32b)

2222
22 11

' 1/2

(A33b)

u& =i lu&l, for case (i)

u, =—a2, for case (ii)
(A32c)

The conditions (i) and (ii) are obtained by inspection
and are a consequence of the reflection invariance
which gives Q (z) as a polynomial in z'. In this case

K12= K21=0 (A33c)

No real simplification for VJ occurs over Eq. (A29),
and the explicit form for this interaction will not be
needed.

We now compute the correlation for the transla-
tional order parameter Co (R) in the solid phase

I



354 S. OSTLUND AND B. I. HALPERIN 23

where the cumulant expansion is valid:

Cp(R) =exp[ —G;Gjfj(R)] (A34a)

fJ(R) —= —,([u;(R) —u;(0) ] [uj(R) —uj(O) ])

(A34b)

d2k kjk Cj „u,(k)u„(—k) . (A35)
kBT 2

The interchange symmetry i j of C& „has been
used. The expectation (u; ( k )uj ( —k ) ) is therefore
given by ( V ) J, where

Vj(k) =C;~„)k k„

The Hamiltonian for the solid is given by Eq. (2.2) so
that the Hamiltonian for the Fourier-transformed
fields is given by

1fj(r) = , ejw,j—

We find

(A42)

The structure factor can then be computed. The
coefficient f, (G,R), which we do not explicitly calcu-
late, couples G and R and is related to the angular
term in the dislocation interaction Eq. (A29). The
exponent which determines the decay of correlations,
however, does not couple these variables. Taking the
Fourier transform of Eq. (A41), one finds that the
Bragg 5 functions in the structure factor of a crystal
with long-range order become cusped singularities,
either remaining finite or diverging depending on the
sign of 2 —2)(G) for a given Bragg peak.

The orientational correlation function C„(R) Eq.
(1.13) can be calculated similarly, using the fact that
the orientation field generated by an isolated disloca-
tion at the origin is given by

Writing this explicitly in our case, we have

Cllllk1 + C1212k2 (C1122+ C1212)klk2
V~= . (A37)

(C1122+ C1212)k 1k 2 C1212k 1 + C2222k2

lim C„(R) const,
R ~oo

indicating long-range order of orientations.

(A43)

The inverse matrix is given by

k1 —k1k 2
2

( V )ij (~111192222 ~1122 )
k k k 2

k Q(k) 1 2 2

S1111k1 S1122k 1k 2
2

S1122k]k2 S2222k2
(A38)

The identities, valid for a uniaxial solid,

C 1212 4 S1212
1

(A39b)

have been used. We can compute the large-distance
behavior of the logarithm of the order-parameter
correlation function, using contour integration tech-
niques. The result is

fj(R) = nj In((R ~/a) (A40a)

C ill 1 C2222 C1122 (~1111~2222 ~1122 ) ' . (A39a)

APPENDIX B' PROPERTIES OF THE NEMATICLIKE
REGIME CALCULATED USING

THE SOLID HAMILTONIAN

Bj(k) = (b;(k)bj( —k)) (81)

as the correlation between dislocations in the
Fourier-transformed variable k. When the core en-

ergies are added to the dislocation Hamiltonian, we
find

The nematiclike regime may be described by a gas
of free interacting dislocations added to the solid. At
long wavelengths, the nematic should be described by
two Frank constants, using. the Hamiltonian Eq.
(1.4). We compute the Frank constants by calculat-
ing the bond orientation fluctuations in the disloca-
tion ensemble and then comparing with what we
would find using Eq. (1.5).

We define the quantity

where

J ('9111192222 51122 )R J +451212~NJIt'J (A40b)

k Q(k)EJ+ kkj
Bj(k) = 0

k Q ( k ) det(Eij ) + k kj EJ
(82)

Cp(R) =—(R/a) 'J ' Jf, (G,R ) (A41)

and K& are the coefficients of the logarithmic term in
the energy defined in Eq. (A29). No summation
over indices in Eq. (A40b) is to be performed. For-
mulas (A20) and (A28) have been used and only the
divergence as R ~ has been kept. The order-
parameter correlation function is given by

where 0 is the system area, E& is the core energy
matrix 2a2EJ and det(Eij) is the determinant. The
matrix E& is of course diagonal when there is a re-
flection symmetry about the x or y axis. In the
nematiclike regime, both eigenvalues of EJ are finite,
although one may be much larger than the other.
Equation (82) is used to calculate the correlations in
the bond orientation field. The Fourier transform of
the bond orientation field induced by a dislocation at
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the origin with Burgers ~ector b is given by

$ (k) = —,e,j)t) (B3)

Let us define the function

Z (R, R ) = u, (R'-R) —u, (R') (Bl 1)

The right-hand side is just the antisymmetric part of
the differential displacements. Using Eqs. (A22) we
find

g(&) = (P(k)P( —k))
—[kk&EJ+k Q( k) det(E) ] (B4)

for small k. Using the fact that EJ is diagonal for the
solid with reflection symmetry, we make the identifi-
cation Eq. (2.47). The real-space angle-angle correla-
tion function is then given by

where u, (R') is the (multivalued) displacement field
at the origin introduced by a unit dislocation at R'

with Burgers vectors along the mth axis. Thus 6 is
the difference in the displacement field between the
origin and the observation point R, generated by a
dislocation at R'. We shall define the function
Z (R, R') to have a cut as a function of R from the
origin to the point R. There is then no cut necessary
to the dislocation itself; if the dislocation makes a
closed path in the cut plane, it must loop around the
origin and R an equal number of times. Hence
Z(R, R ) will be a single-valued function of R' with

just a cut between 0 and R. With this convention the
function

x ln
R; RJ.EJ

-=g (K)
, , S,J.IR,-R,R,R, ,

Z(R) = J d'R'b~(R')Z (R, R') (B12)

is the contribution from the dislocations to the differ-
ence in displacements [ u (R ) —u (0) ] and the corre-
lation function

In a system where the local rotational symmetry is
n fold, the relevant orientational order parameter is

t[)„(R)= e"'&(" '. We can calculate the correlation
function C„by using the cumulant expansion. In
this approximation

GJ(K) = (5;(R)AJ(K)) (B13a)

can be calculated.
The decomposition of 8;, results in a corresponding

decomposition of GJ(R):
C„(R)=exp[ ,

' n'g—(—K)] (B6) Gd(R) —= Gu~(R) + Gg~(R) (B13b)

Using Eq. (BS) one can show

C„(R)=F(R )R

where

(B7)

with

G;, (R) = JI d'8'd R"5; (R, R')

x 8 (R' —R )EJ (R R ) . (B14)

F(R) = R; R~Eg
A A A A

Sjf~i R jRJR I R I
)

(K IC ) '~'n'1

2' (Bga)

(B8b)

The integral extends over the entire space excluding
the cut from the origin to R. Using the form Eq.
(B10) for G;, , we see that

G; (R) = I d'R ' d'R" 6;~(R, R')

The calculation of the displacement correlation
functions is more difficult due to the multivaluedness
of the displacements around a dislocation. It will be
noticed that 8& is composed of two parts:

x g (R' —R )5,"(R', R")

Using the fact that

(B15)

II8; =8~+8;. (B9) u,"=0,
gX~

where 8&~ is the part proportional to k;k, in Eq. (B2).
In real space, this correlation can be written as

Qr; Qrj
(B10)

where g ( r ) is just the angle-angle correlation func-
tion. This term dominates fluctuations in the dis-
placements perpendicular to the direction between lo-
cations in the lattice and this is the reason it is so
closely related to angular fluctuations.

derived from Eq. (A22a), and using Green's theorem
to rewrite the area integral into a double path integral
over R' and R", we find

Gt(R) =gdl'd("n d; (R, R')

x g (R' —R")n„hj"(R, R") . (B16)

Each path integral surrounds the cut once in a
counter-clockwise direction and the boundary of the
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surface (at R = L ) once in the opposite sense; nj is
the ith component of the normal to the boundary.

Using the fact that the discontinuity across the cut
is 5„', we can reduce the cut integral to

G'"'(R) = )dR'dR" n;(R')ni(R") g(R' —R' ) .
U

(817)

The double surface integral at the boundary still
remains. Whether or not this surface integral is im-

portant depends on the large distance properties of g.
In the presence of a crystalline substrate which in-

duces long-range order in the orienting parameter
e'&", the correlation function g decreases exponen-
tially at large distances. There is then only a contri-
bution to GJ proportional to R due to the cut. If the
cumulant expansion is valid, it then follows that

Cg(R) —= (exp[iG u(R)]exp[ —iG u(0)])

along the line between 0 and R. Thus

By rotating the integration variables, one finds a pole
with a residue proportional to R. After considerable
algebraic manipulation it can be shown that

Goo(R) = JR J

'
Fll(H)

E11E22)

where

[(~1111 + ~2222+»n(2H) (&1111 ~2222)

(821a)

H) (~1111+ S 2222 2~1122 4~1212) ]

x (E~„R~R„-) (SijklRiRJRkR() ' '(E„E„)'i

2~
G;, (R) = ' — (e'' ' —l)u"(q) g" (q) 22 (— )lr

(820)

is exponential at large distances in the nernaticlike
phase, for any direction of R.

For a smooth substrate, g diverges as a 1ogarithm,
and the dominant contribution to 6„" has the form

R = (cosHsinH),

and

(82lb)

(821c)

R.R&(K oK~o) 21„(&/a -) (818)
Ei] = &x'

(821d)

= [I —2iGR ((gH) ) ]'i (819)

if 58 is a Gaussian variable. If both R and the "sys-
tem size" are of the order of the correlation 1ength

gs, as is required for example in the structure-factor
calculation of Sec. IV, the term GR ((5H)2) is small
compared to unity.

There is a second contribution to 6„"which is in-

dependent of the volume and which is important for
the separations of interest. This term is given by Eq.
(814) when 8J is replaced by B&' We analyze.
GJ (R) by working directly in Fourier space using the
single-valued, discontinuous displacernent field calcu-
lated in Eqs. (A24) and (A25). The cut is chosen

where Q is the system size.
The presence of free dislocations at very large

length scales causes a drift in the overall angular
orientation of a relatively small region in the interior
of a sample. There will therefore be a displacement
generated between location R and 0 which will be
proportional to the separtion R since the entire region
is rotating by an angle which is of order

(KoKo) li
—, ln(O/a )-

(see the discussion in Sec. IV). The angular fluctua-
tions become less severe as T T .

The large angular fluctuations also induce a dif-
ferential displacement parallel to R which is propor-
tional to R (8H)2. The effect of this displacement on
the correlation function Co (R) contributes a factor

E22 = Kyo

-(R & 6) (K K ) i const
Co(R) n (0)

x exp[ (G /Ko+Gy'/Ky )~R ~F11(H)l . (822)

We note that this form for the correlation function is
valid also for the hexatic phase above melting of the
regular triangular solid and only when G x R =—0 is

there a well-defined exponential falloff of Co (R).

APPENDIX C: CALCULATIONS BASED ON THE
SMECTIC HAMILTONIAN

The Hamiltonian Eq. (2.44) for the interaction of
dislocations in the smectic regime, with Burgers vec-
tors in the y direction, can be Fourier transformed to
give the following expression for the interaction of a

pair of separation r:

o, (r) =-8 A.

~ly I

r 1/2
X2

4)ify [

This is a highly anisotropic interaction. Note that for
fixed x, ~, actually decreases as y gets smaller. This
is because the dislocations act on each other by

The function F(H) reduces to a constant for a regular
triangular lattice. Collecting these results, we find
that
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compressing the intermediate layers (see Fig. 4).
This mechanism becomes extremely weak when the
dislocations have the same y coordinate.

The interaction energy can be derived from a
smectic free energy which, in the absence of disloca-
tions, takes the form of Eq. (2.52). The conse-
quences of this interaction on the properties of a
two-dimensional smectic have been studied by Toner
and Nelson in Ref. 14, here called TN.

The potential in Eq. (Cl) is quite complicated, but
it is finite at large separations. A finite density of
dislocations must therefore be unbound, and the
length g~ is equal to the mean distance between
dislocations. Thus

(C2)

where nf is the density of free dislocations. " The
phase is actually a nematic above the length scale gn.
This crossover occurs without a transition according
to the analysis in TN.

A correlation (1/B) f(r/h. ) is defined by

Thus, if we use the cumulant expansion on

CG (R) = (exp[1'G~[u(R) —u(0)]l) (C6)

K„(xBX2 cc gq~, Ky cc 2E,a (c7)

well above the transition temperature. Since the en-
ergy of bending the rows (splaying the director
field), is not dependent upon dislocations, K„does
not change as the temperature is lowered toward the
transition. Splay of the rows requires dislocations,
and it is shown in TN and Ref. 36 that K~ scales like

nf '. Therefore

we find exponential decay in the x direction and ex-
ponential of a square root in the y direction.

Above the length scale tI:„, the dislocations become
important. The angle-angle correlation function can
be calculated in the presence of dislocations to find
K„and K„. We find

K„~ gs2, Ky cL gn (C8)

(C3)

This is the Fourier transform of the inverse Hamil-

tonian in Eq. (Cl) and is given in real space by

' 1/2

f( )
Iy I

2m

for a vanishingly small density of dislocations with

Burgers vector along the y direction. To relate this
theory to the anisotropic melting problem, we use
quantitites renormalized by the type-I dislocations as
bare parameters for this calculation.

The correlation function CG (R) can be computed

in the cumulant approximation as

This simplifies to

(C4) Ca (R) =exp —G» f——21 . R'B (C9)

The structure factor near a reciprocal-lattice vector G
for a smectic takes the form

f —" =——
, x'«itlyl;r 1 ly I

8 Z B 4~x

f —" =——, x'»xlyl .
r 1 Ixl

B Z B4X

(CS)

s(q-G, ) =s)tq,

where S ( q, g ) is the universal function

S(qg)=J drei' 'e & ".-

(C10)
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