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A simple model for solute concentration fluctuations in solid solutions under irradiation is
proposed. The irreversible reaction of interstitial-vacancy mutual annihilation at solute clusters is
shown to have a destabilizing effect for homogeneous undersaturated solid solutions. Under ap-
propriate irradiation conditions defined by the irradiation flux and temperature, some solute
concentration fluctuations become unstable: solute precipitation results. A simple expression
for the solvus under irradiation is proposed. Unusual properties of the solute solubility limit
under irradiation are predicted. The capability of the model to account for experimental obser-

vations is demonstrated in the companion paper.

I. INTRODUCTION

Radiation-induced (as opposed to accelerated) pre-
cipitation in undersaturated solid solutions is becoming
a well-documented phenomenon.! Solid solutions
which are thermodynamically stable outside irradia-
tion may separate in two distinct phases under ap-
propriate irradiation conditions. The phenomenon
was reported in NiSi, NiBe, NiGe, MgCd, AlZn,
WRe binary solid solutions and in many industrial al-
loys. (For industrial alloys, however, the lack of a
safe knowledge of the equilibrium phase diagrams
makes it difficult to distinguish between radiation-
induced and radiation-enhanced precipitation.) Re-
cent reviews are available.>? Radiation-induced pre-
cipitation is one among various radiation-induced
phase changes which are expected to occur in ap-
propriate ranges of irradiation flux and temperature.*

In many cases, radiation-induced precipitation,
which we denote now by RIP, is observed to be
heterogeneous: the precipitates form at point defect
sinks in NiSi,>~7 in NiBe,® in NiGe.® This type of
RIP is successfully interpreted as resulting from the
accumulation of solute atoms drifted towards the
point defect sinks by the point defect fluxes sustained
by irradiation.” -

Recently however, radiation-induced homogencous
precipitation was reported, in AlZn,'? as well as in
AISI 316 steels,”? or WRe.'"* Moreover, in the AlZn
system, RIP may occur in the form of coherent pre-
cipitates.!? Finally, a beautiful small-angle neutron
scattering experiment of electron-irradiated NiCu
solid solutions has demonstrated the formation,
under irradiation, of solute concentration fluctuations
with unusual distribution'’: some long-wavelength
fluctuations appear after appropriate irradiation.

The above facts call for a general treatment of
solute concentration fluctuations in solid solutions

under irradiation. There are three distinct reasons
why the distribution of solute concentration fluctua-
tions may be different under irradiation and outside
irradiation: First, irradiation induces disorder by re-
placement collisions in the crystal. Up to now, this
effect has been thought to be at the origin of second-
phase resolution. Second, irradiation sustains in the
solid solution a high point-defect concentration: a
binary solid solution under irradiation is therefore
rather a quarternary system (solvant-solute-vacancy
interstitials). Several attempts for a strictly thermo-
dynamical description of solid solution destabilization
under irradiation have been published.'®"? To our
knowledge, none of these could account for the ob-
served results: the disagreement is at least quantita-
tive!’71%2! and sometimes qualitative, in the sense
that some condition, which is found to be necessary
for a model binary solid solution to be destabilized by
a small point-defect addition, is not fulfilled by those
systems where RIP is observed.?’ Finally, since point
defects are nonconservative species, (even in the ab-
sence of point-defect sinks, they eliminate by mutual
recombination), a solid solution under irradiation
may be viewed as an open reactive-diffusive system
which reaches a steady state rather than an equilibri-
um state. With this idea in mind, there is no a priori
reason why the solute concentration fluctuations
under irradiation should behave as in a closed sys-
tem.??

Indeed we have demonstrated elsewhere?® that the
instability limit for a solid solution (the ‘‘chemical spi-
nodal’’) may be shifted towards lower solute concen-
trations due to the vacancy-interstitial mutual annihi-
lation reaction. In other words, for a given point-
defect concentration, a solid solution may be (linearly)
stable from a strictly thermodynamical viewpoint and
(linearly) unstable if the vacancy-interstitial recombi-
nation reaction is taken into account. We have given
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elsewhere'? one possible atomic mechanism for the
amplification of solute concentration fluctuations by
vacancy-interstitial mutual annihilation.

In practice, however, it is still a matter of discus-
sion to decide whether the instability limit of a solid
solution can be observed experimentally, or is it sim-
ply a heuristic theoretical concept (for recent discus-
sion, cf. Ref. 24). In any case, the experimentally
observed solvus corresponds to a stability limit,
beyond which the solid solution is first metastable due
to the existence of 3 nucleation barrier. It is there-
fore important to study radiation induced metastability
as a complement to our previous work, which con-
cerned instability.?

The purpose of this article is to propose a model of
solute concentration fluctuations in a solid solution
under irradiation and to elucidate what the conditions
are for an irradiation to destabilize a solid solution.

This problem may be addressed by two different
techniques. The first one rests on a continuum
description of the solid solution: the state of the
solid solution is described by the concentration pro-
files of the elements throughout the system. This
type of description is most efficient for the treatment
of solid solution instability**~*® and was adopted in our
previous work.? In principle at least, a concentration
profile description of the state of a solid solution can
be used to study solid solution metastability as
well.26: 2731 Sych a description however is mathemat-
ically very involved since full account must be taken
of nonlinearity in order to describe the large ‘‘hetero-
phase fluctuations’” which destabilize the solid solu-
tion. On the other hand a cluster description of
solute concentration fluctuations is well suited for
describing solid solution metastability, at least as long
as the solid solution is sufficiently dilute to avoid the
percolation problem (for a recent review cf. Ref. 32).
With this type of description, the state of the solid
solution is specified by the size distribution of the
solute clusters it contains. When the solid solution is
in a metastable state, the cluster-size distribution
separates into two parts: small clusters with an ap-
proximately steady distribution and larger ones which
grow as time passes: the small clusters represent the
concentration fluctuations in the solid solution, while
the larger ones represent the growing precipitates.’?

In this work we chose a cluster description of the
state of the solid solution and show how the irrever-
sible vacancy-interstitial mutual annihilation reaction
affects the solute cluster distribution. An attempt in
the same direction has already been published*: the
model, however, predicts RIP for incoherent precipi-
tates only, and large decrease of the solubility limit
are expected for those systems only where the precip-
itate atomic volume is /arger than that of the solvant
matrix. The above two limitations are violated by the
AlZn system which exhibits undersized coherent pre-
cipitates formation'!? and are not required for the

present model.

In the next section we present the solid solution
model and the simplifying assumptions which we use.
A qualitative explanation of the driving force for RIP
will then emerge. The third section, deals with the
mathematical treatment of the model; the condition
for radiation-induced metastability is obtained, as well
as a simplified equation for the solvus under irradia-
tion. In the fourth section we discuss in a semiquan-
titative way the shape of the solvus under irradiation,
and the behavior of the solid solution in the radiation
induced metastability regime. In particular, we
demonstrate that the lever rule for the amount of
precipitation need not be obeyed, according to this
model. In the last section we discuss the limitations
of the present model. The detailed comparison of
the model to experimental results is dealt with in a
companion paper.'

II. MODEL FOR SOLUTE CONCENTRATION
FLUCTUATIONS UNDER IRRADIATION

A. Solid solution model

We describe the state of the solid solution under ir-
radiation by a distribution of clusters embedded in
the solvant. A large set of parameters is necessary to
give a detailed description of the clusters: number of
solute atoms, number of vacancies, number of inter-
stitials, shape, relative location of the species inside
the cluster, etc. If our aim were to predict the evolu-
tion of the overall microstructure of the solid solu-
tion during irradiation, all the above parameters
should be retained: indeed depending on the shape
of a cluster quite different microstructural evolutions
might result (e.g., void instead of vacancy loops,
etc.). Such a description is beyond the goal of the
present work. The model we present is simply aimed
at elucidating the mechanism and conditions for RIP.
We therefore assume that no defect clustering occurs,
or at least that defect clustering, if any, does not in-
terfere with solute clustering.

More precisely we view the clusters as solute aggre-
gates embedded in a gas of point defects, some of which
may get trapped at the periphery of the aggregate.
We further simplify the model by assuming that va-
cancies and interstitials cannot coexist on a given
cluster. A cluster is therefore specified by the
number s of solute atoms it contains and a number
of trapped defects d. We represent a cluster in a
solute defect diagram (Fig. 1): by convention we lo-
cate the clusters with d trapped interstitials on the po-
sitive side of the defect axis, and vice versa for va-
cancy type clusters. We call p(+d,s) [respectively,
p(—d,s)] the densities of clusters which contain s
solute atoms and which have trapped d interstitials
(respectively, d vacancies).
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FIG. 1. Cluster space: <———> reversible reactions, —

irreversible reactions.

The history of a cluster can therefore be represent-
ed by a trajectory in the d,s plane (Fig. 1). The clus-
ters propagate in this plane by impinging and emitting
point defects and solute atoms. For the sake of sim-
plicity we assume that only eight elementary reactions
contribute to the cluster propagation: (a) single va-
cancy adsorption or emission, (b) solute absorption
or emission by vacancy diffusion mechanism (i.e.,
absorption or emission of a vacancy-solute pair), (c)
simple interstitial absorption or emission, (d) solute
absorption or emission by interstitial diffusion
mechanism (i.e., absorption or emission or a mixed
dumbbell). Before going into more details, simple
inspection of Fig. 1 allows for a qualitative under-
standing of the mechanism of the destabilization of
solid solution by the irreversible vacancy-interstitial
annihilation reaction. Indeed for given vacancy and
interstitial concentrations, let us compare two dif-
ferent regimes for the solid solution: in the first re-
gime, no vacancy-interstitial annihilation is allowed.
The possible ‘‘jumps’ of the clusters among the lat-
tice points of the (d,s) plane are reversible as shown
by the dotted arrows on Fig. 1. The system will
reach some equilibrium configuration which we as-
sume to be that of a uniform solid solution: in other

words, the concentration of clusters decreases as their.

solute content increases. In the second regime, ir-
reversible vacancy-interstitial mutual annihilation is
allowed (and must be compensated by a steady point
defect production by irradiation). Irreversible
“jumps’’ result for the cluster (solid arrows Fig. 1)
such as (i) the loss of one vacancy (respectively, in-
terstitial) by the capture of one interstitial (respec-
tively, vacancy) at a vacancy (respectively, intersti-
tial) type cluster; (ii) the addition of one solute to-
gether with the destruction of one trapped defect by
the arrival of a solute by vacancy (respectively, inter-
stitial) diffusion mechanism at an'interstitial (respec-
tively, vacancy) type cluster. The result of the ir-
reversible jumps is twofold: they drive the clusters

towards the solute axis, and along this axis trowards
larger solute content. Is this latter driving force suffi-
cient to induce metastability for a thermodynamically
stable solid solution? The answer is yes, as will be
shown in the next section, by a detailed evaluation of
the cluster flux in the d,s plane.

We are faced with a problem of multiflux nuclea-
tion® as is usually the case for the description of
various clustering events under irradiation.’* 337
The crucial point in such models is the choice of the
expression for the free energy change on forming a
cluster (d,s) which yields the equilibrium distribution
of clusters. A general description of this distribution
is beyond the goal of this paper. We rather make
some more simplifying assumptions which render the
model easily tractable analytically.

B. Simplifying assumptions

We further simplify the description by assuming
that the solute-defect interaction is sufficiently weak
compared to solute-solute interactions, for the equili-
brium distribution of the solute cluster sizes to be
unaffected by the defect population. Therefore, at
equilibrium (where the p take the values p), the
overall density of clusters with s solute atoms

Z(s)
p:(s) =3 [p(+ds) +p(—ds)]+p(0,5) (1)

d=1

is independent of the free defect concentrations
p(£1,0). In other words

p:(s) =Nexpl-AG(s)/kT] , 03]

with AG (s) the free-energy change on forming a
solute aggregate of s solute atoms in the absence of
point defects, and N the number of lattice sites per
unit volume.

In the presence of point defects, but with no
vacancy-interstitial recombination allowed, and no va-
cancy and interstitial cohabitation on a single cluster
permitted, the equilibrium cluster concentration is
[cf. Appendix A, Eq. (A14)]

Z(s)! pe |"
dANZ(s) —dll |[T=p2 | N9
3)

5(fd,s) =b_](s)

Z (s) is the number of trapping centers for defects at
a solute aggregate with s atoms; p+ is the occupation
probability of a trapping center by an interstitial ( p,)
or a vacancy (p_)

pe=Qp(£1,0) exp(—g4/kT) , (4)

where € is the atomic volume, g4 is the binding free
energy for an interstitial (+) or a vacancy (—) ata
trapping center, and N (s) is a normalization factor,
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which ensures that p,(s) is unaffected by defect trap-
ping at the clusters. The expression of N (s) is given
by Appendix A [Eq. (A13)], Eq. (3) is valid in the
limit of small p+ and of vanishing defect-defect in-
teraction energy.

When vacancy-interstitial recombination is allowed
for, we further assume that the solute clusters are
still in equilibrium with the point-defect population:
i.e., we assume that the arrival and departure of free
defects at the clusters are much more frequent than
those of solute atoms. Therefore

Z (s)!
dllZ(s)—d]!

P+
1—p+

1
N(S)

(%)

The above hypothesis might be relaxed in a nu-
merical computation. Work is in progress now. But
the basic understanding and right order of magnitude
can be reached with this simple model as will be seen
in the companion paper.!

With the above hypotheses we may turn to a sim-
ple discussion of radiation induced metastability.

p(xds)=p,(s)

III. CONDITION FOR RADIATION-INDUCED
METASTABILITY

Since we are interested in solute precipitation, we
focus attention on the cluster flux along the solute axis
(Fig. 1). The expression for this latter flux is estab-
lished in Sec. III A and yields the condition for me-
tastability as shown in Sec. III B.

A. Cluster flux along the solute axis

The cluster flux along the s axis, J(s —s +1) is
the balance between the total density of clusters with

s solute atoms which impinge one solute atom per
unit time and the corresponding number of clusters
with (s +1) solute atoms which lose one solute
atom, whatever the number of point defects which
are trapped at the solute clusters.

J(s—s+1)=[B:(s) +B-(s)1p,(s)

Z(s+1)

- 3 [p(+ds+1Da(s+1)
=1

+p(=ds+Da(s+1)] . (6)

In this equation, 8.(s) and B_(s) are, respectively,
the arrival rates of solute by interstitial or vacancy
diffusion on a cluster which contains s solute atoms,
a,(s) and a_(s) are, respectively, the rate of solute
emission by interstitial or vacancy mechanism from a
cluster with s solute atoms. [A term —8,(s)p(Z,s)
—B_(s)p(—2Z,s) should be added if Z(s +1) < Z(s)
+1. It has been omitted in the right-hand side of
Eq. (6) and it is negligible for p+ <0.5 and Z > 5, as
is obvious from Eq. (5).] When establishing Eq. (6),
we have assumed that neither the impingement rates
B nor the emission rates a depend on the defect con-
tent of the cluster. Notice that the summation starts
from d =1 since no solute atom can be emitted from
a defect-free cluster. We may as well choose a+ to
be proportional to the defect content of the cluster
[a(+ds)=da+(s)]. The final form of the cluster
flux [Egs. (10),(11a), (11b)] is unaffected. Indeed,
the detailed form of a will be eliminated owing to the
detailed balance argument [cf. Eq. (9) belowl].

Accordirg to the expression of p(d,s), p+, and the
definition of p,(s) [Egs. (1)—(4)]1, Eq. (6) may be
rewritten as

J(s =5 +1) =p,()[B+(s) +B-(s) = {as(s +1)p, (s +D[(1 = p,)~26+D —1]
+a(s+Dp (s + D1 —p )26 1] IN(s +D7 . )

As usual, we lack an ab initio expression for the em-
ission coefficients a4(s), a_(s). But we can reason-
ably assume that they are typical of the cluster itself,
so that they may be calculated from the condition of
detailed balance at equilibrium, in the absence of
vacancy-interstitial recombination: under such condi-
tions the cluster flux along the s axis must be zero
for each diffusion mechanism taken individually. For
interstitial (+) as well as vacancy mechanism (—)
the cluster flux writes:

Ji(s—=s+1)=8+(s)p,()(1 —p+)ZON(s)!
—a+(s+1)p,(s+1)

X[(1=p1)~Z26D _1IN(s +1)"! (8)

I

since p,(s) (1 —p+)72N(s)7!is the total number of
clusters of interstitial (+) or vacancy (—) type with s
solutes when vacancy-interstitial cohabitation at a
cluster is forbidden [Appendix A Eq. (A15)]. At
equilibrium, J+ =0 and

_ l_’r(s)
at(s-+1)—-B¢(S)E;z;:jf;
(1—p4)~2W N(s+1)
[(1=ps)~260—1] N(s)
)

where p,(s) is the equilibrium concentration defined
by Eq. (2). Introducing Eq. (9) into Eq. (6) yields
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B _ _p,(S+1) 5,(5)
I =s + D) =p() Al === 5.(s+1)
with
A(s) =B.(s) +8-(5) ,
ﬁ+(s) 1_p~' 26 B+
B(S) B_(S)ll_p* +1 1+I e

Equation (10) together with the definitions (11) is
the basic equation of the problem. As is usual in the
classical nucleation theory, Eq. (10) may be interpret-
ed as describing a diffusion and convection flux of
particles along the s axis, with a position dependent
diffusion coefficient 4 (s), and a force field which
derives from the effective potential:

G (s) =—kT Inp,(s) (12)
with p,(s) solution of the equation

1.71(5) 5/(5)
= B . 13
p(s+1)  p(s+1) ) 1

[As can be seen in Eq. (11), B(s) involves equilibri-
um ( p,,p_) as well as kinetic parameters (8, and
B-). G(s) is therefore not a thermodynamical po-
tential. It is simply a useful intermediate variable in
the computation.] According to the assumptions of
Sec. II B [Eq. (2)], Eq. (13) may be written

G (s)
eXp o (14)

where G (s) stands for AG (s) in Eq. (2) in order to
simplify the writing. The condition for radiation-
induced metastability can be deduced in a straightfor-
ward manner from the above interpretation of the
cluster flux. The technique is very similar to that
used by Russell for the theory of void nucleation
under irradiation.3®

B. Condition for solid solution metastability

According to the above discussion, the solid solu-
tion is in a metastable state. whenever the effective
potential G (s) exhibits a maximum for some critical
solute cluster size s*. As shown by Eqgs. (12) and
(13), s* is such that

3G
s

_ 3G

+kTInB(s*) =0 . (15)
* os | *

s s

In order to elucidate the nature of the critical point s*

defined by Eq. (15), the behavior of 3G /8s in the vi-
cinity of s* must be studied. As shown in the Ap-
pendix B, B(s) may exhibit two different behaviors,

1-p_ Z(s)

I-py

(10)

’

(11a)

-1 —p_)2‘~*>| ) (11b)

according to the sign of
S=(1—P+/P_)(1“B+/,3—) . (16)

When § <0, B(s) is a decreasing function of s (Fig.
2). B(s) decays from 1 to B, as s increases from
zero to infinity. When 8 > 0, B(s) first decreases
from 1 to B,;,, which is always larger than %, and
then increases to B, which is always smaller than 1
(Fig. 2).

B, has the following expressions:

(1 +B_/B)"" forpi>p- , (17a)
B.=1(1+8,/B8.)7" forp_.>p. , (17b)
L forp_=p, . (17¢)

2

Equation (15) has a simple graphical interpretation
depicted in Fig. 3. Assuming G (s) has the classical
form:

G(s)=sAu(C) +sPay , (18)

where Au(C) is the difference of the solute chemical
potential between the solid solution with a solute
concentration C and the precipitate, o the
precipitate-matrix interface energy and y a geometri-
cal factor, we find:

3G (s)
ds

=Au(C) + 257 Bay . (19)

Boo - - -

FIG. 2. Shape of B(s), when S <0 (a) or when $ >0
(b).
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FIG. 3. Graphical construction of the critical cluster size,
when S <0 (a), or when S >0 (b) and (c). In (a), Bis as-
sumed to be independent of the solute concentration C in
the matrix.

In an undersaturated solid solution Ay > 0, so that
9G/ds in the right-hand side (RHS) of Eq. (19) de-
creases from infinity towards a constant positive
value, Au, as s increases. Moreover, the more dilute
the solid solution, the higher Au. As shown by Fig.
3, a sufficient condition for Eq. (15) to have a posi-

tive solution is that C > C where C is defined by
—kTInB,=Au(C) . (20)

When C exists, s* as defined by Eq. (15) is a saddle
point. Indeed as can be seen in Fig. 3, 9G/9s is first
positive and then negative as s increases. The critical
fluctuation is in unstable equilibrium (62G~/6s2|5*

< 0). Sufficient condition for solid solution metasta-
bility are therefore (i) that Eq. (20) has a solution,
and (ji) that the solute content is larger than C.
Equation (20) therefore defines the solute solubility
limit under irradiation. Equation (20) is an implicit
equation for C. Indeed, for given irradiation flux and
temperature, the point-defect concentrations reach a
steady-state value p(1,0) and p(—1,0) which depend
on solute concentration since the defect mobilities
and therefore the defect recombination rates are af-
fected by trapping at the solute atoms. The steady-
state value of the defect concentrations, together with
the temperature determine the values of p+ and B+
and therefore of B...

Before closing this section, it is worth noticing that
Fig. 3 suggests the possibility for an unusual behavior
of solid solutions under irradiation. As shown in Fig.
3(c), in some rare cases, it is possible that two critcal
sizes s* and s** occur. For s =s* [Fig. 3(c)] the
cluster is unstable and either dissolves or grows up to
the size s** which is a stable size: indeed at s**,
9G/ds is negative for subcritical and positive for su-
percritical clusters. A necessary condition for this to
occur is that § <O0.

In the next section, we give a simplified form of
Eq. (20) and discuss qualitative features of the solu-
bility limit under irradiation, which result.

IV. SOLUBILITY LIMIT UNDER IRRADIATION

In this section, we give a crude approximation for
the equation of the solvus under irradiation, which
allows for a qualitative prediction of the shape of this
solvus together with the important prediction that the
lever rule for the amount of precipitation need not be
obeyed under irradiation.

A. Shape of the solvus under irradiation

Assuming an ideal behavior of the solid solution
below the solubility limit, A in Eq. (18) can be ap-
proximated by

Ap=—kTInC/C , 1)

where C is the solubility limit in the absence of
vacancy-interstitial recombination. Therefore the
solvus equation under irradiation is simply

C=CB, . 22)
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Moreover, B, can be given a more suggestive
form than in Eq. (17). Indeed, the solute impinge-
ment rates B and B_ are proportional to the solute
diffusion coefficients by, respectively, interstitial—
(D!) and vacancy —(D,") mechanism. The latter
coefficients can be written, in the limit of weak
solute-defect binding, as

DS/=(1,-D,'C, ’ va=avDuCu ’ (23)

where C, and D,, (a=ior v) are, respectively, the
concentration and diffusion coefficient of untrapped
defect of type a; a, is a correction factor which ac-
counts for the solute-defect binding and for the
correlation between successive solute jumps. The
coefficients a, have been evaluated for the vacancy
diffusion mechanism®® and for-the interstitial diffu-
sion mechanism where the interstitial has a (100)
dumbbell configuration.®* a; and a, are functions of
the point-defect jump frequencies only. They do not
vary with the point-defect concentrations.

D;C; and D,C, can be evaluated from the balance
equations for point defects in the solid solution under
irradiation (cf. Appendix C). Under steady-state con-
ditions, for unbiased point defect sinks and in the
limit of weak point-defect trapping, the following re-
lation holds:

D.C;=D,(C,-C)) , (24)

where C? is the thermal equilibrium vacancy concen-
tration. -Equation (23) together with Eqgs. (24) and
(17) give:

x)—1
] , (25a)

Sy

v

Bm=[1+

ﬂ[l__l_

where the value of x is one with the sign of
(p-—p+)

x=1sgn(p_—py) (25b)
and S, is the vacancy supersaturation

s,=C,/C? . (25¢)

From Eq. (25), we can anticipate the following
behavior for the solvus under irradiation:

At “high temperature,’’ the radiation produced point
defects eliminate very rapidly, C,— C%and C,—0
according to Eq. (24). As a consequence, p,—0
while p_ remains finite [ p_ — C? exp(—g_/kT)] so
that x =+1 [Eq. (25b)]. Therefore B, —1 [Eq.
(25a)], and the solubility limit is unaffected by irradi-
ation. The high-temperature threshold for radiation-
induced precipitation is of course flux dependent. The
higher the irradiation flux, the higher the tempera-
ture limit for which € — C since a higher defect elim-
ination rate is necessary to compensate the higher de-
fect production rate.

TABLE . Shift of solute solubility limit (C/C) at low
temperature, for limiting values of agy/a,,

a;/a,
X 0 =]
+ 1 0
- 0 1

At “low temperature,’’ the vacancy supersaturation
S, becomes very large and B, becomes a finction of
temperature only
1+

x]-1
B, — i] ] . (26)
a,

Table I summarizes typical behaviors which may be
predicted in the case where a; or a, becomes small at
low temperature (e.g., due to ‘‘caging’’ for interstitial
diffusion by a mixed dumbbell mechanism.*®) In
particular, the solute solubility goes to zero when the
defect giving the lower-trapping probability [ p+ Eq.
(4)] causes the higher solute diffusivity, in agree-
ment with the qualitative discussion of Sec. I A. In-
versely, the solute solubility is unaffected when the
defect with the highest trapping probability causes the
highest solute diffusivity.

Some of the above qualitative features are indeed
exhibited by the solvus of Zn in Al under electron ir-
radiation as will be shown in the companion paper.!

B. Steady-state precipitate volume fraction

As shown by Eqgs. (22) and (25), for a given tem-
perature, the higher the vacancy supersaturation, the
lower the solubility limit. The vacancy supersatura-
tion itself is determined by the irradiation flux, but
also by the density of sinks and immobile trapping
centers for point defects (for a review, see Ref. 41).
The more numerous the sinks or traps, the smaller
the free vacancy supersaturation. Nevertheless the
control parameters for the system are the irradiation
flux and temperature but not the sink and trap densi-
ty since the latter usually evolves during irradiation.
Therefore under fixed irradiation conditions, if the
solubility limit in the system is exceeded, precipitates
will form, at the expanse of isolated solute atoms.
According to the model, the surface sites of the pre-
cipitate are immobile trapping centers for the point
defects. Therefore the occurrence of precipitation di-
minishes the free vacancy supersaturation: as a
consequence, the solubility limit in the solid solution
containing precipitates may be higher than without
precipitates. Radiation-induced precipitation may
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thus saturate before the solute content of the solid
solution between the precipitates has reached the
solubility limit in the absence of precipitates: the
latter quantity is the threshold solute content above
which a homogeneous solid solution separates into
two phases.

As a result of the above discussion, the lever rule
for determining the precipitate volume fraction need
not be obeyed under irradiation. Such a behavior is
observed in the AlZn system,! and was already antici-
pated for radiation-induced segregation at point-
defect sinks.*?

C. Solute distribution in undersaturated
solid solutions under irradiation

In those solid solutions which remain single phase
under irradiation (C < C), the solute cluster distri-
bution differs from that predicted at thermodynami-
cal equilibrium [Eq. (2)]. Indeed at equilibrium
under irradiation, the cluster flux in the s direction is
zero or according to Eq. (10)

p.(s+1) _ pls+1)
p:(s) p(s)

where p is defined by Eq. (13). Notice that p(s) is
defined by a first-order differential equation. The in-
tegration constant is provided by the conservation of
solute.

As shown by Eq. (27), the solute distribution at
steady state under irradiation is different from that at
thermal equilibrium. This should be revealed by ex-
perimental studies of local order [x-ray or neutron
scattering, extended x-ray absorption fine structure,
(EXAFS), etc.]. As a general trend, one expects
more larger clusters than at thermal equilibrium. In
practice, however, replacement collision sequences
under irradiation will destroy short-range correlation
between the components and a more detailed study is
necessary in order to predict the steady-state degree
of short-range order in a single-phase solid solution
under irradiation.

, (27

V. SUMMARY AND DISCUSSION

We have proposed a simple model for solute con-
centration fluctuations in a solid solution under irra-
diation. The fluctuations are represented by solute
aggregates which offer trapping centers for the point
defects. It is assumed that the solute-solute and
cluster-defect binding energies are such that the
equilibrium cluster size distribution is independent of
the point-defect concentration, when the point de-
fects are treated as conservative species.

When vacancy-interstitial mutual recombination oc-
curs, an extra driving force for solute cluster growth

appears: indeed, every time a solute cluster with an
interstitial (respectively, vacancy) trapped receives a
solute atom via vacancy (respectively, interstitial) dif-
fusion, a solute atom-is added to the cluster and the
defect which might allow solute migration away from
the cluster is destroyed due to the vacancy-interstitial
irreversible mutual annihilation. In an undersaturat-
ed solid solution, this driving force for cluster growth
opposes the thermodynamical force for the dissolu-
tion of large clusters.

Under appropriate conditions [Eq. (20)], i.e., when
such events are frequent enough, the new driving
force overcomes the thermodynamical force: this,
however, is the case for those solute clusters only,
the size of which is larger then a critical size [Eq.
(15)]. The solid solution then becomes metastable
with respect to solute concentration fluctuations.

The solute solubility limit is therefore a function of
the temperature and of the point-defect supersatura-
tion in the system [Eq. (20)] or more simply [Egs.
(22) and (25)]. The latter quantity is, however, not
controlled directly: it is a function of the irradiation
flux and of the point-defect sink and trap density.
The latter parameter changes as precipitation
proceeds. Several important features result (Sec. IV):
(i) At high temperature the solubility limit decreases
when increasing the irradiation flux. (i) At low tem-
perature the solubility limit is a function of tempera-
ture only. (iii) The precipitation may saturate before
the solute content in the matrix between the precipi-
tates has reached the solubility limit. This unexpect-
ed behavior might suggest that the stable state of a
solid solution under irradiation does not correspond
to an extremum of some function of the control
parameters of the system (composition, irradiation
flux, and temperature).

The above model is very crude in many respects:
(i) The equilibrium distribution of clusters of various
composition is given a very simple form in the ab-
sence of vacancy-interstitial recombination [Eqgs. (2)
and (3)]. (ii) In the presence of vacancy-interstitial
recombination, we assume that the solute clusters
remain in equilibrium with the surrounding free-
defect gas. (iii) We have neglected the defect-defect
binding in favor of solute-defect and solute-solute
binding. (iv) We have ignored the details of the tra-
jectories of the clusters in the solute defect phase
space.

Therefore the model does not give information on
the nucleation rate, nor on the role of solute atoms
in catalyzing defect clustering. Similarly, the model
does not predict radiation-induced precipitate resolu-
tion. Apart from sputtering effects® * which might
be included in a straightforward manner in Eq. (6),
we had predicted a new mechanism for the damping
of solute concentration fluctuations under irradia-
tion'2: damping should be possible when the solute
clusters attract the point defects and the solute and
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defect fluxes are coupled negatively. In the present
model the coupling between solute and defect fluxes
is described in a crude way to account for the former
effect. Work is in progress to overcome the above
weaknesses.

The model is, however, detailed enough to demon-
strate that the irreversibility of the vacancy-interstitial
mutual annihilation reaction may bring a thermo-
dynamically stable solid solution into a metastable
State.

In a previous work,? we had demonstrated that,
for the same reasons, a (linearly) unstable state could
be reached beyond some critical irradiation conditions
(flux and temperature). The present work points to
the existence of metastable states which in principle
at least, might have been discovered by a bifurcation
analysis of the solution of the balance equations of
the previous work. The cluster description which we
have used is far more tractable than such a bifurca-
tion analysis and might be of interest in other prob-
lems of the field of nonequilibrium phase transitions.

Finally, despite the crude approximations just men-
tioned, the model accounts qualitatively and with the
right order of magnitude for the radiation-induced
modification of the Zn solubility in AlZn alloys, as
shown in the next paper.!
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APPENDIX A: CLUSTERS STATISTICS

Let p,(s) be the density of solute aggregates con-
taining s solute atoms. Each of this aggregates offers
Z (s) trapping centers for point defects. In the ab-
sence of defect-defect interaction, all trapping centers
can be considered as independent traps. The proba-
bility that one trap is occupied by one point defect is

__ cexp(—g/kT)
P=1=¢ +cexp(—g/kT) (aD)

where c is the free defect concentration and g the
free energy of binding of the defect at the trap

(g <0 for an attraction). In the limit of small free
defect concentration (¢ << 1) and weak binding
(—g/kT << 1) Eq. (A1) reduces to

p=cexp(—g/kT) . (A2)

The trapping centers are grouped into subsets of

Z (s) centers: the peripheral sites of a cluster of s
solute atoms. The probability that one of this subset
contains d defects is given by a binomial function P
of parameters Z (s) and p:
Z(s)!
d\[Z(s)—d]!

Therefore the density of clusters with ¢ defects and s
solute atoms is

P(dZp)= pli(1=p)2=4 . (A3)

p(d,s)=P(d,Z,p)p,(s) (A4)

or
_ Z(s)! r | 5_
plds) =p) Gz —ani 1—p](1“")2” :
(A5)

In particular

p(0,5) =p,()(1—p)?® | (A6)
so that p(d,s) may be rewritten

_ Z (s)! P ¢
plds) =p(0.5) e ST 1—0] - (A7)

When two types of defects are present, with-binding
energies and trapping probabilities, respectively, la-
beled by g+, p+ and if we impose that defects of op-
posite sign cannot cohabit on a single cluster, the
density of clusters with ¢ defects and s solute atoms
can be written by analogy with Eq. (A4) as

p(+d,s)=p+(s)P(d,Z(S),p+) s (A8a)
p(—=ds)=p_(s)P(dZ(s),p) , (A8b)

where p(s) and p_(s) are normalization factors with
the following properties

p(4+0,s) =p(=0,s) =p(0,s) , (A9)
that is, according to Eq. (A3)
p+()(1=p)2=p_(s)(1—p_)? =p(0,s) (A10)
and

+Z(s)

3 plns)=p(s) , (A11)

n=-2Z(s)
or according to Egs. (A8) and (A10)

p(0,s)N(s)=p,(s) , (A12)
with

N(s)=(1=p) 2@+ (1—p_ )2 1 | (A13)

Finally, according to Egs. (A8), (A3), (A10), and
(A12)

d
Pt ]N(s)‘
l-p+
(A14)

_ Z(s)!
p(ds) =p () Gz =T
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as given by Eq. (3) in the text. In particular from Eq. (A14), one gets
d=Z(s)
S p(2ds)=p,()(1—p+)ZON(s)! (A15)
d=0
which is used in Eq. (8) in the text.
APPENDIX B: s DEPENDENCE OF B
According to Eq. (11b), B varies with s as
B+(S) 1—p_ Z(s) ,3+(S) - Z(s)
B(s) = — 1  +1 —(1=p )20 | Bl
=15 (T, B_(5) 1~p+ P ®D

If a cluster of size s presents the same capture radius for interstitials (+) and vacancies (=), 8.(s) and B8_(s) ex-
hibit the same s dependence and 8./B- may be assumed constant. In the following we write

b = B+/B_ N (B2)
Z () is the number of trapping centers for defects, at a cluster with s solute atoms. For large s, Z(s) o s¥3
Since s enters B(s) only through Z (s), we choose Z as new variable. B(Z) may be written as
b(1=p)2+(1—-p )2

B(z)- (1+6)D(2) B3)

with
D(D)=(1-p )%+ -p)%-1 . (B4)
From Egs. (B3) and (B4) we get

88 _ (-p )0 -p )b +0-6)A—p )21+ (1 —p ) *In(1-p)[1+(1-p,)%(b-1)] (BS5)
8z (1+b)D(Z)? '

which exhibits the following limits: Z —0
M_’ln(l—-p+)+bln(1~p~) ’ (B6)
9Z (1+b)D(Z)?

Z—oand b #1

98 _1—b (1—p)~*(1—p)~?Inl(1 -p)/(1 ~p )]

B , (B7)
9Z 1+»b D?
Z —ooand b =1
o8 (1—p)?In(1-p)+0-p ) ZIn(1-p.) (BS)
9Z 2D?
[
TABLE II. Sign of dB/dZ as a function of band p,/p_. From Eq. (B6), dB/0Z <0 for Z —0. From Egs.
(B7) and (B8), we find the signs for 8B/9Z as shown
in Table II.
Palp- APPENDIX C: DEFECTS BALANCE
b <1 1 >1
Under irradiation, the balance equations for vacan-
cies and interstitials are
<1 + - -
1 - - - 956—;1=G—KC,C,,—Ku(Cu—C3) R
>1 - - + 1
ac

=G —-KCC,-K,C, ,

9
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where C, and C; are the overall concentrations of,
respectively, vacancies and interstitials, G the point-
defect production rate, K the vacancy-interstitial
recombination rate, K, and K, the rate of vacancy
and interstitial elimination at point-defect sinks and
C? the thermal concentration of vacancies.

At steady state,

KIC/-:’KV(Cu——CB) , (Cz)

K, and K, are the product of a geometrical factor by
a diffusion coefficient (respectively, D, and D,). As-

suming that the sinks are not biased, Eq. (C2)
reduces to

D.C,=D,J(C,—C?) . (c3)
It is worth noticing that in this equation, D; and D,
are effective diffusion coefficients for the point de-
fect in the solid solution, and C,, C,, and C? total
defect concentrations (trapped and untrapped at
solute atoms). In the text, Eqs. (24) and (25) refer
to untrapped point defects only, so that Eq. (25) is
valid in the limit of the vanishing solute defect in-
teraction only.
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