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The coefficients of the 1/k2 divergence of the static susceptibilities of the hydrodynamic
order-parameter variables in the superfluid B phase of *He are calculated by means of a micro-
scopic theory. Their Bardeen-Cooper-Schrieffer value as well as the Landau corrections are

written down explicitly. It is shown that only F¢,

4, and the effective mass contribute to the

static susceptibilities of the hydrodynamic order parameter in spin space. The results are com-
pared with those of other work, and the experimental implications are discussed.

I. INTRODUCTION

The superfluid phases of *He provide an interesting
testing ground for many ideas which are of impor-
tance in various fields of physics. There is no other
system with so many broken symmetries in both real
and spin space, due to the 18 degrees of freedom of
the triplet order parameter.

From the beginning special attention has been
drawn to the magnetic behavior of superfluid *He,
which has turned out as an appropriate tool to identi-
fy the different phases.""2 Several authors have cal-
culated the dynamical spin-correlation function in or-
der to explain the NMR results. The various Gold-
stone modes have been determined by means of
Green’s-functions technique®~® or by Boltzmann tech-
nique’ in the collisionless as well as in the hydro-
dynamic limit. The price to be paid, as far as the
Green’s-functions technique is concerned, is the re-
striction to a weak-coupling model which, in some
cases, includes the paramagnon enhancement. The
phenomenlogical theories,!°"'? on the other hand,
give more general results for they exploit the sym-
metries of the order parameter as the only input.
They give also explicit expressions for sound and spin
waves but, in contrast to the pure microscopic calcu-
lations, a set of phenomenological parameters has to
be defined which cannot be determined within the
scope of these theories. The transport parameters
describing the sound attenuation and the spin-wave
damping can be connected with the dynamical corre-
lation functions of the hydrodynamic variables via a
set of Kubo relations.!> They can be used as a start-
ing point for microscopic approaches to the transport
parameters.'¢

A second type of input parameters are the static
susceptibilities. The conserved variables—density,
momentum density, energy density, and magnetiza-
tion density —give rise to static susceptibilities, which
are found in the normal fluid and the superfluid
phase likewise. Another group of static susceptibili-
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ties belongs to the hydrodynamic order-parameter
variables. As hydrodynamic we characterize those
order-parameter variables, which refer to the broken
symmetries of the superfluid phase. These variables,
together with the conserved ones, form a set of slow
variables from which the hydrodynamic theory is
constructed.

In the hydrodynamic regime, we may separate our
problem into two parts which may be solved step by
step. First, the symmetries of the system are exploit-
ed in order to establish a linearized hydrodynamics
and to evaluate the sound and spin waves. In a
second step, we are concerned with the static suscep-
tibilities and the transport parameters which enter the
hydrodynamic modes.. The static susceptibilities for
K —0, however, are much easier to calculate than the
dynamical ones for finite X and o, necessary in the
pure microscopic approach.

This paper is devoted to the static susceptibilities of
the hydrodynamic order-parameter variables of super-
fluid *He-B. They enter the gradient part of the su-
perfluid free energy.

Brinkman and Smith'3 specialized the Ginzburg-
Landau free energy, calculated by Ambegaokar, de
Gennes, and Rainer,'® to the B phase in the weak-
coupling limit. Cross'’ evaluated a generalized
Ginzburg-Landau function for 4 and B’phase valid
the whole temperature region. Landau corrections
have been taken into account in terms of the first
Landau parameters F{ and F9.

In the present paper we start from the linear-
response functions and specialize them in the static
limit. The results obtained are more general than
those of Refs. 15 and 17 in taking into account the
dependence on all Landau parameters exactly. Com-
plete agreement with both works is obtained if we
specialize our results by taking the higher-order Lan-
dau parameters equal to zero.

We show that only two Landau parameters, F{ and
F$§, enter the static susceptibility of the hydrodynamic
order-parameter variable in spin space. Below T,, we
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find that new temperature-dependent Landau param-
eters can be defined, which give rise to very simple
results.

In Sec. II we introduce the general procedure. We
generalize a concept, developed by Leggett!® for the
neutral s-wave superconductor, to the case of triplet
pairing. In Sec. III the static susceptibilities are calcu-
lated in the weak-coupling limit. We show that the
1/k? dependence of the static susceptibilities is a
consequénce of the gap equation. Section IV is devot-
ed to the influence of the Landau parameters on the
static susceptibilites. Section V contains a discussion
of the results and the comparision with other work.

II. LINEAR RESPONSE FUNCTIONS

The hydrodynamics of the superfluid phases of *He
is characterized by two types of variables: the con-
served ones and those due to broken symmetries. In
the various phases of superfluid He different sym-
metries are broken, depending on the vacuum states.
The order parameter of the B phase has the group
structure U(1) ® SO(3) and can be parameterized by
a phase factor times a three-dimensional rotation ma-
trix ny. In the 4 phase the group structure is charac-
terized by S? ® SO(3)/Z, thus giving rise to the
bivector factorization of the order parameter.
Throughout this paper we restrict ourselves to the B
phase. Four additional hydrodynamic order-
parameter variables enter the hydrodynamics: ¢ and
the three angles characterizing the rotation matrix.
Their static susceptibilities must diverge as 1/k? for
k —0. The physical background is rather simple: the
Hamiltonian is invariant against phase transformation
and transformations of n;. Thus, it costs no energy
to change globally the phase or the rotation matrix.
Introducing a small inhomogeneity of ¢ or nj; into
the system the restoring forces which bring the sys-
tem back to its homogeneous state, become infinitly
small as the system appproaches k — 0. In other
terms, the inverse susceptibilities must behave at
least like k? for k —0. It is this feature we want to
calculate by microscopic means.

The superfluid phase of *He is described generally
by a complex order-parameter matrix /f,,-. (Operators
are indicated by the symbol A4, their expectation
values are described by the same symbol without ",
equilibrium values by a superscript °.)

dy=J xR - 130

n X;
x([:,,(_r'—i‘—;-i')‘—_l-jl-(c,a'z)ap . Q.1
X

Sums over repeated indices are always implied if not
indicated otherwise. The unit vector X/|X| selects
the p-wave part of the anomalous expectation value,

(& o,) gives the projection onto the triplet spin axes.
Thus, A; describes a pairing of a triplet system which
has the symmetry of a p-wave state. The function
F*(X) is chosen in such a way to make sure that al-
ways

In the B phase 4 is proportional to a rotation matrix
”U:

Ay=—eitp, (2.3)

V3

The changes of 84,(X) = 4,;(X) — A4 from the equili-
brium value can be formulated in terms of the expec-
tation values of the phase deviation 8¢ and the devi-
ation from the angles 86;:

84;(X) = iA 8¢ (X) + €480, (X) A, . (2.4)

The four variables 8(2) and 85 are the microscopic
operators we look for. AThey can be expressed in
terms of the operator A;:

8&;(7(’)=%[A,?*2,,(Y)—Aj?ﬁj7(i’)] .
2.5)
80,(X) = 2 e AT A (X)) +AJ A ()] .

Due to the high symmetry of the B phase, 8¢ is the
only additional hydrodynamic variable in real space.
Therefore, the real-space part of the B phase dynam-
ics is equivalent to the neutral singlet superconduc-
tor, whereas the spin-space part offers a very rich and
complicated structure as we will see below.

It is our aim to calculate microscopically the static
susceptibilities of 8¢ and 50. If we exploit the Bo-
goljubov inequality to show the 1/k? divergence we
make explicit use of various conservation laws. To
show, for example, that X4 54(k) ~ 1/k2 we must
exploit the number conservation law. Thus it is only
natural that we have to take care that any approxima-
tion scheme we pursue ensures the conservation
laws. The situation were different, if we calculated
the transport coefficients. They are determined by
microscopic scattering processes which occur on a
very short time scale. Thus, a crude Hartree-Fock
approximation may give reasonable expressions,
whereas this procedure fails completely in the case of
the static susceptibilities. This problem is well known
since the early sixties, when Kadanoff and Baym'% 20
presented a systematic approximation scheme, which
ensures the conservation laws on each stage.

It was applied by Leggett'? in order to calculate mi-
croscopically the static and dynamic susceptibilities of
the conserved variables of the singlet superconductor.
The calculations presented here make use of this
work although there are some modifications due to
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the triplet pairing. In order to establish the notations
we give a short summary of the method, but stress
only those points where special problems of the trip-
let state are involved.

The static susceptibility of any microscopic variable
can be calculated from the correlation function for
imaginary times

((A(1)A(2)))=(A4(1)A(2)) = (4(1))(4(2))

(2.6)

The time ordering is always implied. Taking the
Fourier transform of space and time we get the static
susceptibilities after continuing the discrete ima-
ginary frequencies to the real axis. The static sus-
ceptibilities of 8¢ and 88 can be built up from the

static susceptibilities of the order parameter /f,-j:
(3p(1)8¢p(2)) =~ n,knj,

x <<(/i,'k'—/i,k).(/i,.;"—,i,nz))
(80,(1)80,(2)) = €mepmnlind @D

To €aim €pjnNmk nl
AT N AT ~
X (A + Ay ) (Ay +A45)2))

The time-ordered expectation values ((/i,k/fj,)) are
related with the linear response function £ for imag-
inary times:

L(12,1'27)=G,(12,1'27) -G (1 =1")G(2-2")

(2.8)
where G, denotes the two-particle and G the one-
particle Green’s functions:

(ty » : _f d*q d*q’
((A,k A,, ))(I\w,,)— m Om )JY(q)qk(UUZ)aﬁB E.Cm, pﬂ'(qwl qw/kwn)v(q)q/(%m) o'g'
(2.9)
[
where tions. Thus, the BCS interaction as well as the ef-
iy(q)de= fd3x F(R) X iTw fects of the mean ﬁelq described by the Landau '
[ %1, parameters are taken into account. We have not in-

and £ is that part of £ which consists of anomalous
propdgdtors The symbol () on the lcft hand side of
(2.9) is meant to imply that both A, and Ay

m‘\y be inserted. All static susceptibilities of the or-
der pdmmeter Ay are composed of pdl‘llL]c particle
((A,kA,,)) or hole-hole propagators ((A,k J,)) or of
propagators which transpose a particle- pldl‘tldc fluc-
tuation into the hole-hole channel ((A,kAj, )) and
vice versa ((A,kA,,)) The four rows and four
columns of the particle-hole matrix £ arc ordered in
the following way: hh, pp, hp, and ph (p denotes par-
ticle, 4 hole). Thus the left upper 2 X 2 submatrix is
the anomalous part £2 of £. For details we refer to
Ref. 18. '

The response function £ can be obtained from the
Bethe-Salpeter equation:

L=012,1"2)=L(12,1"2) + L (13,1'3")
% 3P
3G (3,4)8G (3',4')

£(42,42")

(2.10)
where L (12,1'2')=G(1—=2")G(2—1"). The con-
seirvation laws are ensured writing the vertex as a
second functional derivative of a functional without
external lines. The approximations are to be carried
out on ®. We take into account only the leading or-
der in T,./Tp, i.e., we have

()

where the square denotes the interaction vertex
and the lines symbolize one-particle Green’s func-

cluded strong-coupling terms in the sense of Serene
and Rainer,?" 2 which are of order (T,./T};)".

The leading contributions to the correlation func-
tions are due to quasiparticle excitations necar the Fer-
mi surface. Therefore; we separate the one-particle
Green'’s functions into the quasiparticle part, which is
proportional to the Green’s functions of free particles,
and an incoherent part which is included in the in-
teraction vertex renormalizing it. After these approx-
imations, we arrive at

L =L (1=TeL)"" | Q.11

where we have omitted an additional incoherent part
of £, which remains finite for K — 0 and therefore
cannot contribute to the divergent behavior of the
static susceptibilities of the hydrodynamic order-
parameter variables. L is the singular quasiparticle
part of L =GG. (Since only L, will be used in the
following, we will drop the index k.) I'® denotes the
quasiparticle irreducible vertex part introduced by
Landau. We neglect its dependence on the quasipar-
ticle energy and the frequencies because it is assumed
to be a smooth function of energy and momentum
near the Fermi surface.

Restricting ourselves to the unitary phases of su-
perfluid *He, the one-particle Green’s functions read

iw, +§&
Gop(Go,) =a—5———58,3=G8,p ., (2.12)
o en) T A ’
A
Fop(Qu,) = - idi (o ;o)) ap

aw3+§2+|A|2
=Fidi(§)(o;0) s (2.13)



3270 M. DORFLE 23

where w, are the discrete Matsubara frequencies, q
the wave vector, £2=¢2/2m" — u the excitation,ener-
gy, Ay the maximum of the gap:

A= a3ld]?
and
di=AJq; . (2.14)

Thus, we allow for the 4 and B phases as well as the
more academic planar and polar phases. According
to our model I'* is diagonal in the particle-hole space.
The scattering in the anomalous channel is described
by the BCS. interaction, the scattering in the particle-
hole channel by the usual quasiparticle scattering ver-
tex:

(BCS)
[BS=T(G G )8agdys+T2(3 -G Valgam . (2.15)
(Landau)

TE=T5%(§ G )8uagdys +T7(G -G Vomgamy . (2.15b)

The response functions are to be calculated in the
static limit but with finite external wave vector K.
Since the vertex does not depend on the quasiparticle
energy £ and the frequencies w, we perform the in-
tegration and summation over the internal variables
at once

L95(4,K) =a?0(0) [ d€ 3 Gup(T +1K w,)

n

X Gy(T— 5K, 0,)

= GG Saﬂsyﬁ . (216)
v(0) is the density of states at the Fermi surface. A

minus sign on either of the Green’s functions indi-
cates that we use the variables

G =G ((G+1%), ~w,) .

In order to calculate the leading order in K of the
static susceptibilities we have to expand the propaga-
tors L in terms of K. The results are in the
anomalous channel

- <1 2 1y 1
GG +FF|d|'=a v(O)fdfﬂ §m3+§z+m|2
(Vr- k)2
_%_—__VIFAIZ AGT) (2.17)

[in Sec. III it will become clear that we must keep the
(Vr+k)? term] and

-—

k) A (G, T) . (2.18)

FF=A(4A,T)+%(VF‘ z—al—g?l—é.l‘l—z‘

The coupling of normal and anomalous channels

reads

(Ve K) .
—L—\(4T) (2.19)

GF =
Ayl d|?

1
2
and in the normal channel we get

GG +|d|PFF=—a%(0) Y (4,T) , (2.20)

where M4, T) =5a%(0)[1 = Y(4,7)1 and Y (4. T)
is the anisotropic Yoshida function:

Y(4.T) =j;°° d€+Bsech?3BlE2+1A() 1212
(2.21)

Up to the anisotropy, these expressions are the same
as those given by Leggett.'® All other products of
Green’s functions can be expressed by Egs.(2.17)—
(2.21).

The system of integral equations (2.11) can be sim-
plified a good deal evaluating the spin sums. We ex-
pand (2.11) in a ladder diagram by expanding the
right-hand side in a geometric series. Equation (2.9)
shows that both sides of each ladder have to be mul-
tiplied with (G o,). Thus L%, the anomalous subma-
trix of L is converted to

(O‘iﬂ'z)apLzy_ps(O‘jo'z)ys_"L;; . (2.22)

We start on the left-hand side of an arbitrary di-
agram. By means of simple algebra, one can show

(0',-0‘2)agGayszy(F@yery,s + FZ(T;"/yO';"yr)

=8uGG(F]+F2)((TjO'2)55/ , (223)
and
(o',ﬂ'z)aﬂFay,Fﬁy(FISYB,Sy,S+I‘zog',yo';"7,)
= (2dd;~d2%8) FF (T +T,) (0,07),, . (2.24)

In order to determine the static susceptibilites of the
order-parameter variables, we start always in the
particle-particle or hole-hole channel. Passing step by
step through the whole diagram—a single step being
shown in Egs. (2.23) and (2.24) —ail Pauli matrices
are eliminated and we arrive at

LeE=Lg(1—-TeL)g . (2.25)

This is still a system of integral equations due to the
dependence of I'® on the solid angles.

If we restrict ourselves to the fluctuations in the
anomalous channels, then we arrive at the BCS ap-
proximation of the static susceptibilities. If we want
to take into account the strong-coupling corrections
due to the Fermi-liquid parameters, we have to admit
the coupling to the normal scattering channels which
are described by the remaining parts of L. The
evaluation of spin sums in expressions like (2.22) but
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containing the remaining parts of L does not bring about further difficulties.

In order to deal with all fluctuations possible in the normal channels (i.e., with singlet and triplet symmetry) it is
convenient to extend the matrices in the particle-hole space. This is done by extending the two-dimensional
normal channel into a four-dimensional normal channel which contains singlet and triplet parts separately. The
vertex matrix I'* remains diagonal, but L is composed of various parts. L“ denotes the anomalous propagator

-GG,

L4, k)= -
! (2d,d, —d’s,,) FF

—-GG3,,

(2d,*d, —d"%8,,) FF

(2.26)

The indices r,p mark the spin axes. In the extended normal channels we take into account singlet and triplet
fluctuations separately which do not couple within the normal channel:

(singlet channel)
. GG~ —FF|d|?
L*(g,k) = -
= [—FF!dP GG |~
(triplet channel)
- G=G~5,
LHa o= (2d,*d, — 8,,|d|2) FF GG,

The normal channels are coupled to the anomalous
channels by L** and L*":

(coupling anomalous singlet)

_. |iG"Fd, iFG=a;
as( 4 =
L*%(g, k) iFGd, iGFd} | * (2.29)
(coupling anomalous triplet)
—€pmd,G™F €pmd, FG~
L“'T(é,T{)=[ e ] . (230
= —€pmdy FG  €pmdy, GF

We take care of all possible couplings constructing
the extended particle-hole matrix L from these con-
tributions:

L* (L*)" (L*")'
L(gk)=|L* L o |, 31
L*T 0 L’
re o0 o
re(g-gH)=|0 rs o, (2.32)
0 07

where I'*=T, +T,. All elements of L are still func-
tions of K and the internal §. The dressed response
function £ is calculated from Eq. (2.11) applying usu-
al matrix algebra and integrating over all internal unit
vectors.

III. BCS APPROXIMATION

The expressions (2.26)—(2.32) are valid for all uni-
tary phases. In this paper, these equations will be ap-

(2d,d} —8,,|d|?) FF

(2.27)

(2.28)

[

plied to the isotropic B phase. We neglect the small
symmetry-breaking magnetic dipole-dipole energy
which fixes one of the three parameters due to the
rotation matrix n;.. Without loss of generality, we
can assume 1) =3, i.e., the axes of spin space and
real space are parallel to each other. Thus, d; = A4
becomes identical with the unit wave vector

di=d* =g

and the hydrodynamic order parameter variables take
a much simpler form

8$=—;—(/‘i\ii—Aii) , 3.1
Etik(/‘ij;—/‘ijk) . (3.2)

Furthermore, the gap A and the Yoshida function
Y (4.T) become isotropic.

The polar and the planar phase are two other real
unitary phases. In their case, the equilibrium order
parameter A,}’ is proportional to 8; — /;/; and /;/; in the
planar and the polar state, respectively. Although the
path of thoughts is quite similar to that of the isotro-
pic phase we will put them apart for they are only of
academic interest.

The calculations can be simplified a good deal fix-
ing K parallel to the # axis

(VF'T(')'—_UquA; . (33)

In this section, we restrict ourselves to the BCS in-
teraction omitting the corrections due to the coupling
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to the normal channels. The static susceptibilities
will diverge proportional to 1/k?— this feature fol-
lows from the broken symmetries already contained
in the weak-coupling model— whereas the superfluid
density will take the BCS value. Hence, we have to
deal with the reduced set of integral equations (2.25)
and (2.26). In this model, only the fluctuations L in
the anomalous channel and the attractive BCS pair
interaction ['*=T", + T, are taken into account. I'? is
parameterized by

r*(4-¢')=T%q/ (3.4)

exploiting that the pairs are condensed in a p-wave
state. The constant I'* describes the strength of the
attractive pair interaction. It is purely microscopic
and must not occur in any microscopic expression.
The value of A is determined from the self-consistent
gap equation

1

m , (3.5

——-—F"av(O) fd§-

where we have already exploited that A is isotropic.
Inserting the Green’s functions it is straightforward
to show that

=—1T*(GG™+FF) 4o (3.6)

is an alternative form of the gap equation. The in-
tegral equations (2.25) can be transformed into a set

of algebraic equations: let us write down a small part
J

<<<A,k+A,k><A,,+A,,>>>o <<<A,Z+A‘,k>(/i,7—/i,,>>>o
lk)(A/[ +A11)>)0 <<(A,k—A,k)(A,/'Aﬂ)>>o

Lll LlZ
L L2 (-

The upper indices refer always to thé particle-hole

space. Each element in this space is a matrix with two

spin- and two real-space indices:

dQ . . _ A A

_“=f7;qkq,[—a,,c G +FF(24,4,—8,;)1=L4Y .

3.11)
L= [ 424,415,676 — FF Qg )1 = L

(3.12)

L?=L2"=0 .

L and L* are decoupled and can be dealt with in-
dependently. We note, that the fluctuations of the
real-space variable 8¢ occur only in the channel L2,
whereas the spin-space fluctuations are restricted to

of any ladder. It reads
4G q)L24, )
47

x d49 I*(q-q')L%q", %)

dQ” S( ' a(," Y. ..
xf 4771‘((1 q'")L*(q", k) .
3.

The interaction vertex I'® depends only on the angle
between two quasiparticles excited on the Fermi sur-
face. Taking into account the p-wave model (3.4),
the integrals are separable

- dQ . ATy A
. T'%5. L3 ~Ja
q,{f 4 g;L*(q, k)‘h]

xT¢ f%c},y(ci,k‘)q‘,lm . (3.8)

Comparing the solid angle integrals with Egs. (2.9),
(2.16), and (2.22), we recognize that they are propor-
tional to the bare equilibrium propagators,

((Awdn) Yo ((/‘i%/‘i/:))o
CAAn) Yo (CAwdn) o
3.9)

The calculations are further sxmpllfled ?assmg from
the variables A,k Ay to A,k +A,k and A,k — Ay. Equa-
tions (3.1) and (3.2) reveal that these variables are
the most appropriate choice in order to calculate the
static correlation functions of 8¢ and 6. Rotating
the matrix (3.9), we get

dQ . AT A
S 42 G5 %0~

(3.10)

I
L"'. Within the BCS approximation, fluctuations of
real-space variables are decoupled from fluctuations
of spin-space variables, since L'?=L?% =0.

The static susceptibility of the phase ¢ is obtained
by a linear combination of matrix elements of L%

- 0
XB¢,5¢(k)_v—(lé)—lg¢L£ukk , (3.13)
where
L&y =L -TeL2) (3.14)

If we start from the left-hand side of any ladder,
corresponding to Eq. (3.14) two unit vectors in (3.12)
are fixed in the same direction: 4§, — (§,)%. A fin-
ite K brings in a factor (§;)2. Thus, L2 takes non-
vanishing values only if the other indices are also
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fixed parallel to each other. Then, Eq. (3.14) is re-
duced to

LX= LU -r*L) 3 (3.15)
and
= _ v(0)a’y?
K)= 2, (3.16)
T ,kz.l

where we have dropped one superfluous index by
writing ii,kk as i,k.

L2 = [ L 66546 G — FFG,Gc Qaid — 841 .

3.17)
Summation over repeated indices is not implied here.

It is convenient to write Eq. (3.16) in terms of a pro-
jector P

1
P=7

—

11
L1y, (3.18)
11

2,,2
X5¢,a¢(E)=v—(%%;l-Tr3(£_§22) . (319)

We transform the trace by a rotation in such a way
that the projector is reduced to one nonvanishing ele-
ment. This is done by the orthogonal matrix T

lffﬁ
T——J‘O—J’j
BERCT PR
and
100
TPT™'=10 0 0 (3.20)
000

In order to perform the trace, we have only to pick
-1

A B,

B, ¢| T|-

where 4 and C are quadratic and the inverse of C
must exist. B, and B, need not have a quadratic
form. Thus, if we are only interested in a small part
of an inverse, we first take into account the coupling
to the other parts and then invert the smaller subma-
trix

(4 -B,C™'By)"!

A—A—-B,C'B, . (3.25)

C is taken to be the regular part of E. B, and B,
are either zero or proportional to k2. Therefore, the
regular part of = contributes only to the order k*

up the upper left element of the transformed matrix.

We continue investigating the limit Ak =0. The
functions G~G and FF do not depend on ¢, and we
get

LRk =0)== (GG +FF)lgm07 8k
= FFlimo2 (P =84) . (3.21)
It is useful to reformulate Eq. (3.15)
TLRT-'(1-TéTL2T-")"!

i _peprap-y-1_ L
_I“’(l rerL>r-" F"’l' 3.22)

The term (1/T'%)1 belongs to the incoherent part of
the static susceptibility and can be neglected because
the 1/k? divergence is only due to the inverse of
1—T?%L%. We obtain

0 0 0
E=1-T*TL2T ' ,oo=|0 —T*2FF 0 ,
0 0  —I*3FF
(3.23)

where we have made use of the gap equation (3.6).
Obviously, E becomes singular in the limit K —0.
The singularity belongs to that linear combination of
Ay which can be identified as the macroscopic vari-
able 8¢. The other linearly independent variables get
a finite quasiparticle contribution to their static sus-
ceptibilities.

Inspecting the next K order of &, we observe that
each matrix element will be proportional to k2. To

-show that the regular part of E does not contribute to-

the singular one in order k% we exploit the following
matrix identity: If we look only for a part of an in-
verted matrix, we may restrict ourselves to the inver-
sion of a smaller but renormalized matrix:

—(4 —B,C~'B,)"'B,C""!
C™'B,(4 —B,C™'By)™" C~'+C~'By(4 —B,C~'B,)"'B,C-1| ° (3.24)

[
which has to be omitted. We arrive at

y*a*v(0) ¢f dol| | (Ve K)? -
XM“;(k)—‘————-' - ?"—-I"A—P‘—}\

2
y m?

=~——(I"”)ZA5 mp,kz (3.26)

where
ps=p-p, pi=1-=Y(T) .

p is the density of *He. Making use of the gap equa-
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tion and the definition of the order parameter 4;, we
can eliminate all microscopic constants and get finally

XOp,bp(-E)=m2/psk2 ’ (327)

which is the expected result.

Next we turn to the BCS approximated static sus-
ceptibilities of the hydrodynamic order parameter 80
in spin space. Our starting point is Eq. (3.11). Each
ladder is multiplied from the left and the right by the
permutation tensor e, selecting fluctuations which
belong to perpendicular axes. We fix p =3, thus
ik €{1,2]}, i.e., there is only a coupling between

LYy L3ty Ll Ly
because each internal unit vector §; must be paired.
The fluctuations indicated here contribute to the
longitudinal part of the order-parameter susceptibility.
In order to get those fluctuations due to the transver-
sal part, we have to choose p =1 or p =2.

We are left with a (2 X 2) matrix equation. More-
over, the cross susceptibilities Xss,,86, C1C., vanish
completely on account of the proper choice of the
axes. The system is decoupled in three independent
problems.

3v(0)a?y?
16r*

=y T
Xao3.no3( k)= €3 L ji€3j1

2.2
=%_UQI)‘:—7T” [PLV(1=T*L")"]

(3.28)
where
-
P=201 -1
and the reduced L'' is defined by
L [Lnlzl,lz L3 (3.29)
= e Ly '

We rotate the matrices under the trace with the
transformation 7

T
=21 1

and arrive at

- 2y(0)a? 1
Xso, 00, (K) =2 X2
S B A T
(3.30)
Inserting (3.11) and (3.6) we get
— m?
x503'503(k)=10psk2 . (3.3

The transversal susceptibility can be calculated along

the same path. LJ{,3;, however, is not identical to
L33 3, with respect to the k dependent terms. Thus,
the transformed matrix equation becomes diagonal
only if Kk =0. On the other hand, the regular part
couples only in the order k* according to the matrix
identity (3.24) and can be neglected

~ ~ 2
Xaol,w‘(k)=xwz,wz(k)=5prsnkz . (3.32)

Within the BCS approximation, the three hydro-
dynamic order-parameter susceptibilities, present in
the isotropic phase, maintain fixed ratios with respect
to each other for all temperatures:
xg¢’5¢:xbol,591:)(59]'593= 1510 . (333)
This feature is an artefact of the approximation and
will disappear if we take Landau corrections into ac-

count.

IV. LANDAU CORRECTIONS

Up to this point, the 1/k? divergence of Xs4, 54 and
X9, 80 has been established. It was shown that the
different characters of the order parameter variables
are fixed by the structure of the gap equation. How-
ever, the results of Sec. III correspond to a weak-
coupling model and do not describe the actual
behavior of superfluid *He. The large values of the
Landau parameters indicate, that the quasiparticle in-
teraction is very strong and must not be neglected.
Thus, the coupling of fluctuations in the anomalous
channels with the normal channels has to be included
in a substantial theory.

We return to Egs. (2.25)—(2.32) which contain all
information about fluctuations in the normal and
anomalous channels as well as their coupling to each
other. However, we are only interested in the
anomalous part of £ which describes the static and
dynamical response to fluctuations of the order-
parameter variables. According to our generalized
RPA approximation (2.11), £ is calculated from

L=re-'(1-reL)", 4.1

where an additional incoherent part is omitted. The
crucial object is the inverse of (1—T“L). The
anomalous part can be extracted applying the matrix
identity (3.24). This procedure can be understood as
a renormalization of the bare L?, where all possible
propagations of fluctuations in the normal channels
have been taken into account:

l__rd’éa _r-:b(és,a)f _r¢(LT,a)"
1-reL=(~-I"L* 1-T°L* 0 4.2)
—FT_I:T'“ 0 1-T7L7
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we take the choice

A=1-T%L7
B, =B; = (_FsLs,a’ _FTLT,a)

s

and
1-T°L® 0
Thus, we may substitute
1-T*Le— 1 —T[L+ (L") (1—
+(L™)'(1-

FsLs)—lLs,a
riLh~'L"e] . (4.4)

The p-wave assumption makes it possible to rewrite
the BCS set of integral equations into a set of linear
algebraic equations. This procedure cannot be ap-
plied within the normal channels if we want to keep
all Landau parameters. Thus, we are confronted
with a mixture of both algebraic and integral forms.
In a first step we have to solve the integral equations
and then may advance to tackle the algebraic prob-

lem.
J

LYy = ‘i“ Gx@i1—8;G~G +FF (24,4, — a,,)]+4f
where

{8, —I'"1GGS,, — FF(24,G,—8,,)1)7'T"=Tk
and

lk;l‘“f“—llk‘h[ —8,G~G — FF(2§,4; —8;)1+4
where

[1 -T(GG +FF)I"'Is=T*k

To begin with, we proceed as we have done in the
previous chapter algebraizing the equations. We get
Lu=qL

qk Lsa) (1 S_L_s)—lés’aﬁ[

+G (LT (L=TTLT) 1L TG, | (4.5)

where integration with respect to ¢ is implied by the
notation. Ly, describes f]_Lrlctuations of the order-
parameter variables Ay,A4, including Fermi-liquid
corrections. This expression generalizes Eq. (3r9)
Agdm it is good pohcy to pass from A,k and A, to
A,k +A,k and A,k
transformation:
T —_—

1 =1
STAN 1
Exploiting the symmetry properties of GF, G™F, etc.
(cf. Leggett'®) the spin and the real space decouple
completely, analogous to the case of pure BCS in-

teraction, and we arrive at renormalized L'' and L%
[cf. Egs. (3.11) and (3.12)]

A,k by means of the particle-hole

1

qke,,,,q,,GFf q, €504 'GF'TR(§:q") (4.6)
(4.7)

49 4.6 [ 42 446r 004 48)
4.9)

L?? contains the fluctuations of real space and L'' those of spin space.

Due to the isotropy of the order parameter the real space is much simpler to deal with than the spin space.
Thus, we start again with the static susceptibility of 8¢. Each GF contributes a factor k to the expression (4.8),
i.e., the additional term is at least proportional k2. We are exclusively interested in the lowest k order, i.e., in k2,
therefore, only the k =0 part of I'® contributes. In that case, the solution of (4.9) is rather simple:

Res. 5’ 0 aQ 5.AVPR(A - 4 S5 .5
r*(3:)+p0(D [ 4G MG ) =TG- (4.10)

The isotropy of p2(T)—the normal-fluid density—and T'* induce that I'?(§:§ ") is also isotropic. T'(§ ¢ ") is ex-
panded in terms of Legendre polynomials

r(G-4)=3FP(G-§) , 411
=0
where Ff are the symmetric Landau parameters and we obtain
oo FS
rR(G - = . (4.12
9 §’1+[1/(2/+1)] o hitaa )

The static susceptibility of 8¢ is constructed of order-parameter fluctuations along paralle] spin- and real-space
axes [cf. Eq. (3.16)]. We pointed out, that the fluctuations on parallel axes never couple to fluctuations on per-
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pendicular axes within the BCS model. This remains also true if we take the coupling to the fluctuations in the
normal channels into account: We start from the left with a parallel fluctuation (i.e., i =k ;GF ~ §;k). The Lan-

dau correction to L?? takes the form

[N

sz‘m 5 T‘qqu‘hr (G-d) .

The solid angle integral on the left selects the Pl and P; part of the renormalized Landau vertex I'R. Making use
of the addition theorem for spherical harmonics, we observe at once that this expression does only contribute if
j=1€1{1,2,3}.

We pass to the smaller matrix (3.15) and perform the transformations indicated there. All its elements are ei-
ther constant or proportional to k2 and its regular part couples only to the order k* if we look for the inverse.
Therefore, we may put aside these terms altogether and arrive at

-1

2,2 %
=y _ yla*v(0) dq 1 (Vrk)? dQAz(v k) aQ’ ,2(k Vr) R(A . A
XM,W(k)_W 4w 2 A2 )\+4zf f A NTR(G-G) . (4.13)
Exploiting the sum over the unit vectors, the equation is further simplified
-1
*
Xanao (B = 20 o2kt 12 )2fd0q3f LGiTRGG - q)] . (4.14)
.
The remaining §; selects the P, part of I'%: are of the order k* and can be neglected. Thus, Eq.
2 (3.30) remains valid if we replace the BCS approxi-
Xag, 86 (K) = mk2 9 . (4.15) mation L] |,, etc., by their renormalized counter-
Ps

parts. The susceptibilities on different axes can be

This result is valid for all temperatures and includes summarized by

all Landau parameters. It is identical to the expres-

i i i = 3v(0)a%y? _
snon,. we get in the neutral S{nglet supf:r.C(.)nductor. X050 (K) = Y [ _F¢(€likLil£,,[ﬂ€ljl)] 1
If it were only for the static susceptibility of the 4 |

phase, the result would not justify the efforts we
have undertaken as this expression can be achieved
by simple sum-rule arguments.

The matter is different, if we turn to the suscepti-
bilities of 6. The k! dependence of the Landau
term makes sure that we can select exactly those cou-

plings to the normal channel, which are inherent in
the anomalous channel. All additional contributions the form [compare Egs. (4.6) and (4.7)]

(4.16)

The index ¢ is not to be summed over. The BCS part
of L'! has already been calculated in Sec. Il and we
will restrict our attention to the Landau corrections.
The strong-coupling contribution to Xas,.56, takes

4f CIkaeukG,prGF f ql qusqulleF Frs(q (I ) (4.17)
where I'R(§;G’') is determined by a system of nine coupled integral equations:
P80+ [ 407G 3) (A8 + BEEITEG:) =007 ) (4.18)

A =p? is the normal-fluid density and B = p? the superfluid density. Both functions are isotropic and do not
change the symmetry of the equation. Expression (4.17) is simplified evaluating the sums over the permutation

tensors:

[f"—Q—GFf"Q GFri) + [ 4L g4,6F [ 42 4/4/GFTAG4")

dﬂ

- GF e o — [ 44 ‘GFf df’ GFF,'}( )] . (4.19)
471'
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Three different forms of the renormalized interaction
vertex T'R appear: a diagonal part TR, §,TR(§:4),
and TR(§:4 )4,. Again, we taken the K vector parallel
to the z axis. Thus GF contributes a factor

v n
GF=—%-KF—ps°kq3 . (4.20)
It will prove to be convenient to include one super-
fluid density p? into the interaction vertex I'X:
Frlgps0 | I
I'" on the right of Eq. (4.18) is now substituted by
I'"-pd. Next, we define an operator

1+Af FT(q q)

and apply its inverse from the left to Eq. (4.18).
This gives rise to a new integral equation for I',

oAt dQ mfmn oy _
Ie(g:q )+f—4;r—F(T:q 7)459.T i (7:4)

=8, (T:G-¢) , (4.21)
where T is determined by
B+ [ 427G DRG-3)

=pT7(3-¢") . (4.22)

I'" is, as usual, expanded in terms of Legendre
polynomials
r’(g-¢')= 3 FP(G-4) , (4.23)
=0
where Ff are the antisymmetric Landau parameters.
Equation (4.22) can be solved immediately

’

a, 0
Fips A Al

[(rq-4)= ; L+ [1/20 + 1) 1Ffp? 7hia-a)
=Y FP(G-¢) . (4.24)
=0

Thus, all temperature dependence of Eq. (4.18) has
been included in a scaling of the Landau parameters.
Equation (4.21) reveals some useful symmetry prop-
erties of '

T(G:4") =Ty (G4) (4.25)
and

I(§:¢)=Tr(=G:=G") .

We noted above that, besides a diagonal term, only
the expressions ¢,I',; and I‘s,é,' are necessary to
evaluate the Landau corrections. We can avoid the
utmost cumbersome handling of nine coupled in-

tegral equations (4.21) defining a vector G,(§:4")
Gi(4:4) =T3(3:4)4, =4,T,5(§4) (4.26)
and thus
0TG4 =Gy(§1g) . (4.27)

The renormalization equation (4.21) does not depend
on kK. The only vector, from which the index s can
be constructed,-is the unit vector ;. Thus G is
built up of two isotropic functions ¢(§ - §') and

(G-q)
G(§:6)=v(G-¢)d +é(G-)d, . (4.28)

which can be expanded in terms of Legendre polyno-
mials

W(G-d)=3wP(G-§) ,
/ ! , (4.29)
6(G-d)=3dP(G-d) .
1

G, is determined from Eq. (4.21) multiplying it from
the right with q,

6,30+ [ 4L  0)3,3,6,(7:)

’

=4, T(G-¢) . (4.30)

If G, is known, we can apply once more Eq. (4.21) in
order to calculate I'y,. -Making use of the symmetry
properties defined above, we arrive at

Ty (3:¢)=T(g-

-

)8y

= Q)

G-7)3,G,(G3) . (431)

‘*l

Before solving Egs. (4.30) and (4.31), let us turn
once more to the static susceptibilities Xs,.80,- Their

BCS value is very simple and has been calculated in
the last chapter. In order to clarify the influence of
the Landau parameters we define two temperature-
dependent functions which indicate the deviation of
the longitudinal (1 =3) and the transversal (=1, 2)
static susceptibility from their BCS value

X7 K) =x7"(K) lpesR;
_ - (4.32)
X7HEK) =x71(K) |gesR,

We insert the expansion of G, in terms of ¢, and
into Eq. (4.19) and this into (4.16) and obtain ex-
ploiting the BCS results of Sec. III

194 —25¢p — 4, + ]72413)
(4.33)

Ri=1++ (25C,

and

Ri=1+-(25C,— 8¢+ 243 —3¢)) .  (4.34)
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The constants C; and C, are due to the first term in
Eq. (4.19):

o ssar 2

We can take another point of view. §3 is identical to
P (cos®@), so the double integral selects the C{ part
of an expansion of I',; in terms of spherical harmon-
ics:

Fss(é;él)

4.35
Fzz(q,ll ) ( )

I,(§:4)= (C[;",”"),SP["(cos()) Pl'i'l(cos{)')cosm ¢ cosm'ep’
+ (DI;'i”" ),SP,’"(COSQ)PI'Z" (cosd’)

X sinm ¢ sinm’¢’ (4.36)

al Fio +af Fra
+ [1/(21 + 1)]((1,,.|F~1_] +a,'4:117‘,+[)

F

T ——(aLa/" +a/a/i) | +

! ,a. + 11+ Fi
a1-201-1 Y12 I+ 1

M. DORFLE

1 1"
— A Y-~ G Yrey

F
21 +1

2

Thus, we have only to look for terms proportional to
P,(cos#)P,(cosf’) in Eq. (4.31) in order to extract
the relevant C, and C;:

(4.37)

Cr=F, =5 F (154, +25¢9 +44,) ,

G (4.38)

=F1‘7]5”ﬁ1(5¢1 +3¢,) .
The four constants ¢, i3, ¢g, and ¢, are determined
from Eq (4.30). To determine \p(q §') and

(G -§¢') we multiply (4.30) with 4, and §,, respec-
tively. We get two coupled integral equations, which
can be transformed into algebraic ones applying the
expansions (4.29) and the addition theorem for
spherical harmonics:

(4.39)

1+

i _
—aaly + (ay - +ai y=F
1+1%+2 Y142 1| 111+ a4 Dy I

(4.40)

where @/ = (I +1)/(2/+1) and a,"=1/(21 +1). The system of equations is decoupled for even and odd /,
respectively. According to the Landau parameters which enter into our problem, we are only concerned with odd
I’s. Inserting ¢, into Eq. (4.40), the system is further reduced
a’ha’lh i

01,_2FI-2 +a,"17“,

+ [1/(2/ +1 ) ] ((11{_21"—"1_2 + a,”F,)

—a/a Y+ (I—ala/" —a/ajf )~
a/Fi+a/{,F1
+ [ 1/(2/ +3) ] ('alll‘:[ + a/:)’.zﬁl.;.z)

_—.Fl—a[:_l (4.41)

1
— a4+

In order to solve the system, we start with the first equation ,([ =1) and subtract it from the equation due to
(/=3). The new equation is then subtracted from that due to / =5 and so on. We arrive at

a'a’vi i —aliafadi =K, for 1=1,3,5, ..., (4.42)
where
- F a/F, + a,F,
K=a'F =1+ ="—la/t) ol i ColL B (4.43)
21 +1 L+11/21 +3)1(a/ Fy + a2 F14)

f
Inserting ¢, into Eq. (4.39) we obtain ¢, and from

those, G, and I'y, are reconstructed, respectively.
However, we need not carry out this program, and,

Apparently, the general solution of (4.42) is

"1

a2 613 agy 05

"o

I aj as

d’l = ’ /K‘+ F ot K5+ Ty A
aa, ajaazay ajayasajasag the complete solution of s, ¥3, ¢g, and ¢, is not re-
quired.
o To demonstrate this proposition, we substitute ¢,
Y3 = ,l K3+ ’a4,a5’ K . and ¢, in R; and R, by ¢, and 3 according to Eq.
asa, a3A4d5a¢ (4.44) (4.39). It is a matter of simple algebra to convince
’ oneself, that ¢, and 3 enter the problem only in the
1" 1 1" 1
ajas’ag’a i : inati
49445 5, '7 Kot o, linear’ combination
asasasagala
3T4E3TeTT8 Y=y (4.45)
Ps= - etc. This, however, is the same expression which occurs
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in the first equation (/=1) of the algebraic system
(4.42):

1~ |~
sF—5F;
bi— Ty =3——T1 (4.46)
I +5F+ 50 F

We point out that this is true in the whole tempera-
ture regime and without any assumption on the Lan-
dau parameters. In particular, we have not assumed
that the higher Landau parameters vanish, as it is
usually done in the literature. Now, we can insert
(4.46) into R, and R, [Egs. (4.33), (4.34), (4.37),
and (4.38)] and obtain finally:

(1+1F) (1 +1Fy)
R/= 7 ~ 3 =~ » (447)
1+EF+3F,

(1+%F1) | = 5 =
R'=% > T (4+TF'+7F3) . (4.48)
l+—|5—F1+¥F3

These results are exact within the scope of the
mean-field approximation. The crucial ratio of the
various static susceptibilities of the hydrodynamic or-
der parameters mentioned above [cf. Eq. (3.35)] is
alterated to

X5¢:X,:X[=R¢—' :SR,_] : ]OR/—I , (4.49)
where R4=1/(1 +%FT ).

V. DISCUSSION

The susceptibilities studied above, have also been
calculated by Brinkman and Smith'* and by Cross."
Brinkman and Smith started from a Ginzburg-Landau
functional for the triplet order parameter A; of SHe
and specialized it for the case of the B phase. Their
result is restricted to temperatures near 7,. The in-
verse static susceptibility is obtained by differentiating
the functional twice with respect to the variable 8¢ or

(1+3FO+2F9)

86,. The BCS approximation expressions, calculated
in Sec. III, are in complete agreement with theirs.
They were the first who indicated that the ratio

X, : X, is temperature independent within the BCS ap-
proximation.

The work of Cross went far beyond that. He gen-
eralized a method developed by Werthamer? in order
to calculate the current and free energy in s-wave su-
perconductors to the case of superfluid *He. His
starting point was the Gorkov equations, which he
exploited to get an expansion of the Green’s function
in terms of the wave vector k. Out of these he could
determine the current and the free energy. Landau
corrections have been taken into account, but he re-
stricted himself to Ff and F{. His results emerge as a
special case from ours if we put F3=0.

We were concerned with the linear-response func-
tions of the hydrodynamic order-parameter variables.
Were it not for a terrible amount of algebraic work,
we could, in principal, also evaluate the dynamic
correlation functions by the same method. In that
case, we would expect to recover all the hydrodynam-
ic modes, predicted by the phenomenological theory,
and beyond that, a lot of microscopic modes (i.e.,
modes with finite frequency in the limit k —0). As
far as the static susceptibilities are concerned, we ar-
rived, although on a quite different path, at results
which are in complete agreement with those of Cross,
if F§ is neglected. Our results for F§ # 0 are new.

We note some general features of the new results:
(a) Within the mean-field approximation, the static
susceptibilities of the hydrodynamic order-parameter
variables in spin space involve only two Landau
parameters F{ and F$.

*
T I -
mm=mf%p%ﬁﬂ, (5.1)
*
= I p-
X (K) =52 R, (5.2)
' ni? | pdk?

where # is the particle density of *He and

| 2 | 3 1
L+ Ftpn + 55 Fipd + 5 FSpa + 55 Fips + 57 FiFS (p))?
Rl (1+5F) (1 +5F5p)) . Fip) . Fip) 5
=7 5 += .
t 1 3 1 :
SR+ R el T Fp)+ 5 Flpl + 5 FIFS(p) | P 1+ L0 T 1+ 2 Fp0

(b) Below T, the total influence of temperature
and the strong-coupling effects can be gathered defin-
ing new temperature-dependent Landau parameters

Fo Fip) ‘
I/ QI+ 1D))Fp?

(5.5)

[

Thus, we can preceive each change of temperature or

pressure as the change of an effective Landau param-

eter F; This feature of the renormalized Landau

scattering vertex I',; will emerge in all expressions,

which involve fluctuations in the normal channels.
(c) We are now prepared to write down the gra-
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dient part of the superfluid free energy, exact within
the scope to mean-field theory

0

2 Ps
Fo=—"—p (V) +
s smps( d’) 1om*

X {RI(V,0,)(V,0,) —(V,:0,)(V,0)]1

+1RI3(V,0,)(Vo0)—(V0)21) . (5.6)

where we have made use of the expression given by
Cross.!”

From the experimental point of view, the static
susceptibilities of 56 influence two measurable quan-
tities. They enter the spin-wave velocities ¢ and ¢}
and the structure of magnetic solitons. As for the
spin-space velocities, the linear hydrodynamics ob-
tains'?

=y Owx) . =y o) )

where v is the gyromagnetic ratio, X, the static sus-
ceptibility of the magnetization, and X,, X,

X (K)=x,/k% x,(K)=x,/k? , (5.8)

respectively. Thus, the ratio of ¢ and ¢} depends
only on F¢ and F§ and the temperature
2R,

R,

I

2
ol (5.9)
Equation (5.9) predicts a fixed relation of F{ and F4.
It may be used as a test of the validity of the mean-
field approximation which was applied to derive it.

The influence of F§ and F§ may also be seen in the
bound spin-wave states associated with the i soli-
tons. Maki and Lin Liu?* calculated the satellite lines
which occur in the NMR spectrum, if the order
parameter has undergone a spacial texture. Their
starting point was the gradient free energy for the
spin-space order parameter. The influence of the
Landau coupling has been taken into account by a
parameter A(7T) which takes the form

1
1+1¢

A=—T", F (5.10)
I+5¢

|-

¢=

in a model where only F¥ is retained. In the general
case, it reads
2R, — R,
A=
R,

(.10

¢} is another Landau-coupling dependent quantity

entering their theory. From measurements of A and
c! one can determine F§ and F%.

Up to now, only F{ is estimated roughly making
use of the exact sum rule for forward scattering and
of the sp approximation. The value of F§ (——0.8)
indicates that the spin-wave velocity should be re-
duced by some 10%, but we have to bear in mind
that this estimation only is valid if all Ff for [ > 2
vanish. Looking for the general behavior of ¢ ~ R,
and ¢ ~ R, we predict that ¢ is more influenced by

¢ than cf. If we assume, for the moment, that
F§ =0 and F§ =-3.5 then ¢} would be lowered by
29%, whereas cf by 11%. The qualitative structure
persists if F{ is finite. F{, however, does not distin-
guish in a considerable amount ¢ and c¢f. Its total
influence, however, is much stronger than that of 4.
If we suppose F{ =—1.5 and F§ =0 then both veloci-
ties ¢ and ¢ are diminished by 50%.

Although it seems possible to extract from the
NMR data the antisymmetric Landau parameters F¢{
and F§ we must bring in a jarring note. Up to this
point, we have taken into account only the mean-
field correction. Other contributions, which flow
from the next order of the free-energy functional &,
have been neglected. Serene and Rainer,?""?? howev-
er, have pointed out that there may occur substantial
errors if contributions due to the next order of the
expansion of the functional in terms of 7,/T are
neglected. Serene and Rainer calculated the correc-
tions in the temperature regime near 7,. They
proved to be always less than 10%, which, however,
is the same amount, we expect for F{ and F§. These
contributions can be taken into account in our calcu-
lation if we include all diagrams of & up to the order
(T./Tr). By means of a thorough analysis compar-
able to that of Serene and Rainer?"?? one has to
discriminate the quasiparticle and incoherent contri-
butions to the interaction vertex I'. This program
may be carried out in principle, but it implies a sub-
stantial amount of algebraic work.

Although this reduces our confidence in quantita-
tive results, we think it, nevertheless, interesting to
check the predictions we have made in regard of the
temperature and the pressure dependence as well as
the ratio of ¢ /cf. The discrepancy between ‘‘exact”
mean-field expressions and the experimental results
were a further indication on the strong coupling
behavior of *He.
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