
PHYSICAL REVIEW B VOLUME 23, NUMBER 7 1 APRIL 1981

Roton second sound and roton scattering

Humphrey J. Maris and Richard W. Cline'
Department of'Physics, Brown University, Providence, Rhode Island 02912
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The theory of roton second sound in superfluid helium-4 is considered. We first derive the
hydrodynamic equations which determine the motion of a pure roton gas. The collisions
between rotons are assumed to conserve energy, momentum, and the number of rotons. The
hydrodynamic equations without dissipative terms have the same form as the corresponding
equations for an ordinary fluid. When lowest-order dissipative effects are included, it is found
that there are some extra dissipative processes in addition to heat conduction and viscosity. We
next consider modifications of the hydrodynamic equations which occur when the effects of col-
lisions between rotons and phonons are included, and when there are some roton-roton colli-
sions in which the roton number changes. It is found that at the temperatures and pressures
where roton second sound has so far been observed, the wave motion is best described as iso-
thermal second sound. We show that current experimental data indicate that in nearly all colli-

sions between rotons (& 99.97%) the total number of rotons is conserved.

I. INTRODUCTION

fS2
C2=

]
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At these temperatures second sound is closely analo-
gous to an ordinary sound wave in a gas, ' .The
"atoms" of the gas are the elementary excitations of
helium (i.e., phonons and rotons). This gas has a

bulk modulus Bs„given by

TS2Bs„=

Thus, the velocity can be expressed as

c2=(8s„/P„)'" .

The modulus Bs„ is the modulus that determines
pressure changes when the entropy and chemical po-
tential of the gas are held constant. For an ordinary
gas the same formula holds for the'velocity of sound

Second sound in superfluid helium was first
predicted by Landau' and by Tisza. ' Landau showed
that the velocity c2 of second sound is given by the
formula

1/2
p. TS2

C2=
pn pc, '

where S, C, p„p„, and p are the entropy, specific
heat, superfluid density, normal fluid density, and to-
tal density, respectively. At low temperatures
( T & 1.2 K) the normal fluid density is much smaller
than the total density and so Eq. (1) can be simpli-
fied to read

except that instead of B», the bulk modulus Bs~ at
constant entropy and particle number is used. The
difference comes about because collisions between
rotons and phonons do not usually conserve the total
number of excitations, and so the chemical potential
of the roton-phonon gas is always zero.

The theory of the interactions amongst the elemen-
tary excitations in helium was first considered by
Landau and Khalatnikov. 4 They concluded that at
low temperatures the roton and phonon components
of the excitation gas interacted only weakly with each
other, and that the number of collisions between ex-
citations in which rotons were converted into pho-
nons (or vice versa) was small. Consequently
Khalatnikov and Chernikova' suggested that it

might be possible for there to be a wave motion simi-
lar to second sound, but involving only the roton part
of the excitation gas. They predicted that this mode
could be observed if high-frequency measurements
were made at temperatures below about 1.2 K. The
frequency has to be high compared to the rate at
which the roton and phonons interact with each oth-
er, The first observation of roton second sound
(RSS) was made by Dynes, Narayanamurti, and An-
dres. ' 9 Instead of propagating a continuous wave of
RSS they generated short pulses. With this method,
and for a propagation distance of 0.234 cm, they were
able to detect RSS at temperatures between 0.4 and
0.7 K. The pulse had a velocity that was in rough
agreement with the predictions of the Khalatnikov-
Chernikova theory. In addition to the RSS signal the
detector received also a higher velocity pulse due to
phonons. This provided some support for the view
that the interaction between phonons and rotons was
weak.
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Further observations of RSS have been made by
Castaing and Libchaber, ' "and by Cline and
Maris. ' These experiments were primarily designed
to give more accurate results for the velocity of RSS,
but also provided some information about the at-
tenuation. The theory has been extended by Maris, '"
Weiss and Polder, ' ' Khalatnikov, ' and Castaing
and Libchaber. " A.lthough the basic picture of RSS
is certainly correct many important points have still
not been resolved. The measured velocity of RSS, at
least under the range of experimental conditions in-

vestigated so far, is somewhat larger than the velocity
predicted by Khalatnikov and Chernikova. Possible
reasons for this have been suggested in the later
theories mentioned above, but no definite conclusion
has been reached. In addition, the attenuation and
dispersion of RSS is fairly large and this has not yet
been satisfactorily, related to theory. In this paper we
consider these problems. In the next section we
derive hydrodynamic equations for a roton gas.
These hold when there is no interaction between the
rotons and the phonons. These equations include the
lowest order dissipative corrections due to viscosity,
etc. Section III compares and contrasts these results
with the corresponding equations of conventional hy-
drodynamics (e.g. , the Navier-Stokes equation). In
Sec. IV we relate the dissipative coefficients to the
roton-roton scattering time, and in Sec. V calculate
the velocity and attenuation of a wave propagating in

a roton gas. Section VI describes how the hydro-
dynamic equations are modified when various sorts
of interactions between rotons and phonons can oc-
cur.

collision term, and v~ is the roton group velocity.
Thus, this equation is of exactly the same form as
the Boltzmann equation for an ordinary gas of atoms.
In addition, conditions (ii) and (iii) are the same as
those that hold for an ordinary gas when a hydro-
dynamic description is a good approximation. Thus,
the hydrodynamics of a roton gas can differ from
conventional hydrodynamics only because the
energy-momentum relation (dispersion relation) for
rotons is not p2/2m. We shall see that this difference
does not change the equations of nondissipative hy-
drodynamics, but does introduce some extra, and
physically interesting, lowest order dissipative effects.

For small amplitude disturbances we can linearize
Eq. (5) to get

where

np" =~ C(p, p')Sn, dr, —
vp On„ (6)

C is then symmetric with respect to interchange of
the variables p and p'. We define eigenfunctions
g, (p) and eigenvalues h. , by

J C(p. p')y, (p')dr = —X, y, (p) . (9)

n~ = n~+ Sn„

n, is the equilibrium distribution function, and Sn, is
small. Our method of solution follows closely that
used in Ref. 18. We introduce a new function C re-
lated to Cby

n'"(n +1)'"C(p, p')=C(p. p')n (n +1)'"

II. HYDRODYNAMICS OF A PURE ROTON GAS

We derive here the hydrodynamics of a roton gas
under the following conditions.

(i) The number density nn of the rotons is suffi-
ciently small that the superfluid density p, is approxi-
mately equal to the total density p.

(ii) The collisions between the rotons conserve the
total energy, momentum, and number of the rotons.

(iii) The collision rate is large on the time scale of
motions we consider, and the roton mean free path is

short compared to the distances over which the vari-

ous hydrodynamic quantities vary.
Because of (i) we can assume in the present con-

text that the superfluid velocity v, is zero, and that
the superfluid density is constant. Hence, the excita-
tions move in a static background superfluity, and the
distribution function n„ for the rotons is just deter-
mined by the Boltzmann equation

(5)

Because of the properties of C the eigenvalues are-
non-negative and the eigenfunctions can be chosen to
be orthonormal:

J P;(p)P;(p)dr, =g„.
Then if we,expand 5n, as

Bnp = np (np+ I )'~' XA;y, (p)

the Boltzmann equation (5) leads to the following
equation for the expansion coefficients 3,:

(12)

(i ~v„~j) is the matrix element of the n component
of v~ between eigenfunctions P; and P„and a sum-
mation over the repeated Greek indices is implied.
X is the o. component of the position vector X.
Consider now any quantity, f ( p ) which is conserved
in collisions between rotons. The total amount of
this quantity per unit volume is

The first term on the right-hand side (RHS) is the F = J1 f (p)n, dr, (13)
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(14)

The rate at which F changes as a result of collisions
must be zero. Therefore, from Eq. (6)

Jtdr, Jtdr, f(p)C(p, p')gn =0 .

get the following results:

QA tpp
A„, = —)t,„' (nS ( u, .( I PP) 9L

(24)

But this must be true for any distribution hn, and

so
A„p= —X,,p' (nP [up ~IS)—

gX~
t

J"d.pf (p)C(p. p') =0 .

If we combine this with Eq. (8) it follows that

j(p)n" (n +I)'"

(15)

(16)

+ (nPiu„,„i2S)
rz

gA |pe
A„n = —X,,g (nD

~ up l
I PP)

(25)

4&s =aooo np (np+ I)

42$ aooo (a200aooo a loo )1/2 2 -1/2

x (ep e) np (np—+1)'j',
y)p =(3/ao2o)' 'p. np (n„+I)"'

where o. = 1, 2, 3 and

az ——Jt e'p 'u,'np ( np + 1)d r„

(17)

(18)

(19)

(20)

e is the average energy of a roton, given by

Cps np + 1 dv'p n/, np + 1 dip a 100 aooo

(21)

Since the system is rotationally invariant, the angular
parts of all eigenfunctions must be spherical harmon-
ics. This is reflected in the notation used in Eqs.
(17)—(19).

For an eigenfunction i with a nonzero eigenvalue
we can write Eq. (12) as

is an eigenfunction of C with eigenvalue zero. Thus
there are as many zero-eigenvalue eigenfunctions as
there are conserved quantities, i.e., five in all. In
normalized form we can write these eigenfunctions as
fol1ows:

where nS, nP, nD refer to the nth eigenfunction with
I =0, 1, and 2, respectively. %'e now consider Eq.
(12) when i is a zero-eigenvalue eigenfunction, and
use Eqs. (24) —(26) on the right-hand side. This
gives a set of differential equations for the time rate
of change of A ts, A2s, and A

~ p in terms of first and
second spatial derivatives of these five quantities. In
the Appendix we show that these quantities can be
related to macroscopic variables as follows:

A &s
= aooo 5n-1/2

w „=(c„p/r) '"5r,
A, p. ——(pp„) '"u„„,

(27)

(28)

(29)

where hn and 5T are the local change in total number
density and temperature, respectively, v„ is the drift
velocity of the roton gas, p= 1/kT, p„ is the normal
fluid density due to the rotons, and C„ is the specific
heat of the rotons at constant number density. Note,
theref'ore, that C„ is not the usual roton specific heat,
which is a derivative of the entropy at constant chem-
ical potential. The differential equations for A ~s,

A~s, and A&l then lead to the hydrodynamic equa-
tions

(jA,i, —)t,
-' X(j]u„.(j)

, I A

(22) = —nq divv„+ D V n + v2'7 7
gt

(30)

The eigenvalues are of the order of magnitude of the
collision rate. Thus for slowly varying disturbances
we can assume that the magnitude of ), 'A; is much
smaller than the magnitude of A, . Similarly the
terms in the sum over j for the RHS of Eq. (22)
which are from eigenfunctions with nonzero eigen-
values must also be small. Hence to lowest order in

BU„
Pn

BT V n —aBy'7 T + ('7divv„
ng

+ q( —,
'

grad div+ 'V') v„ (32)

C„= nrBrdivv„+xV T+—v~V n, (31)~ — 2 2

9t

QAj
A, = —)t, ' $" (ifu„.fj)

,I rz

(23)

where the sum is now restricted to include just the
eigenfunctions of'zero eigenvlaue. (i (up (,j) is
nonzero only if i and j are eigenfunctions with spher-
ical harmonics having I 's differing by 1. Hence, we

where nR is the equilibrium number of rotons per
unit volume, BT is the isothermal bulk modulus. of'

the roton gas, and o. is the thermal expansion coeffi-
cient. Relations between these quantities and the a;//,

coefficients are given in the Appendix. The second-
order terms on the RHS's of these equations
represent dissipative terms. Formal expressions for



the dissipativc coefficients are

, [IS(~,~nP]'
3

»P

, [2S)v, (nP]'
K —3C, ~

(33)

ics' including dissipation onc can sce immediately
that ~ is the thermal conductivity, and ( and g are
the bulk and shear viscosities. The extra terms are
thus those that involve D, v], and v2. It follows from
Eq. (30) that the particie current j must be

j =ngv„—DVn. —v2V T

[2S(u, ~nP]' [1S v» nP)—.p ~»p

(35)

In ordinary hydrodynamics

j =nv

P2 = vtlts/TBy'

, [IP[.,[.S]
, p»—

»S ~»$

, [IP~~, ~nD]'
'rt= 5p»

A.„o

(36)

(38)

even when dissipative effects occur. In fact, onc may
consider that thc velocity v is defined by this equa-
tion, and so it is a truism to say that no extra terms
occur. On the other hand, v„ is defined in a dif-
ferent and specific way. Formally, v„ is fixed by Eq.
(29). This means we can consider v„ to be defined
as the following moment of the local distribution
function

III. COMPARISON %ITH CLASSICAL FLUIDS

Consider first Eqs. (30)—(32) for very slowly vary-
ing disturbances. If we retain only the lowest-order
spatial gradients on the RHS of these equations we
can write Eqs. (30) and (32) as

Qtl = —
NR dlvv, i

gf
(39)

(40)

~here P is the pressure. The combination of Eq.
(39) with the simplified version of Eq, (31) can be
reduced to

$5 = —5 dlvv„
Qf

where 5 is the entropy per unit volume. Equations
(39)—(41) are identical with the equations of motion
for small amplitude disturbances in an ordinary fluid
when dissipative effects are neglected

Consider now the more genera1 equations
(30)—(32). The extra terms in these equations
represent various dissipative processes. By comparis-
on with the equations of conventional hydrodynam-

The sums are now over eigenfunctions with the indi-

cated angular momentum, excluding those with

eigenvalue zero. By the quantity [ IS
~ v» ~

nP ), for ex-
ample, we mean the "radial integral"

pao

/t 'J~ Sl(p)v»P»(p)p dp

where St and P„are the radial parts of Qts and the
n th P state, respectively. In the sums only one
member of each set of degenerate eigenfunctions
with different magnetic quantum number m is to be
counted.

+v„= pnpdv@
Pn

For an ordinary fluid p„= nm and p = m v~ where m

is the mass of the atoms, and then Eq. (44) gives v„
equal to j /n, in agreement with Eq. (43).

The extra terms D'7n and ——v2V'1'in Eq. (42)
represent dissipative contributions to thc current. D
has the physical meaning of a diffusion coefficient.
The remaining extra term vt "7'n in Eq. (31) implies
that there is a dissipative contribution —vl'7n to the
heat flux. Note that vl and v2 are connected by an
Onsager-type relation [see Eq. (36)].

One can verify that for an ordinary gas these extra
terms dissappear. If V, = p/m then it follows that

[IS)v, =m-'[IS)p . (45)

But the momentum dependence of [IS~p is exactly
the same as that of the function [1P

~
[see Eqs. (17)

and (19)]. Hence for n A I the matrix element
[1S~v»~nP] is proportional to

[IP
~
nP]

which vanishes because of orthogonality. Thus, thc
coefficients D, vl, and j 2 are all zero.

IV. ESTIMATE OF DISSIPATIVE COEFFICIENTS

We can derive approximate expressions for D, K, $,
q, vl, and v2 by thc following method which is
roughly equivalent to the relaxation time approxima-
tion. Thc eigenvalues A; of the collision matrix C
determine the rate at which a.component of the dis-
tribution function which is proportional to a given
eigenfunction p;(p) decays because of collisions
amongst the rotons. Thc simplest approximation ls
to set all of the nonzero X; equal to the rate 7&~ at
which roton-roton collisions occur, In this approxi-
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TABLE I. Roton-roton collision time v&& in seconds as a function of temperature at pressures
of 0 and 25 bars according to Landau and Khalatnikov (LK) and Donnelly and Roberts (DR).

LK

I' =25 bars

0.45
0.5
0.55
0.6
0.65
0,7
0.75
0.8

3.6x10 5

4.9x10 6

9.5 x10 7

2.4 x10 ~

7.6x10 '
2.8 x 10='
1.2 x10 8

5.5 x10 9

2.4 x10-'
3.3 x10 6

6.6x10 '
1.7x10 7

5.5 x10 8

2.0 x10-'
8.7x10 9

4.1 x10 9

1.3 x10 6

2.5 x10 7

6.5 x10 8

2.1x10 8

7.9x10 9

3.5x10 9

1.7 x10 9

8.9 x 10 ]o

8.0 x 10-'
1.5x10 7

40 x10-8
1.3 x10 '
5.1x10 9

2.2 x 10-'
1.1x10 9

5.9x10»

mation the set of all eigenfunctions with nonzero
eigenvalues is degenerate, and hence can be chosen
arbitrarily subject only to the conditions that they be
normalized and orthogonal to each other and to the
five eigenfunctions which have A. =0. These are
given by Eqs. (17)—(19). For rotons we can write

thc d1spcfslon relation as

ap
——5 + ( p po) 2/2 p, . — (46)

At the temperatures of interest ( & 1.2 K)A and

p,'/2/2, are much larger than kT. Then all of the ro-
tons are near to the roton minimum po. The special
eigenfunctions Eq. (17)—(19) ali contain a factor

)2/4
~ &g -p~g -n«-&O' /'4+

This suggests that these radial parts of these func-
tions be approximated by harmonic oscillator wave

functions in the variable

q =—( p —po)/(2pk7')'" . (47)

The radial parts of ll/ls and ll/lp vary with q tike the
n =0 harmonic oscillator wave function and p2& is

proportional to the n =2 state. Then all of the other
eigenfunctions which have nonzcro ); can be written
as harmonic oscillator wave functions in thc variable

q multiplied by an angular part consisting of a spheri-
cal harmonic. In this representation it is easy to cal-
culate the matrix elements involved in the sums in-

volved in the transport coefficients. The results are

where nq is thc number of rotons per unit volume.
If thc roton dispersion ts approximated by thc formu-
ia (47), tl en

/lR = (42r/h') po (2rr/2, kT )' 'e' (54)

The values of v~~ obtained in this way are fairly
close to the estimates based on the Landau-
Khalatnikov caiculation (see Table 1).

Equations (48) —(54) are correct to lowest order in
the quantities kT//2, and p.kT/po

The roton-roton scattering time has been estimated
by Landau and Khalatnikov. ' They used Eq. (53),
which they derived by a different method, and argued
that above 1 K the total shear viscosity of the normal
fluid was dominated by the roton contribution. They
then used the experimental value of q to estimate
ERR in the temperature range above 1 K. In addition,
they carried out a microscopic calculation~of 7~~
based on a very simplified model for roton-roton in-
teractions. This calculation gave ~qR n~ independent
of temperature. If this is assumed to be true, one
obtains the values of vqq at low temperatures shown
in Table I. ' An alternative way to calculate aqua is to
usc the theory of Roberts and Donnelly. " This as-
sumes a more specific form of the roton-roton in-
teractions, and gives

—[23/2/~l/3F( l
) ]~l/2p2/3p -4/3 (k7 ) i/6 (55)3

Pl = k T TRR/3/2

V2 /2R k TRR/3//l

(=/lR po rRR/9P

RR po rRR/159'

(49)

(51)

V, V&AVE PROPAGATION IN PURE ROTON GAS

Consider now the propagation of' a longitudinal
wave of frequency 0 and wave vector K II z through
the roton gas. K must bc sufficiently small so that
thc dissipative terms make a re)atively small contri-
bution. There exist two solutions that correspond to
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0+=+Kcz ——iK' x2D+1

2

(g+ —,
'

q)

C„

roton second sound waves which propagate in the +
and —z direction. Their frequencies are

n= ' +O(O')
02v

405 p k' T2
(66)

Hence, the velocity of the sound waves is 3k T/po,
"

and the attenuation of a wave of frequency 0 is from
Eq. (S6):

2p vlf'+ ig cs +0(It )
p„C„T '"

(56)
where cT and e~ are the isothermal and isentropic
sound velocities, equal to (Br/p„)'~2 and (Bs/p„)'~2,
respectively, and

x =crlcs (57

These waves are conventional isentropic sound
~aves. They have fluctuations in both number den-
sity and temperature associated with them. It is
straightforward to show that

Sn 0/By. 5T
2

ST
C. T 'T

( I c 2/c 2) 1/2 (58)

BT = ngkT

Bg =3ngkT

a = I/T,
p~ = ~z po /3kT

C„=nak/2

Cr = 3 kT/po

cs =3kT/po

(61)

(62)

(63)

(64)

If the roton spectrum is approximated by Eq. (46)
and terms of lowest order in kT/5 and pkT/p02 a, re
kept, one finds

In addition to these solutions there is a purely
damped solution with frequency

+0=—IL p D+ , „, +O(rC')

= ——K +O(K )4

3 jx

This damped solution has temperature and density
fluctuations associated with it. Their magnitudes and
phases are such that the pressure is constant.

%e have investigated the limits of validity of the
hydrodynamic equations with first-order dissipation.
Higher-order dissipative terms make a negligible con-

I 200—
~ t ~ ~ ~ ~ ~ ~ ~

4

IOOO—

0

800—
4J

600—
~IO

IO IOO

NAV E NUMBER (cm )

IOOO

FIG. 1. Velocity of roton second sound at 0.6 K as a function of wave number K. Dotted curve is for no coupling between

rotons and phonons (v~p = ~). Other curves include roton-phonon coupling and are labeled by the value of the number-

nonconserving roton. scattering time v~ measured in seconds.



3314 HUMPHREY J. MARIS AND RICH

tribution provided that the conditions

0TgR 4( 1

EAgR && 1

(69)

IOOO

23

are satisfied whhere Aqq ts the roton mean-free ath
4

defined as
pa

ARR rRR (kT/P )

IOO—

of (0 kT
Since for sound waves E is of th d feor er o magnitude
o 0po/kT), the condition (70) becomes

ArRR( pii /p, kT)'i' &(1 (72)

Since ( po /p, kT')'i is about 25 to 0.6 K this condi-
tion is more severe than condition (69). N ote, how-

at the series for 0, a, etc. [E s. (56), (66),
( )] are expansions in the parameter

V = ft rRRpo /t kT

D

z IO-
LLI
I-
I-

. IO'
I

or the square of this. Thus, these fail unless && 1

and this isa m
~ ~ ~ ~

s p

In th
s a more restrictive condition th E (72).an

e regime of frequencies where Eq. (72) still
holds but is & 1 , one can show from the hydro-
dynamic equations that 0 and K are related by

fl —90K +(13i/5) 0 K

—3lK —(23/15) QK —iK /5 =0 . (74)

IO IOO
%AVE NUMBER (Cff1 )

IOOO

FIG. 2. At tenuatiuation of roton second sound at 0,6 K as a
function of- wave number K. D

lin

er . otted curve is for no cou-
p ing between rotons and phonons (7.
indude roton- h

ons 7~P=~ . Other curves
e roton-phonon coupling and are labeled b th

of the number no
ee yt evalue

nonconser ving ro ton scattering time 7-

measured in seconds.
g lmc T/v

l400
~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ t ~ ~ ~

~ ~
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I200—

800 YN=
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IOO
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IOOO

FIG, 3. Veloc'elocity of roton second sound at 0.7 K as a fun
rotons and phonons (~ = ~).

a . as a function of wave number K Dotted curv
v &&

= ). Other curves include roton- hon
o e curve is for no coupling between

g

or 'pg = oo.
eri

'
n s. e velocity for 7.+=10 3 is essentiall hn s. e v

' ' — '
. n ia y t e same as the velocity
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IOOO-

number of rotons. The theory of roton-phonon in-
teractions was first worked out by Landau and
Khalatnikov. 4 The dominant process is believed to
be

R +P R'+P' . . (77)

Eo IOO

z
O

z
LLI

IO—

IO

o'pR = ( po p /hat p c ) ( 9
+ B2/25 + 2 A B/9 + A ')

where

(7&)

A = (p'/poc) [(II 5/Bp') + (I)po/t)p)'/p, ], (79)

Their result for the total cross section for scattering
of phonons with momentum p by rotons is

B =po/pc, (80)

IO

IO IOO IOOO

WAV E NUM BER {crn )

and e is the phonon velocity. We can estimate 3 and
B from the tables of roton parameters of Brooks and
Donnelly. " Since the group velocity of the rotons is
much less than the sound velocity the time ~RP that a
roton goes in between collisions with phonons is
given by

FIG. 4. Attenuation of roton second sound at 0.7 K as a
function of wave number K. Dotted curve is for no cou-
pling between the rotons and phonons (TRp = ~). Other
curves include roton-phonon coupling and are labeled by the
value of the number-nonconserving roton scattering time 7&
measured in seconds.

where

II = QrRR po2/p, kT

K = K r RR poly

(75)

(76)

VI. INTERACTIONS, %1TH PHONONS

A. Energy and momentum transfer to phonons

Consider now the effect on roton second sound of
energy and momentum transfer to the phonons. For
the moment we consider only those interactions
between phonons and rotons which conserve the total

We have solved this cubic equation in 0 numerically.
The results for the velocity and the attenuation of the
roton second-sound waves are shown by the dotted
lines in Figs. 1 —4. These calculations used the
Landau-Khalatnikov values of the roton-roton colli-
sion time. As a rough estimate of the value of K for
which the theory is beginning to break down we may
choose the point where KERR =0.2. This corres-
ponds to a K value of 1000 cm ' at 0.6 K and 5500
cm ' at 0.7 K.

1 = c ( rrPR ) np
7RP

(81)

where c is the sound velocity and n, is the number of
phonons per unit volume, and (o pR) is rrpR aver-
aged over phonon momenta. This gives the values of
7RP shown in Table II. One can also calculate the
time 7PR a phonon goes in between collisions with ro-
tons (see Table II). 7 pR is equal to TRpnp/nR.

The effect of phonon-roton interactions on roton
second sound has been considered by Khalatnikov
and Chernikova. ' Ho~ever, they concentrated at-
tention on what happens in helium under zero pres-
sure. Experimentally, roton second sound has so far
only been observed at high pressures, and we believe
that the physical situation is quite different under
these conditions. It is clear from Table II that the
possibility of seeing roton second sound is reduced at
P =0 because of the greatly increased rate of colli-
sions between rotons and phonons-.

Consider now the physical situation at a pressure of
25 bars and for temperatures around 0.6 K. The
phonon mean free path for collisions with rotons is
long (i.e., of the order of centimeters). In addition,
at this temperature and pressure the phonon mean
free path due to collisions with other phonons is also
long. Thus in a typical experiment which uses a heli-
um cell of linear dimensions of the order of 1 cm the
phonons are making random transversals of the
liquid, going from wall to wall occasionally colliding
with a roton. Thus, the phonon gas is effectively
clamped by the walls of the container. We therefore
have to consider that the drift velocity of the phonon
gas is always zero.
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TABLE II. Roton-phonon and phonon-roton collision times in seconds as a function of
temperature at pressures of 0 and 25 bars.

P =25 bars

0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8

1.S x 10-6
7.0x10 '
3.6x10 '
2.0x10 7

1.1 x10 ~

6.7 x10 8

4.1x10 8

2.6 x 10

1.9 x10 ~

1,7 x10 3

2.3 x10-4
4.2 x10 5

9.5 x10 6

2.6 x10-6
8.4x10 7

3,0 x10 7

7.8 x10 5

3.7x10 '
1.9x10 '
1.0 x10 5

6.0x10 6

3.5 x10 6

2.2 x10 6

1.4 x 10-6

9.9x10 '
1.2x10 '
2.2 x10 4

4.9 x 10-'
1.4 x 10-5
4.4.x 10-6
1.6 x10 6

6.7x10 '

The roton specific heat at constant number is

1

Cg =C„=—ngk

This is much smaller than the phonon specific heat
(see Table III). Thus we can regard the phonon sys-

tem as a heat bath of constant temperature.
Consider now the rate at which energy and

momentum is transferred between the rotons and the
phonons. The condition of conservation of momem-
tum is

p&+q& = P2+q2 (83)

where p and q refer to rotons and phonons, respec-
tively. The conservation of energy conditions is

( pt po)'/2~+ cqt —=( p2 —uo)'/2p+cq2 . (84)

Let p& =A(po+~&) where pt is a unit vector in the
direction of p~. The order of magnitude of m ~ is

(p,kT)'~', and cq~ is ty'pically 3kT, Both of these

quantities are much smaller than po and so

P&
= IP& + q& q21 = IPi( Po+ 7r&) + qt q21

=Pa+ ~t +Pt ' (qi —ti2)

Hence to lowest order the energy transferred from
the phonon to the roton is

gF. = c(q) —q2)

=(pi (qt —q2)~'/2u+~tA (qi —q~)/p . (86)

Detailed investigation sho~s that all relative orienta-
tions of p~ and q~

—
q2 are possible. Averaging over

all possible directions of q~ and q2 gives

((Jft (qt —q2) j'/2u) =(q(+q2 )/6V

If the energies of the phonons are both on the order
of 3kT the typical contribution to SE from this term
is —3k'T2/N, c' The order of m. agnitude of the

second term on the right-hand side of Eq. (86) is

T'ABLE III. Number density, specific heat, and normal fluid density for rotons and phonons at 25 bars.

tip
(ergcm 3K ')

pnR

(gcm 3)
Pilp

0.45
0.5
0.55
0,6
0.65
0.7
0.75
0.8

4.1x 10'5
2.1 x 10'6
8,3 x10
2.6 x10»
6.8 x 10'7
1.6 x 10»
3.2 x 10"
6.1 x 10'8

5.1 x 10'"
7.1 x 10"
9 5 x 1017

1.2 x 10'
1.6 x 10'8
2.0 x 10"
2.5»0»
3.0 x 10"

2.8x10 '

1.5 x 100
S7„100
1.8»0'
4.7 x 10'
1.1 x 102

2.2 x 102

4,2 x 102

1.9 x 102

2.6x 102

3.5 x 102

4.4 x 102

6.0 x 10'
7.5 x 10
9.3 x10'
1.1 x 103

9.94x10 '
4,69 x10-6
1,66 x10-'
4.76x10 5

1.15 x10 4

2.45 x10 '
4.71 x10 4

8,34 x10

9.5 x10 8

1.5 x10 7

2. 1 x10
3,1x10 '
4.2x10 '
5.7x10 '
7.6 x10 7

9.9x10 '
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3kT(kT/p, c~)'~2 A. nd the typical kinetic energy of a
roton (i.e., the energy above 4) is —,kT, Thus,

viewed from the roton the fractional change in energy
in the collision is of order

' 1/2
SE

6
kT +6 kT

p, c p, c

At 0.6 K and 25(bars) kT/pc' is 0.07. Thus the
change in energy of a roton in one collision is of
about the same magnitude as the average kinetic en-
ergy of a roton, and so in one collision the roton en-

ergy, or temperature, is effectively randomized.
Hence we should modify Eq. (31) to become

where ST is the difference between the local tempera-
ture of thc roton gas and thc ambient temperature,
and v T is the effective "temperature relaxation time"
Cqual to TRP.

Consider now the momentum transfer to thc pho-
nons. In a single collision between a phonon and a
roton the direction of the momentum of the phonon
is randomized. Hence if we consider a phonon gas of
drift velocity vnp undergoing collisions with a roton
gas of drift velocity vnR we would have

take v„p =0 in Eq. (93). This then leads to an extra
term in the equation for the acceleration of the roton
fiuid Isee Eq. (32)]:

9v„v„BTp„"+ ", =— V'n aB—rV T+)'mdiv v„
gy NR

+rt(-,' grad div+ V') v„

whcrc vy 1s thc vcloc1ty rclaxat10A time equal to
mn rap/mp' At 0..6 K mp" and mg have the values
0.33mII and 27.7mH, respectively, where m0 is the

P

mass of a helium atom. Thus, 7 ~ is longer than v T

by -840.
The effective times for energy and momentum

transfer we have calculated here do not differ signifi-
cantly from the results of Khalatnikov and Cherniko-
va. ' Castaing, "however, obtains a much slower rate
for the equilibration of the phonon and roton tem-
peratures, essentially because hc uses for the roton
specific heat the specific heat at constant chemical
potential, rather than at constant number of rotons as
wc have used. .For reasons discussed in Sec. VII, we

believe that the majority of roton interactions con-
serve roton number, and that the specific heat at
constant number is therefore the correct one to usc.
Energy and momentum transfer to the phonons is

not considered in thc theory of %eiss. '5

~Vnp

9t
(vnp vna)

8. Conversion of phonons into rotons

~VnR Pnp
( VnR

—
Unp&

P.P~PR

where pn, and pn, are the phonon and roton contri-
butions to the normal f1uid density. This can be
made more physical if we let

Pnp = ~pmp

PnR =~RmR

(91)

where mp and mR are effective masses for phonons
and rotons. One finds mp = 3.6kT/c~, and

mn =no!3kT. Then Eq. (90) becomes for the ac-
celeration of the roton fluid due to interactions with

the phonons

This is in the absence of interactions between thc
phonons and external ~alls. Then from conservation
of momentum

Various mechanisms have been proposed by which
rotons can be converted into phonons. These
processes relax the roton number density back t6 the
equilibrium value corresponding to the temperature
of thc phonon gas with a certain time constant v+.
A simultaneous relaxation of the local temperature
and drift velocity'of thc roton gas must also occur,
but the times v~~ and ~~y that it takes for these
quant1tics to relax by means of convcrs1OA

processes are not necessarily equal to v~. The equa-
tion for the number density becomes

fl NR+ „= na div v„+—DV' n + p~& T . (95)2

The relaxation times in Eqs. (88) and (94) are modi-
fied to be

(96)
dvnn . mp (- )

mR &Rp
(93)

As noted above, at 0.6 K and 25 bars the phonon
mean free path is long and the phonon gas is effec-
tively clamped in place by the container of the helium
sample. Thus, it is a reasonable approximation to

It is also possible to have 8 more complicated relaxa-
tion structure. For example, thc relaxation rate of
the number of density can include a term. proportion-
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al to ST, and this term can have an effect comparable
to the "diagonal" relaxation term we have included.
Inclusion of terms like this does not seem justified
since so little is known about the relaxation rnechan-
lsm.

Definite values for v~ v~T, ~c1 are not availablc.
%C discuss the various theories in the next section.
%'c shall see that the experimental observations that
have been made of roton second sound provide an
interesting limitation on the rate at which number-
AoAcoAscl vlAg pfoccsscs can occuf.

C. %ave propagation with coupling to phonons

It is straightforward to find the velocity when the
coUpling to phoAGAs ls considered, but thc cubic
equation satisfied by the frequency 0 is very compli-
cated. Hence, we have calculated the attenuation and
velocity of roton second sound numerically for
representative values of the parameters. Figures 1

and 2 show results at 0.6 K and P =25 bars. The
Landau"Khalatnlkov valUcs fof TRR and 7'Rp have
been used (Tables I and II). The different curves are
for different assumed values of the number noncon-
serving collision time 7g. It has been assumed that
~cT is equal to ~~ and that facy is infinity. Figures 3
and 4 show equivalent results at 0.7 K. These results
are not changed in any dramatic way if vq I is set
equal to 7'tv, of lf TCT ls rnadc IAflAltc.

VII. DISCUSSION

Consider first the numerical results shown in Figs.
4. fof 8 pufc fotoA gas, I.c., fof whcA thc IAtcfac-

tions between the rotons and the phonons are
neglected and roton number is conserved. The
results are shown up to a K value K,. such that
K, ARR is 0.2, and this is roughly the limit of the valid-

ity of the hydrodynamic theory with lowest order
dissipation. A remarkable feature of the results is
thBt wlthlA this hydfodynamic rcglrnc thcfc is 8 laI'gc

variation of the sound velocity. One can understand
this as f'ollows. The condition KARR && I has the
effect that second- and higher-order dissipative terms
are small compared to the first-order dissipative
terms which we have included. However, it turns out
thBt fof fotoAs thc fil'st-ofdcf dissipativc tcflTIS be-
come comparable to the ttondissipative terms (such as
the terms involving the bulk modulus Br) consider-
ably before KARR approaches 1. This happens be-
cause the pressure and the bulk moduli of a roton gas
are peculiarly small in the following sense. For a gas
of particles of number density nR, momentum po,
and particle velocity (kT/p, )'t2 one would naively ex-
pect the pressure to be of the order of

In fact, it is easy to show that when k T && 6 the
pressure is exactly"

P =fIRkT (99)

ENERGY

MOMENTUM IN Z DIRECTION

This is smaller than Eq. (98) by a factor (pkT)'t2po.
Thc dlffclcncc aflscs bccBUsc of thc pccullaf dlspcl'-
sion relation of rotons. In Fig. 5 we plot the energy
of a roton as a function of p. . Rotons that travel in

the positive z direction come from the parts of the
dispersion curve marked 3 and 8. Thus, rotons
which are reflected by a eall perpendicular to the z

axis may have z momenta ciose to +po (A rotons) or
close to —p0 (8 rotons). The A rotons give momen-
tum to the wall and hence push on it. However, the
8 rotors have the remarkable property that they pull
on the wall when they collide with it, and give a
negative contribution to the pressure. To lowest ord-
er the total pressure produced by A and 8 rotons
vanishes. In higher order there is a finite positive
pressure (even for an exactly parabolic roton spec-
trum) because the density of states in momentum
space assures that there are slightly more A rotons
than 8 rotons. -This explains why the pressure is
given by Eq. (99) and not by Eq. (98), and in turn
why the bulk modulus of' the roton gas is anomalous-
ly small.

Because of the small nondissipative terms there is a

range of K values where hydrodynamics with lowest-
ordcf dlsslpatloA ls 8 valid approximation, but thc
dlsslpatlvc tcfms dominate ovcf thc Aondlsslpatlvc
terms in controlling the dynamical behavior of the
system, Such a regime does not exist for an ordinary
gas of particles, It is in this regime that the large
variation of sound velocity occurs.

Consldcf Aow thc cffccts of coUpllAg to thc pho-
nons. This is characterized by three times 7&, v I'-,

and 7 I which describe the relaxation of number,
temperature, and drift velocity, Clearly when vy is
such that 07 & & 1 no propagating wave is possible.
According to our estimates T y ls about 8407Rp Bt 0.6

P - rtttpo(kT'lt )'t2 (98)
FIG. S. Dispersion relation for excitations in helium. Ro-

tons from regions A and 8 move in the positive: direction.
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K when number nonconserving processes are neglect-
ed. This has the effect that O~y becomes compar-
able to 1 only at frequencies which are lower than
those of physical interest. Thus for practical purposes
the relaxation of the velocity can be neglected. In
fact, the results shown in Figs. 1 —4 are unaltered if
7 y is set equal to infinity.

The effect of temperature relaxation is to lower the
velocity of sound for small K. This is because the
period of the wave is sufficiently long for energy ex-
change with the phonons to occur. In this case when
A~~ && 1 the sound velocity becomes the isothermal
velocity c&. This can be seen clearly in Figs. 1 and 3.
The existence of isothermal second sound is impossi-
ble to understand on the conventional view that
second sound is a "temperature wave. " However,
when second sound is regarded simply as a sound
wave in the gas of excitations it is clear that isother-
mal second sound can exist. Consider now a typical
experiment with a propagation distance —1 cm. If a
short pulse is used to generate the roton second
sound, waves with a wide distribution of wave
numbers will be produced. However, because the at-
tenuation increases rapidly with K (see Figs. 2 and 4)
the waves which actually reach the detector are
predominantly of small K, and hence lie in the isoth-
ermal regime. At 0.6 K this isothermal regime ex-
tends up to K —50 crn ', and the attenuation at this
point is -40 cm '. Thus, for a path length of —1 cm
waves other than those in the isothermal range of K
are very highly attenuated (by e 40) and so the propa-
gation over distances of this order is primarily isoth-
ermal.

Consider now the effect of number relaxation.
The principal effect of this is to add a contribution to
the attenuation which increases rapidly at low fre-
quencies (Figs. 2 and 4). Below a critical wave

number K,. the modes become nonpropagating, i.e.,
of imaginary frequency. One can understand this as
follows. In this regime Or~ is &&1 and so no tem-
perature oscillations can occur. If Ov& is also « 1,
roton number oscillations are also impossible, and
hence there is nothing left from which to construct
the wave.

For a given value of v~ the attenuation as a func-
tion of wave number has a minimum value, which
increase as rg decreases (Figs. 2 and 4 ). Hence the
fact that roton second sound is actually observed ex-
perimentally puts a limit on the maximum rate at
which number nonconserving processes can occur.
This limit is set most stringently by experiments
which use a long path length. For example, Cline
and Maris' have shown that roton second sound can
be observed with a propagation distance of 0.493 cm

up to at least 0.7 K. At this temperature our calcula-
tions give a minimum attenuation of 8 crn if 7N is
10 sec, and 90 cm ' if v& is 10 ' see. Thus, all

Fourier components in the pulse are attenuated by a

R +R' R"+P (100)

He originally argued that the anomalously large at-
tenuation observed for first sound in the MHz fre-
quency range at around 1 K was related to this relax-
ation process. This would make ~~ about 10 ' sec at
1 K and 25 bars. At lower temperatures it should
vary roughly as exp(h/kT), and so at 0.6 K 7~
would be —10 6 sec. This is clearly inconsistent with
the observations of roton second sound. In the later
papers of Khalatnikov and Chernikova' the ultra-
sonic attenuation is attributed to the energy transfer
process between rotons and phonons (as distinct
from number transfer), and is thus determined by

7gp of the previous section. If this is the case, the
rate of number nonconserving collisions cannot be
determined from the ultrasonic data. However, if the
dominant process is (100) one would still expect an
approximately exponential temperature dependence
to the rate. An additional point is that 7~y should be
considerably larger than ~~ and Tgy' because the
momentum of the phonons in (100) is approximately
5/c. This is much smaller than po, and so the total
momentum of the rotons is only slightly changed as a
result of the transition.

Khalatnikov' pointed out a long time ago that 7~
should be significantly bigger than vR&. This occurs
because two rotons with momenta near to po cannot
collide and produce a roton and a phonon; unless the
angle between the momenta of the initial rotons has
a special value. This follows from kinematic con-
siderations, i.e., conservation of energy and momen-
tum. It is straightforward to show that the process
Khalatnikov envisioned should suppress number
nonconserving processes by a factor of order poe/6,
which is roughly eight. This is much less than the
factor of 104 we need, and so there must be some
other suppression mechanism.

It is exciting to note that such a mechanism occurs

factor of at least exp( —4) if r~ is 10 "sec and a fac-
tor of exp( —45) if r~~ is 10 ' sec. Thus it is clearly
impossible for a roton pulse to be detected if vN is as
short as 10 ' sec, and so a reasonable estimate for
the shortest possible value of YN might be 3 && 10 '
sec. This is a remarkable result since at 0.7 K the
roton-roton collision time is 3.5 x 10 9 sec (see
Table 1). Thus r~ is bigger than Taa by a factor of at
least 10000, i.e, in nearly all collisions rotons number
is conserved.

One can carry out a similar analysis at lower tem-
peratures using the data of Castaing and Libchaber. "
They used a propagation distance of 1.775 cm at tem-
peratures up to 0.576 K. The same argument as used
above implies that at 0.576K'~ must be greater than
10 sec, and is therefore bigger than 7~R by at least
a facor of 3000.

According to Khalatnikov" roton-phonon conver-
sion occurs primarily via the process
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naturally if we accept the Feynman-Cohen ' picture
of a roton as a small vortex ring. . According to this
view, two rotons at large distances interact primarily
via their back-flow velocity fields. This gives a very
large total scattering cross section, essentially because
the potential is long range (r 3) and comparable to
the roton kinetic energy ( — kT)—even at a separa-

tion of 10 A. Since the rotons do not have to ap-
proach each other very closely for scattering to occur,
one would expect that in this type of process the ro-
tons in no sense "lose their identities, " and thus
their total number should be conserved. For a

number-changing collision the rotons have to get
much closer together, and so the cross section cr&&

for this sort of process is much smaller,
Roberts and Donnelly have used classical

mechanics to calculate the trajectories of two rotons
which are interacting through their velocity fields.
When the simple dipole form was used for the veloci-
ty field at all separation distances, they found that
some of the classical trajectories of the rotons "fall
in,

" i.e., the two rotons approach each other without
limit. Roberts and Donnelly speculated that after the
"fall in" process phonons might be produced. They
calculated the scattering cross section o-F for these
processes to be

based directly on the hydrodynamic equations for the
rotons, together with some assumed initial condition,
such as a 5 function of number density or tempera-
ture increase as the source. These calculations give
pulse velocities and shapes which depend very con-
siderably on the initial conditions (which are, of
course unknown) and on whether the detector in the
experiments is assumed to be sensitive primarily to
roton number density or roton temperature. It is cer-
tainly possible to explain the details of what is seen if
suitable assumptions are made.

In summary, therefore, we have derived hydro-
dynamic equations for a roton gas and have studied
the waves which can propagate in the gas. We con-
clude that the mode observed in the roton second
sound experiments is best described as isothermal
number-conserved second sound. The experiments
indicate that roton collisions conserve roton number
to a high degree of accuracy.

We wish to thank Kurt Weiss for much helpful dis-
cussion and correspondence. Jerry Tessendorf helped
with the computer calculations of pulse propagation.
This work was supported in part by the National Sci-
ence Foundation through Grant Nos. DMR 77-12249
and DMR 80-11284, and through the Materials
Research Laboratory of Brown University.

~1/3 (
l 0

) (
5 )2/3 (p /p ) 2/3 (101)

APPENDIX
0

This gives aq =5.5 A at P =25 bars, whereas the to-
tal cross section 0-T at 0.6 K was calculated to be 220
A'. Thus, this leads to a suppression factor of

Consider a gas of rotons with temperature T + 5 T,
chemical potential p, , and "drift velocity" v„. The
distribution function is

rrr/o F 40 (102)

This is really a lower limit to the suppression since it
assumes that phonons are always produced every
time fall occurs. Roberts and Donnelly found this
result for collisions between rotons of zero total
momentum. In this special case there are no
kinematic restrictions on the production of phonons.
In the case of an arbitrary distribution of total mo-
menta of the incoming rotons one would expect that
in addition to the Roberts-Donnelly factor the
Khalatnikov kinematic suppression factor should still

apply, thereby giving a total suppression of —320.
This is still much smaller than the factor of 104 indi-
cated by the roton second sound experiments, but
may well be the explanation of a large part of the ef-
fect.

The experiments on roton second sound performed
so far have all used pulses. The velocity of the pulse
(as measured by the peak position) has been found
to be between the isothermal and adiabatic velocities
cy. and c~. Because of the large dispersion and damp-
ing of the waves it is very hard to predict from our
calculations the velocity that should be observed in

pulse experiments. We have performed some nu-
merical calculations on pulse propagation. These are

(A2)

thereby defining p„. Using Eq. (Al) gives

p„=—Jt p l7„(&7„+1)dr„= Pap20/3 (A3)

The pressure P is given by

1P = pUpnpdTp (A4)

From this it is straightforward to show that

QTBT= —V
QV

/3 Oll / 000 (AS)

The number density nR for p, , 5 T, and v„equal to
zero is

ao]inR= n dr =P
/t2 P (A6)

n„= [exp( „0—p, —p v„)/k ( T + 5 T) —1 I
'

= n„+/3n„(i7, +1)(p, + p v „+e„gT/T) . (Al)

This assumes p, , hT, and v„are small. The n com-
ponent of the momentum density vr is
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If p, and ST are nonzero one finds From Eqs. (Al) and (11) it must be true that
y

~nR

gT
=p (A7) Pn„(yyp+1)(yy, +p v„+o„5TIT)

QnR

8jx T

= paoo (Ag) ( +1)1/2

The total energy density

o, nPdr, = Uo+ paya ipp+ pSTaypp/T

3

~ isiiyls +~ 2silyls + X ~ 1P 41P

where Up is the energy density for p, , 5 T, and v„
zero. Thus the specific heat at constant p, is

C =Pa200/T (A9)

Therefore

~ is = Ppa06o +Pa tool T/ao6o T (A13)

C„=P(a2ooaooo —aioo )I Tappp

The thermal expansion coefficient is

(A10)

By using Eqs. (A7) and (A8) one can show that the

specific heat at constant roton number is
~ 2s = P( a 2ooaooo

—a 1'pp ) 8 T/a060 T

~1p P(a020/3) yyn

(A14)

(A15)

u =3(a i iiaooo aiooaoii)/Tao»2

Thus, the adiabatic bulk modulus is

Bs ——By +Br'a TIC„

(A11)
If we use the relation

1

Bn ST gn

8jtL

2

= (P/9, )
aoiia2oo —2aiiiaipp+ai'iiaopp

~200~ 000 ~ 100

(A12) and Eqs. (A3), (A7), (A8), and (A10), we obtain
Eqs. (27) —(29) in the text.
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