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Dielectric formulation of strongly coupled electron liquid at metallic densities.
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Dynamic structure factor of strongly coupled electron liquid it met illic densities is calculated

theoretically on the basis of the gener il dielectric formulation ind the numeric il ev;ilu ition of
the static structure f ictor presented in previous p ipers. The results ire comp ired with the ex-

perilmt';1tal data for Al and other met ils on a number of specific points such is the plasmon

dispersion curve both below and above the critical wave number, the plasmon linewidth, 'ind

;i.-:„".mn1etry of the excitation spectrum. Over;ill features of the calcul ited excit ition spectrum

show substanti illy improved agreement with the experiment il indications, with i not;ible excep-

tion th it the theory does not 'iccount for the double-pe ik structure observed in some experi-

ments. A theoretical expression for the pl ismon dispersion coefficient is presented, which en-

compasses many of the existing formulas is its limiting c ises; comparison with the experiment il

values is also given.

INTRODUCTION

During the past decades, a substantial amount of
effort has been expended on the experimental study
of the dynamic structure factor associated with the
valence electrons in metals, through the techniques
of x-ray scattering spectroscopy and electron energy-
loss spectroscopy. ' " The dynamic structure factor
refers to the spectral function of the density-
fluctuation excitations in such an electron system. "
The experiments have revealed the frequency disper-
sion, the linewidth, and the spectral shape of the
plasmon excitations, as well as the detailed features
of the contributions coming from other elementary
excitations.

In various instances, the theory on the basis- of the
random-phase approximation ' (RPAi has failed to
account for salient features observed in experiments.
Such a discord has been anticipated, however, since
the RPA is basically a weak-coupling theory. The
electrons in metal are on the contrary a strongly
Coulomb-coupled system, for which the coupling
constant r, is greater than unity. Many investiga-
tors" " have attempted to go beyond the RPA
description, by taking account of certain non-RPA ef-
fects arising from the exchange and Coulomb correla-
tions. Those theories have achieved only limited suc-
cess in comparing their numerical predictions with

the experimental data.
In our previous paper„'4 hereafter referred to as I,

we have formulated a dynamic theory of strongly
coupled electron liquids at metallic densities. The
dielectric response function ~(q, m) so obtained con-

tains three characteristic functions: the local-field
correction G(q), the relaxation time in the long-time
region r(q), and the relaxation frequency in the
short-time domain O(q). Each of those functions
describes i strong-coupling effect due to the ex-
change and Coulomb interactions; it is thus ex-
pressed as a functional of the static structure factor.
In a subsequent paper, "hereafter referred to as II,
we have then numerically solved the resulting set of
the self-consistent integral equations for the static
structure factor„ the static and thermodynamic prop-
erties of such electron liquids have thereby been in-

vestigated.
In this paper we extend the work described in I and

II, and now carry out explicit computations of the
dynamic structure factor f'or the electron liquids at
metallic densities. By doing so, we wish also to clari-

fy the extent to which the experimental results may
be understood within the framework of such an
electron-liquid theory. The overall features of the
excltatlon spectrum calculated ln this paper appear to
agree fairly well with the experimental results; a not-
able exception, however, lies in the fine structure of
the spectrum where some experiments' have found
double-peak characters. Such an overall accuracy of
the present theory is expected, since the original for-
malism in I satisfies a number of integrated relations
such as the frequency-moment sum rules.

In Sec. II, we briefly revie~ the formulations
developed in I and II, in such a way that the compu-
tational procedures of the dynamic structure factor
are established. In Sec. III, we consider a
phenomenological treatment of the extra collisional
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effects due to those physical processes other than the
electron-electron interactions in the liquid; we there-
by introduce the corresponding rate of momentum
transfer and investigate its effects on the plasmon
dispersion and linewidth. The results of numerical
computations for the plasmon dispersion and the
dynamic structure factor are presented and compared
with the experimental data in Sec. IV. Findings of
this paper are summarized in Sec. V. Since this work
is a continuation of I and II, we closely follow the no-
tation and convention adopted in those papers unless
otherwise specified.

II. DYNAMIC STRUCTURE FACTOR

The dynamic structure factor S(q, »u) is related to
the dielectric response function a(q, »u) via the
fluctuation-dissipation theorem, ' i.e.,

S (q, »u) = — Im ( p» & 0)hV 1

8"v q e q, 0»

Here v(q) =47re'/q' is the Coulomb interaction and
V refers to the volume of the sysI, em. According to
Eq. (3.12) in I, the dielectric function is expressed as

v(q) (»u/»u) Xp(q, »u)
e q, »u =I—

I + [v(q) (»u/»u) G (q) + [(»u —»u)/»uxp(q, 0) ] lxp(q, »u)

(2)

where
' ]/2 »

CO=A)+
2 fI (q) —1

»ur (q) & (q)
(3)

Here N is the total number of electrons,

K(q, k) =q k/k'+q (q —k)/lq —kl' (6)

(z)»g J dx
X Z —(Yj

»

X
exp —— (4)

2

is the plasma dispersion function, and xp(q, »u)

represents the Lindhard polarizability' as given in

Eq. (3.22) of I.
The static local-field correction G(q) has been

evaluated in II as a sum of the exchange contribution

G,„(g) and the remaining Coulomb contribution
G, (q). The former has been expressed as Eq. (30)
in II; the latter takes the form,

G (q) = N X K(q k)Sws(k)
k WO, q

x[s(lk-ql) -s„„(lk-ql)]
(5)

is the symmetrized Coulomb interaction, and S»qr(q)
refers to the static structure factor in the Hartree-
Fock approximation [see Eq. (35) in II]. In Eq. (5),
the function

Sws(k) = k'/(k'+ qws )

represents the renormalized screening factor derived
on the basis of the Wigner-Seitz sphere model of the
strongly coupled electron system; the screening
parameter qz, which scales as the inverse of the
Wigner-Seitz sphere radius, has been evaluated in II.
Significance of adopting such a Wigner-Seitz sphere
model in strongly coupled plas'mas has been elucidat-
ed through various examples.

The collision time r(q) due to Coulomb scattering
between electrons is calculated as [cf. Eq. (4.14) in I]

[sw, (k) ]' x [s( lk —ql) —s„„(lk —ql) ],

Here»ur = (4rrne'/m)»~' is the plasma frequency;
0(x), the unit step function; q»T= 43m»u~/fqr, the
Fermi-Thomas wave number; qr. = (3m'n) ' ', the
Fermi wave number; and n = N/ V, the average
number density. Two important modifications from
Eq. (4.14) in I are to be noted in (8). First, the
screening factor Sws(k) in (7) is used in place of the
Fermi-Thomas screening function I/e»:r(k); this re-
placement is in accord with the Wigner-Seitz sphere
model which we have adopted. Second, the effects of
Coulomb correlations are measured in (8) as
[S(lk —ql) —S»~»(lk —ql)] rather than as
[S(lk —ql) —I]. The strength of the Coulomb cou-

pling is described by the usual r, parameter,

r =—(3/41m) ' me'/f'

As we have argued in II, in the limit of r, 0, that
is, when the Coulomb interaction is turned off, the
Hartree-Fock correlation SH»(q) still remains; Eq. (8)
takes this limiting behavior into account.

Since numerical values for S(q) are available from
the solution of the self-consistent integral equations
described in II, we substitute those values in (8) to
compute the relaxation rate; the results are shown in

Fig. 1. As remarked in I, I/r(q) is proportional to q
in the long-wavelength domain, reflecting the conser-
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8 qyq 3 1 IG. 2. Loc'~l-field corrections G(q) ind l(q) vs q/q~:

for i, = 2 (solid curves) ~nd I, = 4 (d ~sl&ed curves).

F 1G. 1. V;~lues of llaozv (q) vs q/q&-. for r, =1, 2, 4, 5,
10, 15, ;tnd 20.

vation of the total momentum in the system. In the
short-wavelength domain, I/r(q) behaves as q

4

since S(q) —S„„-(q) decays as q 4. The relaxation
rate I/r(q) thus takes on a maximum value at

q =1.85 q(-. .
In order to see the validity of the use of the

screening function (7) and (8), we have separately
computed the values of (8) where Sw, (k) is now re-

placed by a~rr(k) ' = k'/(k'+qF'r ). The numerical

values so obtained turned out to be smaller by an or-
der of magnitude than those given in Fig. 1, a ten-

dency contradicting with the experimental indications
as we shall see. Furthermore the computed values of
I/r(q) as a function of r, first started to increase, but
then tended to decrease drastically as r, exceeded
beyond 5. This is to be compared with the systematic
variation exhibited in Fig. 1, which we take to be the
more accurate evaluation.

The short-time relaxation frequency 0 (q) is deter-
mined in such a way that the dielectric function (2)
satisfy the third frequency-moment sum rule. This
requirement leads to the expression,

O(q)/co„= (7r/2)' 'o)pr(q) [G(q) —l(q)], (10)

where

those cases. In the limi't of q 0, 0 (q) t tkes on t

finite value; in the limit of q ~„O(q) behaves as
4

III. PLASMON DISPERSION AND LINEWIDTH

The critical wave number q, is defined as that wave

number at which the plasmon dispersion merges into
the-continuum of the single-pair excitations. " In the
long-wavelength domain such that q & q„ the
plasmon suffers no Landau damping; it decays only

through collisional processes. In the electron-liquid
calculations as outlined in Sec. II, the decay rate of
the plasmon would vanish in the long-wavelength
limit since I/r(q) is proportional to q'. In actual
metals, however, the linewidths of the plasmon spec-
tra observed by scattering experiments ''" -' take on
nonvanishing, finite values in the limit of q 0.
This observation clearly indicates necessity of consid-
ering those additional scattering processes of elec-
trons which would not conserve their total momen-

tum; examples of such processes are the interband
transitions, scattering with phonons, impurities, and

so on.
Those extra scattering processes can be included in

our formalism through addition of the corresponding
decay term„

l(q) = ——X K(q, k),q [S(~q —k~) —I]
N k~q, o

As we have remarked in I, the functions, 6 (q) and

I (q), correspond to the low- and high-frequency lim-

its of the frequency-dependent local-field correction,
respectively.

For the validity of the present theory we must

make sure G(q) « l(q) so that 0(q) in (10)
remains a positive definite quantity. The computed
values of G (q) and I (q) at r, = 2 and 4 are plotted in

Fig. 2, We find that the condition is satisfied in

~p ~p+q—i p (t)+ ' '

p (t), (12)
7'()(q) p q VAN

p q X()(q, 0)

to the right-hand side of Eq. (3.7) in I, the equation
of motion for the Wigner distribution function. The
factor Ilr ( 0)qin (12) describes the decay rate of the
Wigner distribution due to those nonconserving
scattering processes. In principle one would argue
that the short-time relaxational effect described by ~

frequency 00(q) should also be included in (12), as
we did for the electron-electron interactions. By as-

suming co~ (& 00(q), however, we neglect this effect
and thereby adopt (12).
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)/2

OP=M+ 2 O(q) cu

m cur (q) 0 (q)
+i- I

r»»(q)

(13)

The piasmon pole co = co(q) may then be determ»ned
from the equation, a(q, co(q)) =0. We set its long-

wavelength solution as

cu(q) = co(0) + [2ncu,- —i P(cu, /2)j(q/qr)' , (14)

From the equation of motion so modified, we find
the dielectric response function which takes the same
form as (2), with the definition of cu slightly altered
as

where

cu(0) = cop»/2T»»(q)

co, = [cu,' —[1/2ro(q) j' I'i',

(15)

and cu„=it'q»':/2m is the Fermi frequency. The q
dependence of I/70(q) is still retained in the formal
definitions of (15) and (16); in practical applications
to be carried out later, however, we shall approxi-
mate it by the long-waveiength value I/r»»( 0)

The dispersion and decay coefficients, cc and»»3, are
defined by Eq. (14). Those may be given from the
real and imaginary parts of the following equation:

cu& 2co». 8cu»: cu(0)
2cccu»t —i P = +

30' 1 56)p p

Here yc»(r, ) and y (r, ) are the coefficients in the
long-wavelength expressions for G(q) and l(q) such
that'4

lim G (q) =
yc» (r, ) (q/q, -. )',

q~0

lim I (q) = y„(r, ) (q/q» )' . -.

q~0

(18)

(19)

IV. NUMERICAL RESULTS AND COMPARISON
WITH EXPERIMENTS

~e now compute the dynamic structure factor ac-
cording to (I) and compare the various features with

the experimental data and other theories. %'e begin
with the dispersion coefficient o. evaluated in the
electron-liquid model,

A. Dispersion coefficient a

In the electron-liquid model, one does not take ac-
count of those scattering processes which would des-

Those coefficients are related, respectively, to the
compressibility and the internal energy of the system„
they are actually computed according to Eqs. (44) and
(16) in II.

The linewidth associated with the excitation spec-
trum of the plasmon is twice the imaginary part of
cu(q) in (14). In the long-waveiength limit, it then
assumes the value I/ro(0). For each metal, this
value can be determined from the plasmon linewidth

observed experimentally. In the ease of Al, 4 '0 "we

may take I/cuir»»(0) =0.03; for Na, " I/cu&vp(0)
=0.07. In our subsequent numerical computations
concerning those metals, we ignore the possible q
dependence of I/ro(q), which we shall simply write

as I/ro.

I

troy the conservation of the total momentum; hence,
one sets I/r»»(q) =0 in Eq. (17). The dispersion
coefficient in this model is, therefore,

cc»»pA yao("s) + [yo("s ) ym("g ) j
OJp

r

x Ref
Q(0)

(20)

where

cc»»pA = 3cur/5cu» (21)

is the dispersion coefficient evaluated in the RPA.
As we observe in (20), the present formuiation takes
account of both static and dynamic strong-coupling
effects in the dispersion coefficient, arising from the
exchange and Coulomb correlations. The quantities,
yc»(r, ) and y (r, ), stem from the static and high-

frequency limits of the local-field correction; Eq.
(20) then mixes those two contributions in the way

determined by the frequency ratio co~/A(0).
The expressions for o. proposed in other existing

theories may all be regarded as certain limiting cases
of (20). For instance, if one disregards the relaxa-
tional effect in the short-time domain and thereby
lets fl. (0) ~, then Eq. (20) reduces to

The expressions obtained by Singwi and his co-
workers 0 2 and by Lowy and Brown correspond to
(22), although the numerical evaluations for yp(r )
are different from one theory to the other. Basically
these are static theories and thus involve the static
local-field correction represented by yc»(r, ).

In the weak-coupling limit of I', 0, one retains
the lowest-order contributions of the exchange effects
only, and finds"' yo(0) = 4. In this limit, Eq. (22)
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becomes

~TW && RPA R&p/16R&F (23)

the expression derived by Toigo and Woodruff. "
If on the other hand one assumes that the plasmon

has a sufficiently high energy so that an approxima-
tion R&P/O(0) ~ is applicable, then Eq. (20)
reduces to

the RPA prediction (21) and that the discrepancies
widen as r, increases. Since the measured values are
rather widely scattered and are attached with large er-
ror bars, it does not appear feasible to decide which
theoretical prediction, if any, fits the data most accu-
rately. We here remark on the theoretical soundness
of (20), since the other formulas are appiicable only
to certain limiting cases which may not correspond to
real metallic situations.

= ~RPA —( ~,/4~F )y (r, ) (24)

This is the expression obtained by Pathak and Vash-
ishta' and by Jindal et al. ' These authors took ac-

count of the third frequency-moment sum rule,
which is reflected in the involvement of y„(r, ).

Finally one notes that the lowest-order exchange
contributions to y (r, ) may be evaluated by going
over to the weak-coupling limit, r, 0, so that'

y (0) = 3/20. In this limit, one finds from Eq. (24)

~NP +RPA 3~p/g0&&&F (25)

Mg Ba
'vr

7&

Be Li NaV, tI7 'vt

~gy ~

0 5

f. lG. 3. Plasmon dispersion coefficient o. divided by the
RPA value ngpA vs I, in various approximations. Solid line

corresponds to the present result, Eq. (20). Curves I—IV

correspond to no, nT+, o/, and aNp in Eqs. (22)—(25),
respectively. The experiment Il results for Be, Al, Mg, Li,
Sa, Na, and K are taken from Ref. 15.

This expression was obtained by Nozieres and

Pines, " and by DuBois."
For comparison the values of n/nRPA as computed

according to Eqs. (20) and (22)—(25) are shown in

Fig. 3 ~ In the computations we have used the values
of yo(r, ) and y (r, ) obtained in II. In Fig. 3 we

have also plotted the experimental data reported by

various investigators for various metals. " We may

interpret those data as indicating collectively that the
measured values for o. are significantly different from

B. Dynamic structure factor

We have carried out detailed computations of the
dynamic structure factor reduced to a dimensionless
form,

S (q, (u ) = ( 2n co&:r/3N) S (q, &0 )

at r, =2 and 4. The computations were performed
according to (1), where four separate cases of the ex-
pression for e(q, co) were treated. Each of those ex-
pressions represents a different degree of approxim ~-

tion as explained in the. following:
a. Approximate description for the metallic electrons.

This corresponds to the use of the dielectric function
(2) with ao defined as (13), For r, =2, we take
I/coPT&&(q) = I/R&PT«(0) =0.03, appropriate to Al; for
r, =4, I/R&PTO(q) = I/R&PT«(0) =0.07, appropriate to
Na.

b. Electron-liquid model. This amounts to assuming
I/R&pT«(q) =0 in a.

c. Static approximation to the local-field correction.
This further takes / I(T)q=0 in b

d. RPA. This is approached by letting G(q) =0
in c.

Figures 4—7 illustrate some typical shapes of
S(q, &0) at two values of q, one in q & q, and the
other in q & q„ for r, = 2 and 4 in the four approxi-
mations listed above. Overall features of S (q, co) ob-
tained through those computations will be compared
with the experimental results in the balance of this
section. Here we note on some detailed character of
the computed spectral functions.

Since the approximations a and b take account of
the collisional effects, we find that the resulting spec-
tra of the plasmon excitations have finite linewidths

and that the entire spectral functions have tails ex-
tending beyond the frequency domain of the single-

pair excitations. These features are the consequences
of the multipair excitations. '"'

Platzman and Eisenberger' reported an experimen-
tal observation of double-peak structures in the exci-
tation spectra of the electron liquids in Be, Al, and C
over the wave-number domain of 1.13 & q/ql: & 2. 10.
Such structures are not visible in the results of our
computations. Mukhopadhyay, Kalia, and Singwi"
and-very recently Awa, Yasuhara, and Asahi" ad-
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I- Kj. 6. Same as F&g. 4 with r, = 4 and q/q& =0.6.

FIG. 4. Dynamic structure factor S(q, ~) vs ~/~&; for

r, =2 and q/qF =0.5 in the approximations a —d. Arrows in-

dicate the 8 functions corresponding to the plasfnon excita-
tions. In the low-frequency region, spectral functions of the
single-pair-excitation continuum are magnified by 20 times,

vanced theoretical calculations capable of reproducing
spectral shapes which qualitatively resemble parts of
thc obscfvcd stfuctUfcs. Those BUthofs did so by

taking accoUnt of thc lifctlmc cffcct in thc singlc-
particle self-energy which acts to modify the Lindhard

po la f1zab1l1ty.

C. PI88fnofl dispersion curve

In the compilation of the experimental data in Fig.
3, wc have riot lnclUdcd thc measured valUcs of o. for
Al, one of the best studied metals as far as thc
plasmon dispersion is concerned. The reason is that
different values of the dispersion coefficient have
been reported for Al, depending on the ranges of the
wave number studied. For instance, Krane" found

a/napA =0.47 in the range 0 & (q/qF&2 & 0.i, and

a/na pA
= 1.0 in the range O. i & (q/qF)'. Obviously

such B fcatufc may exist fof othci ITlctals Bs well'„

compilation of data such as in Fig. 3 must therefore
be looked upon with this possibility in mind.

For the aluminum we therefore compare the
dispersion curve of the plasmon peak between the

9/%F =1.0
0

— (~)
«««««««««««««« (b )
~«~«ew«~ ( Q )———(Eii

««««+«~

(a)
~------- (b)----- (C)---- (6)

l~
I

I I

I

r
I I
l I

I
I

A, I

.r I II ~. I...."'""l.,

FIG, 5. Dynamic structure factor 5 (q, cu) vs ~/aoF for

r, = 2 and q/q F
= I in the approximations a-d. FIG. 7. Same as Fig, 5 with I; =4 and q/qF —I I
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experimental data and the theoretical results, Such a
comparison in the long-wavelength domain q ( q, is
shown in Fig. 8; the theoretical curves there are ob-
tained with the approximations a and d in Sec. IV B.

It has been observed experimentally that the
plasmon dispersion flattens as the wave n»mber in-
creases into the short-wavelength region q ) q, . This
is a strong-coupling effect in the electron liquid, since
a calculation based on the RPA theory does not ac-
count for such a flattening. Computed results of the
dispersion curve in the short-wavelength region are
shown in Figs. 9 and 10 for r, = 2 and 4; the four
curves in each figure correspond to the four approxi-
mation schemes, a —d, introduced in Sec. IV B. Ex-
perimental values for Al obtained by various investi-
gators '' " are also plotted in Fig, 9. The local-
field correction arising from the short-range static
correlations, which is included in the scheme c, al-
ready shows a substantial effect in lowering the
plasmon energy and flattening its dispersion over the
RPA values. This tendency becomes more pro-
nounced as we proceed to include the dynamic local-
"ield effects in a and b. Improved agreement with

3.0

8.0

1.5

' pe, )' 2

p 0
p

FIEj. 9. Plasmon dispers»or» curves vs (fI/q»-. ) in the ap-

proximations a —d for i, = 2. The line A represents' the

boundary of the single-pair-excitation continuum,
~/~»;= 2(q/q»;) + (q/q»;); »nd the line 8 refers to the peak

frequency of the dyn &mic structure f»ctor in the noninteract-
ing case, co/co»-, = (q/q»r) . E'. xperiment »l results for Al »re

t»ken from Ref. 6 (solid circles), Ref. 7 (solid squares), Ref.
10 (open squares), »nd Ref. 11 (open circles).

the experimental indications appears to be obtained
when those dynamic effects are taken into account.
It is also notable that a negative dispersion is predict-
ed for r, =4.

D. Asymmetry in the peak structure
of S(q, eo) for q & q,

0.5

FIG. 8. Normalized p»asmon dispersion curves vs
(q/q»-. ) for r, =2. Solid line is the result of the present
work [scheme a in Sec. IV B]; dashed line, that in the RPA.
Points are the experimental results for Al taken from Ref. 4
(solid squares), Ref. 8 (open circles), Ref. 10 (open
squares), and Ref, 13 (solid circles). Here we adopt the
values, l &p =14.19 eV and q,-=175 A-»

In the short-wavelength domain such that q )q„
the plasmon peak merges into the continuum of the
single-pair excitations; the peak structure of S(q, co)
exhibits an asymmetric character. Such an asym-
metric behavior has been specifically monitored for
Al in the experiment carried out by Gibbons et al. '"
They measured the average frequency between the
two half-maximum frequencies of S(q, co) and com-
pared it with the peak frequency, To make contact
with their experimental result, we have computed
those two —average and peak —frequencies for
r, = 2 and 4 according to the scheme a in Sec. IV B.
The computed results for r, = 2 together with the ex-
perimental values' for Al are shown in Fig. 11,
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0
FIG. 10. Same as Fig, 9 with r, =4.

Although not shown in thc figure, the computed
value of the average frequency turns out greater than

that of the peak frequency for q & 1.35qz.

E. Puli width at half maximum
of the plasmon peak

F'lG. 11. Peak frequency and the average frequency
between two half-maximum frequencies of 5(g, 0)) vs
(q/qF)2 for r, 2 in the scheme 0, The solid line represents
the peak frequency; dashed curve, the average frequency.
The line A refers to the boundary of the single-pair-
excitation continuum. Experimental results for Al are taken
from Ref. 10: open circles represents the peak frequency;
crosses, the average frequency.

The fuli width at half maximum, a (q), of the
plasmon peak measures the decay rate of the
plasmon. %'e have computed this quantity for f, =. 2

aAd 4 lA thc four approximation schemes, Q —d,
described in Sec. IV 8. Figure 12 shows thc cornput-
ed results for f, =2 and the experimental values7 '0

for Al. Thc major cause of the discrepancy between
the present calculation and the experiment may be at-
tributed to the adopted assumption 1/ro(q)
= I/ro(0), which fails to account for the q depen-

dence inherent in those scattering processes contrib-
uting to I/ra(q). It has been theoretically shown by
Sturm that the interband transitions may make ma-

jor coAtflbutlons t,o thc plasfnon lineNldth and its g
dependence.

In the long-ivavelength region, the numerical
values of the linewidth calculated from (17) are

for r, =2, and

a (q) 0.07+0.086(q/qF)', 1/~ ro=().()'/

p 0.063 (q/q F )', I/ro~ ro ——0,
(27)

for r =4 DuBois and Kivelson's calculated the
plasmon linewidth by a diagramatic method and ob-
tained

e( )/cqu, =0.037(q/qp)'

~ (q) 0.03 +0.057(q/qF) ', I/ru~ro = 0.03

0.039(q/q r) ', I/o)~ro = 0
(26)

for A l; this essentially agrees with the second line of
(26).

on& e& al '0 on the other hand summarized
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f'IG. 12. f ull width at half maximum, ~(q) vs (q/q&;)
for I, = 2 in the schemes a —d. Experimental results for Al

«re taken from Ref, 7 (solid squares) hand Ref. 10 (open
squares).

V. SUMMARY

Following the general dielectric formulation" and
the numerical solution to the static structure factor,
which were developed and obtained in the preceding
two papers' " for the strongly coupled electron
liquid, we have numerically calculated the dynamic
structure factor for r, = 2 and 4, with various degrees
of approximation enumerated in Sec. IV B. Those
results have been compared with the experimental
data obtained for Al and other metals. The specific
points of comparison were the plasmon dispersion
curve both below and above the critical wave

number, the plasmon linewidth„and the shape of the
excitation spectrum, We have also derived a theoret-
ical expression (20) for the plasmon dispersion coef-
ficient„which encompasses many of the existing for-
mulas as its limiting cases.

The numerical results in this formulation appear to
show t fairly improved agreement with the experi-
mental indications„as far as the overall features in

the plasmon line and the excitation spectrum are con-
cerned. The theory, however, is not capable of ac-
counting for the double-peak structure in the excita-
tion spectrum which was found in some experiments.

their experimental findings for Al into a formula,

w (q)/cu~ = 0.034+ 0.50(q/qpt)' (29)

%e may conclude from a comparison between (26)
and (29) that the electron-electron interaction in the
electron liquid provides only a minor contribution to
the plasmon decay processes in actual crystalline met-
als.
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