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Static susceptibilities of the hydrodynamic order parameter variables of 3He-8
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The coefficients of the 1/k2 divergence of the static susceptibilities of the hydrodynamic

order-parameter variables in the superfluid 8 phase of He are calculated by means of a micro-

scopic theory. Their Bardeen-Cooper-Schrieffer value as well as the Landau corrections'are
written down explicitly. It is shown that only F~t, F&~, and the effective mass contribute to the

static susceptibilities of the hydrodynamic order parameter in spin space. The results ire com-
pared ~ith those of other cwork, and the experimental implications are discussed.

I. INTRODUCTION

The superfluid phases of 3He provide an interesting
testing ground for many ideas which are of impor-
tance in various fields of physics. There is no other
system with so many broken symmetries in both real
and spin space, due to the 18 degrees of freedom of
the triplet order parameter.

From the beginning special attention has been
drawn to the magnetic behavior of superfluid 'He,
which has turned out as an appropriate tool to identi-

fy the different phases. " Several authors have cal-
culated the dynamical spin-correlation function in or-
der to explain the NMR results. The various Gold-
stone modes have been determined by means of
Green's-functions technique' 8 or by Boltzmann tech-
nique9 in the collisionless as well as in the hydro-
dynamic limit. The price to be paid, as far as the
Green's-functions technique is concerned, is the re-
striction to a weak-coupling model which, in some
cases, includes the paramagnon enhancement. The
phenomenlogical theories, '0 "on the other hand,
give more general results for they exploit the sym-
metries of the order parameter as the only input.
They give also explicit expressions for sound and spin
waves but, in contrast to the pure microscopic calcu-
lations, a set of phenomenological parameters has to
be defined which cannot be determined within the
scope of these theories. The transport parameters
describing the sound attenuation and the spin-wave
damping can be connected with the dynamical corre-
lation functions of the hydrodynamic variables via a
set of Kubo relations. " They can be used as a start-
ing point for microscopic approaches to the transport

parameters. '

A second type of input parameters are the static
susceptibilities. The conserved variables —density,
momentum density, cncrgy denslt'y, and magnetiza-
tion density —give rise to static susceptibilities, which
are found in the normal fluid and the superfluid
phase likewise. Another group of static susccptibili-

ties belongs to the hydrodynamic order-parameter
variables. As hydrodynamic we characterize those
order-parameter variables, which-refer to the broken
symmetries of the superfluid phase. These variables,
together with the conserved ones, form a set of slow
variables from which the hydrodynamic theory is

constructed,
In the hydrodynamic regime, we may separate our

problem into two parts which may be solved step by
step. First, the symmetries of the system are exploit-
ed in order to establish a linearized hydrodynamics
and to evaluate the sound and spin waves. In a
second step, we are concerned with the static suscep-
tibilities and the transport parameters which enter the
hydrodynamic modes. - The static susceptibilities for
k 0, however, are much easier to calculate than the
dynamical ones for finite k and ~, necessary in the
pure microscopic approach.

This paper is devoted to the static susceptibilities of
the hydrodynamic order-parameter variables of super-
fluid 3HC-8. They enter the gradient part of the su-
perfluid free energy.

Brinkman and Smith'~ specialized the Ginzburg-
Landau free energy, calculated by Ambegaokar, de
Gennes, and Rainer, '6 to the 8 phase in the weak-
coupling limit. Cross" evaluated a generalized
Ginzburg-Landau function for A and 8'phase valid in
the whole temperature region. Landau corrections
have been taken into account in terms of the first
Landau parameters F~ and F].

In the present paper we start from the linear-
response functions and specialize them in the static
limit. The results obtained are more general than
those of Refs. 15 and 17 in taking into account the
dependence on all Landau parameters exactly, Com-
plete agreement with both storks is obtained if we
specialize our results by taking the higher-order Lan-
dau parameters equal to zero.

%C show that only two Landau parameters, Fi and

F3, enter the static susceptibility of the hydrodynamic
order-parameter variable in spin space. Below T„wc
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find that new temperature-dependent Landau param-
eters can be defined, which give rise to very simple
results.

In Sec. II we introduce the general procedure. We
generalize a concept, developed by Leggett" for the
neutral s-wave superconductor, to the case of triplet
pairing. In Sec. III the static susceptibilities are calcu-
lated in the weak-coupling limit. We show that the
1/k' dependence of the static susceptibilities is a
consequence of the gap equation. Section IV is devot-
ed to the influence of the Landau parameters on the
static susceptibilites. Section V contains a discussion
of the results and the comparision with other work.

II. LINEAR RESPONSE FUNCTIONS

x (I((((r + —,
' x) ' (a;o2) ((

(xf
(2.1)

Sums over repeated indices are always implied if not
indicated otherwise. The unit vector x/~ x~ selects
the p-wave part of the anomalous expectation value,

The hydrodynamics of the superfluid phases of 'He
is characterized by two types of variables: the con-
served ones and those due to broken symmetries. In
the various phases of superfluid 'He different sym-
metries are broken, depending on the vacuum states.
The order parameter of the B phase has the group
structure U(l) 8 SO(3) and can be parameterized by

a phase factor times a three-dimensional rotation ma-

trix n j. In the A phase the group structure is charac-
terized by S~ 8 SO(3)/Zq thus giving rise to the
bivector factorization of the order parameter.
Throughout this paper we restrict ourselves to the B
phase. Four additional hydrodynamic order-
parameter variables enter the hydrodynamics: (t( and
the three angles characterizing the rotation matrix.
Their static susceptibilities must diverge as 1/k' for
k 0. The physical background is rather simple: the
Hamiltonian is invariant against phase transformation
and transformations of n;, . Thus, it costs no energy
to change globally the phase or the rotation matrix.
Introducing a small inhomogeneity of (1 or nj into
the system the restoring forces which bring the sys-
tern back to its homogeneous state, become infinitly
small as the system appproaches k 0. In other
terms, the inverse susceptibilities must behave at
least like k2 for k 0. It is this feature we want to
calculate by microscopic means.

The superfluid phase of He is described generally
by a complex order-parameter matrix A;, . (Operators
are indicated by the symbol A, their expectation
values are described by the same symbol without",
equilibrium values by a superscript . )

A,j=)l d'XF'(x)(t( (r --,' x)

(a o, ) gives the projection onto the triplet spin axes.
Thus, A,j describes a pairing of a triplet system which
has the symmetry of a p-wave state. The function
F"(x) is chosen in such a way to make sure that al-

ways

A,~A,~ =1 (2.2)

In the 8 phase A„" is proportional to a rotation matrix
tllj'.

1
A jj e flfj e

If
3

(2.3)

The changes of 5A„"(x)=A„"(x)—A;,
0 from the equili-

brium value can be formulated i'n terms of the expec-
tation values of the phase deviation 5(t and the devi-
ation from the angles 58;:

5Aij( x ) (Aij 5r/(( x ) + +ik(5(jk ( x )Alj (2.4)

Due to the high symmetry of the B phase, 5(t( is the
only additional hydrodynamic variable in real space.
Therefore, the real-space part of the 8 phase dynam-
ics is equivalent to the neutral singlet superconduc-
tor, whereas the spin-space part offers a very rich and
complicated structure as we will see below. .

It is our aim to calculate microscopically the static
susceptibilities of 5$ and 58. If we exploit the Bo-
goljubov inequality to show the 1/k' divergence we
make explicit use of various conservation laws, To
show, for example, that X,& ((&(k) —1/k' we must
exploit the number conservation law. Thus it is only
natural that we have to take care that any approxima-
tion scheme we pursue ensures the conservation
laws. The situation were different, if we calculated
the transport coefficients. They are determined by
microscopic scattering processes which occur on a
very short time scale. Thus, a crude Hartree-Fock
approximation may give reasonable expressions,
whereas this procedure fails completely in the case of
the static susceptibilities. This problem is well known
since the early sixties, when Kadanoff and Baym' '
presented a systematic approximation scheme, which
ensures the conservation laws on each stage.

It was applied by Leggett" in order to calculate mi-

croscopically the static and dynamic susceptibilities of
the conserved variables of the singlet superconductor.
The calculations presented here make use of this
work although there are some modifications due to

The four variables 5$ and 5g are the microscopic
operators we look for. They can be expressed in

terms of the operator A„":

5(t(( x ) =—[A,", A,( ( x ) A;( A—jI ( x ) ]

(2.5)

58(( x ) =
4 f&jp[Aj( Ag(( x ) + Aj(Ap(( x ) ]
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the triplet pairing. In order to establish the notations
we give a short summary of the method, but stress
only those points ~here special problems of the trip-
let state are involved.

The static susceptibility of any microscopic variable
can be calculated from the correlation function for
imaginary times

((A ( l )A (2)) ) = {A ( l )A (2)) —(A ( f )) (A (2))

(2.6)

The time ordering is always implied. Taking the
I.ourier transform of space and time we get the static
susceptibilities after continuing the discrete ima-

ginary frequencies to the real axis. The static sus-
ceptibilities of 5$ and 5() can be built up from the

static susceptibilities of the order pir imeter 3„:
(f @( f ) f @(2)) =

,
', I—r,„"»,,

"

x {((4 k IAia)i(A&1 Aji)z) )

(Sf), (l )her(2)) =
, „au—, er,„n"„nul0 0 (2.7

u.

x {((3,, +A,„),(Aj, +A j),)) .

The time-ordered expectation values ({A,„A,I) ) are
related with the line ir response function 2 for imag-
inary times:

Z (12, 1'2') = G2(12, 1'2') —G (1 —1') G (2 —2')

(2.8)
where G2 denotes the two-p;irticle ind G the one-
particle Green's functions:

d3q ~ d3q'
1

{{Ak Aji ))(kcu„)=J,~,y(q)qk(rr;o2), a—, X g' ( q o)i, q'uj, ;kobu„)y(q')rjl (cr, rr2), ,
(2m)' " (2m)' aP

(2.9)

where

Ip(g)qk =
g

d x F( x)

ind 2 is th it p irt of 2 which consists of inomalous
prop ig«tors. The symbol ( ") on the left-h ind side of
Eq. (2.9) is me;int to imply th it both A;k ind A;I,

m;iy be inserted. All st itic susceptibilities of the or-
der parameter 3,) al'c composed of pal tlclc-pcirtlclc

((A;kAji) ) or hole-hole propagators {(A;&Aj/) ) or ol

prop'ig itors which transpose i p irticle-particle fluc-
Jh i A

tuation into the hole-hole channel ( (A;„A;I ) ) and
vice versa ((A;qAil) ). The f'our rows and f'our

columns of the p irticlc-hole m itrix Z are ordered in

the following w;iy: AA, plr, AIr, and Irh (Ir denotes p ir-

ticle, h hole). Thus the left upper 2 x 2 subm itrix is

the anomalous p;irt 2' of g. Vor dctiils we refer to
Rcf. 18.

The response function 2 can be obtained from the
Bethe-Salpeter equation:

2 = (12, 1'2') = L (12, 1'2') + L (13, 1'3')

5'4
(3 4)gG (3f 4I) k(42r 4 2 )

(2.10

where L (12, 1'2') = G (1 —2') G (2 —1'), The con-
servation laws are ensured writing the vertex as a

second functional derivative of a functional without
external lines. The approxim itions are to be carried
out on 4. 'We t«ke into account only the leading or-
der in T,/Tr, i.e., we have

I

tions. Thus, the BCS inter iction;is well is the ef-
fects of the mean field described by the Land iu
p;irameters;ire taken into iccount. '4c have not in-
cluded strong-coupling terms in the sense of Serene
and Rainer, ""which are of' order ( T„/Tj )'.

The leading contributions to the correl ition f'unc-

tions are due to quasiparticlc excititions nc;ir the fer-
mi surface, Therefore-, we separate the one-particle
Green's functions into the quasip irticle part, which is
proportional to the Green's functions of f'rec particles,
and;in incoherent part which is included in the in-
ter iction vertex renormalizing it. After these;ipprox-
imations, we arrive at

Z = L, (1 —r"L, )-', (2.11)

where we h ivc omitted in idditiori il incoherent p irt
of+, which remains finite for k 0;ind therefore
c*innot contribute to the divergent behavior of the
static susceptib. ilities of the hydrodynamic order-
par;imeter v;iriables, Lk is the singul ir qu isipirticlc
part of L =GG. (Since only Li, will be used in the
following, we will drop the index k. ) I" denotes the
quasiparticle irreducible vertex pirt introduced by
Landau. %e neglect its dependence on the quasip ir-
ticle encl'gy ind the frequencies because it is issumcd
to be a smooth function of energy ind momentum
ne;ir the F'ermi surf ice.

Restricting ourselves to the unit iry ph;iscs of su-
perfluid 'Ike, the onc-p irticlc Green's functions read

I Qr~ +
G a(qo)„) =a. . .8 a

———65„„,(2. 12)
cu„+g +

where the square denotes the interaction vertex
and the lines symbolize one-p;irticle Green's func- —= FI'd;(rI) (o,(rt)„„, . (2.13)
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where cv„are the discrete Matsubara frequencies, q
the wave vector, g'=q'/2In' —p the excitation, ener-

gy, b, o the maximum of the gap:

reads

, (V,- k)
GF = —, h. (q, T) (2.19)

and

(2. 14)

and in the normal channel we get

GG +( d ( FF= —a u(0) Y(q, T) (2.20)

Thus, we allow for the A and B phases as well as the
more academic planar and polar phases. According
to our mode11" is diagonal in the particle-hole space.
The scattering in the anomalous channel is described
by the BCS, interaction, the scattering in the particle-
hole channel by the usual quasiparticle scattering ver-
tex:

(BCS)

racs= I )(q q )8 p8„s+ rp(q q ) a po „s, (2.15a)

(Landau)

r~=r'(q q )8 p8„s+rr(q q )o pa„s (2.15b)

Lao(q, k) =a'u(0) J c/g XG p(q + —,
'

k, ru„)

x G„,(q ——'k, „)

The response functions are to be calculated in the
static limit but with finite external wave vector k.
Since the vertex does not depend on the quasiparticle
energy g and the frequencies co„we perform the in-

tegration and summation over the internal variables
at once

where h. (q, T) = —a u(0) [1 —Y(q, T)1 and Y(q, T)
is the anisotropic Yoshida function:

Y(q, T) = Jt d( —,'P sech' —,'P[('+ ~8(q) ~'j'~'

(o, (re)~pL~„p6 (o;a.))„, L„' {2.22)

We start on the left-hand side of an arbitrary di-
agram. By means of simple algebra, one can show

(o;rr)) pG, Gp (I (8,8, +I p, a, )ai i' is i S

=8; GG(r)+I p)( t), , (2.23)

(2.21)

Up to the anisotropy, these expressions are the same
as those given by Leggett. " All other products of
Green's functions can be expressed by Eqs. (2.17)—
(2.21).

The system of integral equations {2.11) can be sim-
plified a good deal evaluating the spin sums. We ex-
pand (2.11) in a ladder diagram by expanding the
right-hand side in a geometric series. Equation (2.9)
shows that both sides of each ladder have to be mul-

tipiied with (a o.q). Thus L', the anomalous subma-
trix of L is converted to

=—GG5 p5, g . (2.16) a lid

u(0) is the density of states at the Fermi surface. A

minus sign on either of the Green's functions indi-

c ~tes that we use the variables

G =G(—(q+ —'k), —(u„)

In order to calculate the leading order in k of the
static susceptibilities we have to expand the propaga-
tors L in terms of k. The results are in the
anomalous channel

G-G+FF(d)'= ' (0)J~dg —'$
p ~~+/~+ )Q)~

, (vr k)'
Z(q, T) (2.17)

[in Sec. 111 it will become clear that we must keep the
(vr k)' term) and

FF = Z(q, T)+
6 ( vr ~ k)' —

~
X(q, T) . (2. 18)

The coupling of normal and anomalous channels

(; t) pF, Fp„(1 (8,8, + rg, , )
ay i' irS ir S 8 i Si

=(2r(i~, d'8,, )FF(r, +r, )-(a~a. ,), . (2.24)

In order to determine the static susceptibilites of the
order-parameter variables, we start always in the
particle-particle or hole-hole channel. Passing step by
step through the whole diagram —a single step being
shown in Eqs. (2.23) and (2.24) —all Pauli matrices
are eliminated and we arrive at

= L;k(1 —I "L')k, ' (2.25)

This is still a system of integral equations due to the
dependence of I on the solid angles.

If we restrict ourselves to the fluctuations in the
anomalous channels, then we arrive at the BCS ap-
proximation of the static susceptibilities. If we want
to take into account the strong-coupling corrections
due to the Fermi-liquid parameters, we have to admit
the coupling to the normal scattering channels which
are described by the remaining parts of L. The
evaluation of spin sums in expressions like (2.22) but
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containing the remaining parts of L does not bring about further difficulties.
In order to deal with all fluctuations possible in the normal channels (i.e., with singlet and tripiet symmetry) it is

convenient to extend the matrices in the particle-hole space. This is done by extending the two-dimensional
normal channel into a four-dimensional normal channel which contains singlet and triplet parts separately. The
vertex matrix I'" remains diagonal, but L is composed of various parts. L' denotes the anomalous propagator

L'(q, k) =
—6 65~

(2d„dp —d 5,~)FF

(2P,'d~' —d 5„~ ) FF
(2.26)

The indices I,p mark the spin axes. In the extended normal channels we take into account singlet Bnd triplet
fluctuations separately which do not couple within the normal channel:

(singlet channel)
f

L. '(q, k) =
,-FrIdI'

(triplet channel)

-Fr Id l'
GG

6-6-8„
(2d,"r&, —5„Id I') FF

l

(2d, dp' —g„, I d I') FF

665,q

The normal channels are coupled to the anomalous
channels by L" and L'~:

(coupling anomalous singlet)

iG Fdp iFG dp'

L ' (q k ) FGd Gpd (2.29)

(coupling anomalous triplet)

L'f(q, k) =
—

e(~ d~G F e(p d~'FG
~ (2.30)

,
—e]~~d~FG ~(p d~'GF

%C take care of all possible couplings constructing
the extended particle-hole matrix L from these con-
tributions:

plied to the isotropic 8 phase. %C neglect the small

symmetry-breaking magnetic dipole-dipole energy
which fixes one of the three parameters due to the
rotation matrix n;, Without loss of generality, we

can Bssufnc PlI" = 51J,- 1.c., thc axes of spin space Bnd

real space are parallel to each other. Thus, d; =A;koqk

becomes identical with the unit wave vector

5$= (A;; -A;;)
2v'3

(3.1)

and the hydrodynamic order parameter variables take
a much simpler form

LC

L(q, k) = L'
La, T

(L")"
LS

0

(L")'
0

T

(2.31)
E3

gi) =
4

&1~(~p —~gk)

'I& 0 0'
I "(q q )= 0 I' 0

, 0 0 I

(2.32)

where I @=I 1+I 2. All elements of L are still func-

tions of k and the internal q. The dtessed response
function Z ls calcUIatcd from Eq. (2.11) applying Usu-

al matrix algebra and integrating over all internal unit
vectors.

Furthermore, the gap 5 and the Yoshida function
V(F/, T ) bccornc Isotroplc.

The polar and the planar phase are two other real
unitary phases. In their case, the equilibrium order
parameter A;, is proportional to 6„"—/;/, and /;/, in the
planar and the polar state, respectively. Although the
path of thoughts is quite similar to that of the isotro-
p1c phase wc will put them Bpal't for they B1'c only of
academic interest.

The calculations can be simplified B good deal fix-
ing k -parallel to the;" axis

III. BCS APPROXIMATION ( Vr ' k ) = WF kq3 (3.3)

Tile expressions (2.26) (2.32) afc vaIKl fof all uni-

tary phases. In this paper, these equations will be Bp-
In this section, wc restrict ourselves to the BCS in-

teraction omitting the corrections due to the coupling
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r~(q q )=r~q;q,
'

(3.4)

to the normal channels. The static susceptibilities
will diverge proportional to I/O' —this feature fol-
lows from the broken symmetries already contained
in the weak-coupling model —whereas the superfluid

density will take the BCS value. Hence, we have to
deal with the reduced set of integral equations (2.25)
and (2.26). In this model, only the fluctuations. L' in

the anomalous channel and the attractive BCS pair
interaction I & = I

~
+ I 2 are taken into account. I @ is

parameterized by

of any ladder. It reads

~dn
J r&(q q)L'(q, k)

4n

"dn'
x J~ r&(q q')L'(q', k)

rl

x JI r~(q' q")L'(q", k)

(3.7)

The interaction vertex I ~ depends only on the angle
between two quasiparticles excited on the Fermi sur-
face. Taking into account the p-wave model (3.4),
the integrals are separable

exploiting that the pairs are condensed in a p-wave

state. The constant I ~ describes the strength of the
attractive pair interaction. It is purely microscopic
and must not occur in any microscopic expression.
The value of 5 is determined from the self-consistent

gap equation

r~q; ~I q;L'(q, k)q„
1T

(3.8)

1=——'r~av(0) J"d4 —$3 p „co„+(+6
n

Comparing the solid angle integrals with Eqs, (2.9),
(2.16), and (2.22) „we recognize that they are propor-
tional to the bare equilibrium propagators,

where we have already exploited that 5 is isotropic.
Inserting the Green's functions it is straightforward

to show that

r
A A

((A;kAy))o
qkL,'(q, k)q( „- „))

((AikA&I) ) o

((A;kA, I) )o

(3.9)

1=—
—, r~(GG +FF) ~k o (3.6)

is an alternative form of the gap equation. The in-

tegral equations (2.25) can be transformed into a set
of algebraic equations: let us write down a small part

The calculations are further simplified passing from
the variables A;k, A;k to A;k + A;k and A;k —A;k. Equa-
tions (3.1) and (3.2) reveal that these variables are
the most appropriate choice in order to calculate the
static correlation functions of 5@ and 88. Rotating
the matrix (3.9), we get

r

L" L" ((( a~A+ A)k(
~A I+A))1)o (((Ak+Ak)(A. I Ajl)))o

L ' L (((A,k
—A,.k)(Ajt +A)()))o (((A,.k —A,.k)(A~I —AJI)))o

(3.10)

The upper indices refer always to the particle-hole
space. Each element in this space is a matrix with two
spin- and two real-space indices:

L"= q~q/ 5,jQ Q+FF 2&A Qj

I

L", Within the BCS approximation, fluctuations of
real-space variables are decoupled from fluctuations
of spin-space variables, since L"=L"=0.

The static susceptibility of the phase $ is obtained
by a linear combination of matrix elements of L":

(3.11)

L"=Jf qkqi[ 8;, G G —FF(2q;—q,
—5„")]=L,„",

4m

v(0)a'y'
Xoy oy(k) = Z;Ikk12r~

where

(3.13)

L~2=L2t —0

(3.12)

L and L are decoupled and can be dealt with in-

dependently. We note, that the fluctuations of the
real-space variable 5@ occur only in the channel L'2,
whereas the spin-space fluctuations are restricted to

(3.14)

If we start from the left-hand side of any ladder,
corresponding to Eq. (3.14) two unit vectors in (3.12)
are fixed in the same direction: q;q„(q, ) . A fin-
ite k brings in a factor (q, )'. Thus, L" takes non-
vanishing values only if the other indices are also
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Zk=L (1 —l~L ) k (3.15)

fixed parallel to each other. Then, Eq. (3.14) is re-
duced to

up the upper left element of the transformed matrix.
%e continue investigating the limit k =0. The

functions 6 Gand II do not depend on j, and we
get

v(0)a'y'
"8$.5$(")=

a X i k.
i,k~i

(3.16)
L; k'( k = 0 ) = —( 6 6 + FF ) ik 0

—8;k

FF—~ik-0 , (P —gk»)—.2

where we have dropped one superfluous index by
writing ii, kk as i, k.

rl;qkg—kG G FFq;q—k(2q;qk g;k)) —.

(3.17)

Summation over repeated indices is not implied here.
lt is convenient to write Eq. (3.16) in terms of a pro-

jector P

lt is useful to reformulate Eq. (3.15)

rL" r '(1 —-rarL22r ')-'-

(1 —f'arL22r ') ' —
1 . (3.22)

The term (1/I"&)1 belongs to the incoherent part of
the static susceptibility and can be neglected because
the 1/k' divergence is only due to the inverse of
1 —I ~L~ . %e obtain

0 0
=-= i rarL22r-'~„„= O ra-,' FF-

0

v(0)a'y'
Xaa, aa( k ) =

4r~
(3.19)

(3.23)

and

100
TpT-'= o o o

,0 0 0
(3.20)

In order to perform the trace, we have only to pick

%e transform the trace by a rotation in such a way

that the projector is reduced to one nonvanishing ele-
ment. This is done by the orthogonal matrix T

where we have made use of the gap equation (3.6).
Obviously, becomes singular in the limit k 0.
The singularity belongs to that linear combination of
A;k which can be identified as the macroscopic vari-
able 8$. The other linearly independent variables get
a finite quasiparticle contribution to their static sus-

ceptibilitiess.

Inspecting the next k order of:, we observe that
each matrix element will be proportional to k . To

- show that the regular part of does not contribute to-

the singular one in order k' we exploit the following
matrix identity: If we look only for a part of an in-

verted matrix, we may restrict ourselves to the inver-
sion of a smaller but renormalized matrix:

~ a (~ —a c-'a )-' -(~ —a c-'a )-'a c-'
a, c -c-'a, (~ a,c 'a, ) 'c--'+ c--'a, (~-a, c 'a, ) 'a,c--- (3.24)

where A and C are quadratic and the inverse of C
must exist. Bi and 82 need not have a quadratic
form. Thus, if we are only interested in a small part
of an inverse, we first 'take into account the coupling
to the other parts and then invert the smaller subma-
trix

I

which has to be omitted. %e arrive at

y2g2v(0) t' dQ )
(vF' k)

Xgy g@(k) = —I ~
4ra

(3.26)

C is taken to be the regular part of:. Bi and 82
are either zero or proportional to k'. Therefore, the
regular part of: contributes only to the order k4 p is the density of 'He. Making use of the gap equa-
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Xsp $p( k ) = m 2/peak' (3.27)

which is the expected result.
Next we turn to the BCS approximated static sus-

ceptibilities of the hydrodynamic order parameter 58
in spin space. Our starting point is Eq. (3.11). Each
ladder is multiplied from the left and the right by the
permutation tensor ~~;k selecting fluctuations which

belong to perpendicular axes. We fix p =3, thus

i, k E t1, 2 j, i.e., there is only a coupling between

L12, 12 ~ L21, 12 ~ L21, 21 ~L12, 21
ll . 11 . ll . r ll

because each internal unit vector jJ must be paired.
The fluctuations indicated here contribute to the
longitudinal part of the order-parameter susceptibility.
I n order to get those fluctuations due to the transver-
sal part, we have to choose p = 1 or p = 2.

We are left with a (2 x 2) matrix equation. More-
over, the cross susceptibilities Xse, », etc. , vanish

completely on account of the proper choice of the
axes. The system is decoupled in three independent
problems.

3u(0)a'y'
Xsg se (k)=

161 ~
6'3jk Lik,JI63)I

u0a22
Tr [PL"(1 —I'~L") ']r2

where

(3.28)

1
1 —1P=—
1 —1

1

and the reduced L 1 1 is defined by

11 11L!212 L
L ll

21, 12 2!,21J

We rotate the matrices under the trace with the
transformation T

(3.29)

tion and the definition of the order parameter A;k, we

can eliminate all microscopic constants and get finally
the same path. L23 23 however, is not identical to
L32 32 with respect to the k dependent terms. Thus,
the transformed matrix equation becomes diagonal
only if k =0. On the other hand, the regular part
couples only in the order k according to the matrix
identity (3.24) and can be neglected

m
Xgy sy (k)=Xsy sy (k)=5

2' 2 ps
(3.32)

Within the BCS approximation, the three hydro-
dynamic order-parameter susceptibilities, present in

the isotropic phase, maintain fixed ratios with respect
to each other for all temperatures:

Xsp sp.'X» se .'Xse se =1:5:10 (3.33)

This feature is an artefact of the approximation and
will disappear if we take Landau corrections into ac-
count.

IV. LANDAU CORRECTIONS

Up to this point, the 1/k' divergence of X~~ s~ and

Xse» has been established, It was shown that the
different characters of the order parameter variables
are fixed by the structure of the gap equation. How-

ever, the results of Sec. III correspond to a weak-
coupling model and do not describe the actual
behavior of superfluid 'He. The large values of the
Landau parameters indicate, that the quasiparticle in-

teraction is very strong and must not be neglected.
Thus, the coupling of fluctuations in the anomalous
channels with the normal channels has to be included
in a substantial theory.

We return to Eqs. (2.25)—(2.32) which contain all

information about fluctuations in the normal and
anomalous channels as we)l as their coupling to each
other. However, we are only interested in the
anomalous part of 2 which describes the static and
dynamical response to fluctuations of the order-
parameter variables. According to our generalized
RPA approximation (2.11)„Zis-calculated from

g = I'" ' (1 —I'"L ) ' (4.1)

and arrive at

Inserting (3.11) and (3.6) we get

(3.30)

3 y'w(0)a'
Xse, se ~ k~ =

8 I (L 1'2'. l2 L2'1'. 21 )

where an additional incoherent part is omitted. The
crucial object is the inverse of (1 —I "L ). The
anomalous part can be extracted applying the matrix
identity (3.24). This procedure can be understood as
a renormalization of the bare L', where all possible
propagations of fluctuations in the normal channels
have been taken into account:

m
Xsy 6y (k) =10

pa
(3.31)

The transversal susceptibility can be calculated along

1-V~L' I $(Lsa)~

1 —1 'L'
0

(4.2)
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we take the choice To begin with, we proceed as we have done in the
previous chapter algebraizing the equations. %C get

8 =8 =( I'—L" —I" L ') ~L, =q„L'qi+qk(L") (1 —I'L') 'L"q,

1 —I'L'
C=

0
1 —I TLT (4.3)

The p-wave assumption makes it possible to rewrite

the BCS set of integral equations into a set of linear

algebraic equations, This procedure cannot be ap-

plied within the normal channels if we want to keep
all Landau parameters. Thus, we are confronted
with 8 mixture of both algebraic and integral forms.
In a first step we have to solve the integral equations
and then may advance to tackle the algebraic prob-
lem.

Thus, we may substitute

1 —r4'L' 1 —r&[L'+ (L'") (1 —I'L') 'L"
+ (L ')'(1 —I L") 'L"'] (4 4)

+q (L ') (1 —I L ) 'Lr'q

where integration with respect to j is implied by the
notation, ~L I.describes fluctuations of the order-
parameter variables Aik, A;k including Fermi-liquid
corrections. This expression generalizes Eq. (3.9).
Again, tt as good pohcy to pass from 3;k BAd Aik to

A f A

+g. + ~;k Bnd A;k —A;k by means of the particle-hole
transformation:

Exploiting the symmetry properties of GF, 6 F, etc.
(cf. Leggett") the spin and the real space decouple
completely, analogous to the case of pure BCS in-

teraction, and we arrive at renormalized L" and L'2

[cf. Eqs. (3.11) and (3.12)]

~ dO dQ .
LkI'&I= J qkqi[-SJG G+FF(2qqj —gj)] +4&~i~ qie;„„q,GF JI q, a~ q GF'I R(q;q )

4m

[g„—r "[GGg„,—FF (2q„q, —g,„)] }-'r'= r,',

dQLg''p= J qkq([ 5gG G-—FF—(2qqj —Sq)]+4 J q;qkGF J q&qi GF'I R(q;q )

[i —r (GG+FF)]-'r*=r' . (4.9)

L contains thc fluctuations of real spBcc BAd L those of sp1A space.
Due to the isotropy of the order parameter the real space is much simpler to deal with than the spin space.

Thus, we start again with the static susceptibility of 8@. Each GF contributes a factor k to the expression (4.8),
i.e., the additional term is at least proportional k . %C are exclusively interested in the lowest k order, i.e., in k,
therefore, only the k =0 part of f'" contributes. In that case, the solution of (4.9) is rather simpie:

I "(q;q }+po(T)J r'(q q)rs(q;q )=r'(q q )

The isotropy of po(T) —the normal-fluid density —and I' induce that r~(q;q ) is also isotropic. I'(q q ) is ex-
pBAdcd ln terms of Lcgcndrc polynomials

r*(q q ) = XFI'PI(q q )
1~0

whcfc F( afc thc symmctrlc Landau parameters Bnd wc obtain

OO Fs

I 0 1+ [I/(2/+ 1 )]F1'po

The static susceptibility of 5@ is constructed of order-parameter fluctuations along parallel spin- and real-space
axes [cf. Eq. (3.16)]. We pointed out, that the fluctuations on parallel axes never couple to fluctuations on per-
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pendicular axes within the BCS model. This remains also true if we take the coupling to the fluctuations in the
normal channels into account: We start from the left with a parallel fluctuation (i.e., i = k;GF —j3k ). The Lan-
dau correction to L'2 takes the form

l' dA -2-, dO' .r r. r g—
/& Jl (tt, j3 '

qj ql q3 I' (q,j )

The solid angle integral on the left selects the P~ and P3 part of the renormalized Landau vertex I"". Making use
of the addition theorem for spherical harmonics, we observe at once that this expression does only contribute if
J = i e ( I, 2, 3 ).

We pass to the smaHer matrix (3.15) and perform the transformations indicated there. All its elements are ei-
ther constant or proportional to k~ and its regular part couples only to the order k~ if we look for the inverse.
Therefore, we may put aside these terms altogether and arrive at

I

t t

(4.13)

Exploiting the sum over the unit vectors, the equation is further simplified

(4.14)

The remaining j3 selects the P~ part of I

&t)y, t)y(") = (1+ '
F) PG)

p, k
(4.15)

This result is valid for all temperatures and includes
all Landau parameters. It is identical to the expres-
sion, we get in the neutral singlet superconductor.

If it were only for the static susceptibility of the
phase, the result would not justify the efforts we
have undertaken as this expression can be achieved
by simple sum-rule arguments.

The matter is different, if we turn to the suscepti-
bilities of 58. The k' dependence of the Landau
term makes sure that we can select exactly those cou-
plings to the normal channel, which are inherent in
the anomalous channel. All additional contributions

l

are of the order k and can be neglected. Thus, Eq.
(3.30) remains valid if we replace the BCS approxi-
mation L~'2 ~2, etc. , by their renormalized counter-
parts. The susceptibilities on different axes can be
surnmarlzed by

3tF(0)a'&'
Xt)tt t)e (k) = [I —I' (ttikLikjt&tjl) l

r c 16I'&

(4.16)

The index t is not to be summed over. The BCS part
of L" has already been calculated in Sec. III and we
will restrict our attention to the Landau corrections.
The strong-coupling contribution to X»» takesr'

the form [compare Eqs. (4.6) and (4.7)]

PdO-- dQ4 ( rjkrjp&tikeiprGF J (I't Vq&sqjetj(GF I rs(tql ) (4.17)

where I'„,(j;(I') is determined by a system of nine coupled integral equations:

rq(q:q )+f rr(q )(q +q, I) Gq(Fq: r)q=q„)q'(t t )

3 = p„ is the normal-fluid density and 8 =p, the superfluid density. Both functions are isotropic and do not
change the symmetry of the equation. Expression (4.17) is simplified evaluating the sums over the permutation
tensors:

q f FG GF f qG'GF'r.
,", (q;t')+ f qG

4q, GF f FG'qtGF'r"(t;q ),',',,
'

GF f r„(q;t )t, q, GF' —Ji q, q, GF f GF I,", (t:q ) . (q.(9)''
).
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Three different forms of the rcnormalized interaction
vertex I'R appear: a diagonal part I,as, q„I „~(q;q ),
and I'sa(q;q )q, . Again, we taken the k vector parallel
to the z axis. Thus GF contributes a factor

tegral equations (4.21) defining a vector 6, (q;q )

G, (q;j ) =—I „(j;j)j, = j„I„(q;j)

GF =
4 ps kg'3 q, I „(q;q ) =G, (q;q) (4.27)

It will prove to be convenient to include one super-
fluid density p, lAto thc lAtcractloA vcrtcx I „:

IR O~I
rs ps rs

The renormalization equation (4.21) does not depend
on k. The only vector, from which the index s can
be constructed, is the unit vector j,. Thus, G, is
built up of two isotropic functions Q(q q ) and

I'r on the right of Eq. (4.18) is now substituted by
I " po. Next, we define an operator G, (q;q ) = A(q q )q, + 4(q q )q* . (4.28)

which can be expanded in terms of Legendre polyno-
mials

and apply its inverse from the left to Eq. (4.18).
This gives rise to a. Aew integral equation for I"„ (4.29)

Iss(q'q )+J' I(T'q'q)qsq~f~s(q'q )
4m

=8 r(rq q) (4.2i)
G, is determined from Eq. (4.21) multipiying it from
the right w'ith j,

where I ls dctcrmlAcd by G, (q;q ) + „ I"(q q ) q, q G, (q;q )

f'(q q )+p' I'(q q)f'(q q )
4m

=p,'I'r(q q ) . (4.22)

I "is, as usual, expanded in terms of Legendrc
polynomials

—= X FiP, (q q )
» 0

(4.24)

I"r(q q ) = XFi'P (q q )
» 0

where F»' are the antisymmetric Landau parameters.
Equation (4.22) can be solved immediately

OO Fu 0

1+ [I/(2i+1))Fi'po

=q, f(q q ) . (4.30)

If G, is known, we can apply once more Eq. (4.21) in

order to ca1culate I'„. - Making use of the symmetry
properties defined above, we arrive at

I'„(q;q ) =1(q q )8„

I'(q q )q, G, (q;q ) .. (4 31)
dA-

Before solving Eqs. (4.30) and (4.31), let us turn
once more to thc static susccp'tlbllltlcs /san gy . Thclr

f

BCS value is very simple and has been calculated in

the last chapter. In order to clarify the influence of
the Landau parameters wc define two temperature-
dependent functions which indicate the deviation of
the longitudinal (r =3) and the transversal (r =1, 2)
static susceptibility f'rom their BCS value

Thus, all temperature dependence of Eq. (4.18) has
been included in a scaling of the Landau parameters
Equation (4.21) reveals some useful symmetry prop-
CftlCS Of I rs

xi '( k) =x, '(k) lscsRi

x, '(k) =x, '(k) lacs~s
(4.32)

I „(j;q ) =I"„(j;j)

I „(q;q ) =I „,(—q;-q )

(4.25)
We insert the expansion of G, in terms of @, and iisi

into Eq. (4.19) and this into (4.16) and obtain. ex-
ploiting the BCS results of Sec. III

Ri = I + —, (25Ci —l9iisi —25@o—4@2+—, i(i, )l . l2

%c noted above that, besides a diagonal term, only
the expressions j,I „, and I „j,are necessary to
evaluate the Landau corrections. %c can avoid the
utmost cumbersome handling of nine coupled in- R, = 1+—(25C, —8/i + —,iis3

—3sts2)

(4.33)
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The constants C» and C, are due to the first term in

Eq. (4.19):
Thus, we have only to look for terms proportional to
PJ (cos8)P, (cos8') in Eq, (4.31) in order to extract
the relevant Ci and C, :

(4.35) CJ = FJ
— FJ—(15/ J + 25JtJO+ 4JtJ2) (4.37)

%e can take another point of view. j3 is identical to
P~(cos8), so the doubie integral selects the CJOJO part
of an expansion of I „in terms of spherical harmon-
1CS:

+ (D„)„,PJ (cos8)P," (cos8')

~ sinm Jt sinm'@' (4.36)

I „(j;j) = (C„, )„PJ (cos8)P, (cos8')cosmic cosm'JtJ'

C, =FJ — FJ(—5$J+3JtJ2) (4.38)

The four constants QJ, JIJ3, Po, and Jt q are determined
from Eq. (4.30). To determine P(j q ) and

P(j j ) we multiply (4.30) with j, and j„respec-
t1vely. %e get two coupled 1nteg1al equations, wh1ch

can be transformed into algebraic ones applying the
expansions (4.29) and the addition theorem for
spherical harmonics:

Q»- 1 ~i-1+ Q»+1~&+1
i al-I 'Io Jal—+I JiJJ+J

I + ] I/(2i + I ) ] (aJ' JFJ &+-aJ'+-JFJ+t)
(4.39)

Fi Fi

2/ + 1 2/ + 1
al-2aJ-1 Al —2 + I + II(«'-J«" +aJ'«+J ) eJ+ aJ'+iaJ'+~

2/+ 1

I'»
IJJ+2+ 1 + (al-I AJ I +aJ+I @—I+\ ) = FJ2/+ 1,

(4.40)

where aJ' = (I+ I)/(2i+ I) and aJ" = I/(2i+ I). The system of equations is decoupled for even and odd I,
respectively. According to the Landau parameters which enter into our problem, we are only concerned with odd
i 's. Inserting $J into Eq. (4.40), the system is further reduced

aI 2al JJI-JJ-2-+ ( I al 'JaI aJ al+1 -) rJI al+Jal+2 Al+2

ai' 2J'» 2+a»"F» Qi'Fi + Qi'+2F»+2
=F(-Q»'1 Ql+1 (4.4 i)

I + ( I/(2/+ I ) ] (aJ' zFJ 2+ aJ"-FJ)-I+ ] I/(2i + 3) ] ('aJ'FJ + aJ'+zFJ+2)

In order to soive the system, we start with the first equation (i =1) and subtract it from the equation due to
(i = 3). The new equation is then subtracted from that due to I = 5 and so on. %e arrive at

aJ aJ+J 6 aJ+JaJ+2 AJ+2 = ItJ (4.42)

F» „Q»'~i + ai'+2Fi+2
E» —Qi F/ i 1 + Q»+12i+ I, I+[I/(2i+3)](aJ'F, +aJ+,FJ+, )

(4.43)

1 Q4 as
, K3+ . . . , R's

Q3Q4 Q3Q4Q)Q6

II fl II II
Q4 Q5 Q6 Q7

Q3Q4Q5Q6Q7Q8

(4.44)

Apparently, the general solution of (4.42) is

II II II II II II
1 Q2 Q3 Q2 Q3 Q4 agf1= +]+ +3+ I I +5+ ' ' '

Q]'Q2 Q]'Q2Q3Q4 a]'Q2a3a4a5a6

3 (4.45)

Inserting p; into Eq. (4.39) we obtain Jt J and from
those, 6, and I"„are reconstructed, respectively.
However, we need not carry out this program, and,
the complete solution of QJ, JiJs, Qo, and @2 is not re-
quired.

To demonstrate this proposition, we substitute JtJO

and JtJ2 in RJ and R, by JIJJ and JIJ3 accord&ng to Eq.
(4.39). It is a matter of simple algebra to convince
oneself, that P~ and P3 enter the problem only in the
11near combination

IIJs = ' ' ' etc. This, however, is the same expression which occurs
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in the first equation (/ = l ) of the algebraic system
(4,42):

3F]

1+—F1 +—F315 35

%e point out that this is true in the whole tempera-
ture regime and without any assumption on the Lan-
dau parameters. In particular„we have not assumed
that the higher Landau parameters vanish, as it is

usually done in the literature. Now, we can insert
(4.46) into R, and RI [Eqs. (4.33), (4.34), (4.37),
and (4.38)] and obtain finally:

(l + —,
' Fi) (l + —,

'
F3)

R(= A'

I +—F1 +—F315 35

(1+-,Fi)
(4+-,' F, +-,'F, ) . (4.48)

1+—'F1 +—'F3
15 35

These results are exact within the scope of the
mean-field approximation. The crucial ratio of the
various static susceptibilities of the hydrodynamic or-
der parameters mentioned above [cf. Eq. (3.35)] is

alterated to

Xsy: Xr: X(=~y~]: S~f ':10

where Rg= l/(l+ —,Fi ).

(4.49)

V. DISCUSSION

The susceptibilities studied above, have also been
calculated by Brinkman and Smith' and by Cross.
Brinkman and Smith started from a Ginzburg-Landau
functional for the triplet order parameter A„" of 'He
and specialized it for the case of the 8 phase. Their
result is restricted to temperatures near T, . The in-

verse static susceptibility is obtained by differentiating
the functional twice with respect to the variable 8$ or

~ {k)
ne'

$

f

x(k)=5 R
na'

{s.l)

{5.2)

where n is the particle density of He and

50;. The BCS approximation expressions, calculated
in Sec. III, are in complete agreement with theirs.
They were the first who indicated that the ratio
X(.'X, is temperature independent within the BCS ap-
proximation.

The work of Cross went far beyond that. He gen-
eralized a method developed by %erthamer" in order
to calculate the current and free energy in s-wave su-
perconductors to the case of superfluid 'He. His
starting point was the Gorkov equations, which he
exploited to get an expansion of the Green's function
in terms of the wave vector k. Out of these he could
determine the current and the free energy. Landau
corrections have been taken into account, but he re-
stricted himself to F[ and F]. His results emerge as a

special case from ours if we put F3 ———0.
%e were concerned with the linear-response f'unc-

tions of the hydrodynamic order-parameter variables.
%ere it not for a terrible amount of algebraic work,
we could, in principal, also evaluate the dynamic
correlation functions by the same method. In that
case, we would expect to recover all the hydrodynam-
ic modes, p'redicted by the phenomenological theory,
and beyond that, a lot of microscopic modes {i.e.,
modes with finite frequency in the limit k 0). As
far as the static susceptibilities are concerned, we ar-
rived„although on a quite different path, at results
which are in complete agreement with those of Cross,
if'F3 is neglected. Our results for F~ &0 are new.

%e note some general features of the new results:
(a) %'ithin the mean-field approximation, the static
susceptibilities of the hydrodynamic order-parameter
variables in spin space involve only two Landau
parameters F [ and F3.

(1+—F1 ) {1+—,F3 )
R(= {s.3)

{1+—,F[ ) {1+—„F3P„")
R = —„I 4

+—
7 11+

7
F3PO

F(p,

l+ [l/(2i+ l)]Fp„'
{s.s)

(b) Below T,'„ the total influence of temperature
and the strong-coupling effects can be gathered defin-
ing new temperature-dependent Landau parameters

Thus, we can preceive each change of temperature or
pressure as the change of an effective Landau param-
eter F(„This feature of the renormalized Landau
scattering vertex I"„will emerge in all expressions,
which involve fluctuations in the normal channels.

(c) We are now prepared to write down the gra-
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dient part of the superfluid free energy, exact within

the scope to mean-field theory

F, = —

&, ('7y)'+

x (R, [( 7,e.)('7,e.) —(v, e.)(v.e, )]

+ —,&, [3(r7,e.)( 7.e, ) —(r7, e, )'] }, (5.6)

where we have made use of the expression given by

Cross.
From the experimental point of view, the static

susceptibilities of 58 influence two measurable quan-
tities. They enter the spin-wave velocities c]] and cq

and the structure of magnetic solitons. As for the
spin-space velocities, the linear hydrodynamics ob-
tains

cg =y (x~x, ) ', c)) =y (xMXI) (5.7)

~here y is the gyromagnetic ratio, XM the static sus-
ceptibility of the magnetization, and XI, X,

x, ( k) = x,/k', xI( k ) = x,/k', (5.8)

respectively. Thus, the ratio of c~ and e]] depends
only on Fl and F3 and the temperature

2R,

R»
(5.9)

(5.10)

in a model where only F] is retained. In the general
case, it reads

2R, —RI

R!
(5.11)

t. q is another Landau-coupling dependent quantity

Equation (5.9) predicts a fixed relation of Fl and F3.
It may be used as a test of the validity of the mean-
field approximation which was applied to derive it.

The influence of F~~ and F~q may also be seen in the
bound spin-wave states Bssoclatcd with thc A soll-
tons. Maki and Lin Liu'4 calculated the satellite lines
which occur in the NMR spectrum„ if the order
parameter has undergone a spacial texture. Their
starting point was the gradient free energy for the
spin-space order parameter. The influence of the
L lndau coupllAg has bccA taken lAto BccouAt by a
parameter h. (T) which takes the form

entering their theory. From measurements of A. and

cq one can determine Fl and F3.
Up to now, only F[ is estimated roughly making

use of the exact sum rule for forward scattering and
of the sp approxlmatlon. The value of Ff ( —0.8)
indicates that the spin-wave velocity should be re-
duced by some 10'/o, but we have to bear in mind
that this estimation only is valid if Bll F»' for I & 2

vanish. Looking for the general behavior of cz —R,
and c]~

—R» we pt'edict that c]] is more influenced by

F3 than cq. If we assume, for the moment, that
F] =0 and F3 = —3.5 then c[] should be lowered by
29"/o, whereas eq by 11"/o. The qualitative structure
persists if F] is finite, F], however, does not distin-
guish in a considerable amount cq and c]]. Its total
influence, however, is much stronger than that of F3.
If we suppose F] = —1.5 and F3 = 0 then both veloci-
ties cj2 and c]2] are diminished by 50')/o.

Although it seems possible to extract from the
NMR data the antisymrnetric Landau parameters F]
and F3 we must bring in a jarring note. Up to this
point, we have taken into account only the mean-
field correction. Other contributions, which flow
from the next order of the free-energy functional 4,
have been neglected. Serene and Rainer, " ~' howev-

er, have pointed out that there may occur substantial
errors if contributions due to the next order of the
expansion of the functionai in terms of T,/Tq are
neglected. Serene and Rainer calculated the correc-
tions in the temperature regime near T, . They
proved to be always less than 10"/o, which, however,
is the same amount, we expect for Fl and F3 ~ Thcsc
contributions can be taken into account in our calcu-
lation if we include all diagrams of 4 up to the order
(T,/TF)'. By means of a thorough analysis compar-
able to that of Serene and Rainer" "one has to
discriminate the quasiparticle Bnd incoherent contri-
butions to the interaction vertex V. This program
may be carried out in principle, but it implies a sub-
stantial amount of algebraic work.

Although this reduces our confidence in quantita-
tive results, we think it, nevertheless, interesting to
check the predictions we have made in regard of the
temperature and the pressure dependence as well as
the ratio of c~f/ct. The discrepancy between "exact"
mean-field expressions and the experimental results
were a further indication on the strong coupling
behavior of 3HC.
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