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Quantum tunneling and motional narrowing of HD NMR line shapes in solid hcp H2
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The observed narrowing of the NMR line shapes of HD impurities in solid parahydrogen is

interpreted in terms of a motional narrowing effect due to quantum tunneling. This model is

successful in describing the dependence of the HD linewidths on the orthohydrogen concentra-
tion. (0.1 —4 at. 0/0) and predicts a tunneling frequency J —1 kHz. This value can be understood
in terms of current views of tunneling in quantum solids which predict that three-body cyclic
permutations dominate the tunneling processes in hcp He and H2. Estimates of the tunneling

frequencies to be expected for H2 based on the experimental values for He are in close agree-

ment with those needed to explain the NMR results.

I. INTRODUCTION

Low-temperature NMR experiments'2 on HD (400
ppm) and ortho-H2 (0.1 —4 at. '/o) impurities in solid
para-H2 have revealed the existence of a significant
hitherto unsuspected movement of the molecules in

solid hcp hydrogen at very low temperatures ( T & 25
mK). The proton NMR line shapes of the HD im-

purities are apparently Lorentzian and have a
temperature-independent lincwidth at least an order
of magnitude smaller than that calculated for a rigid
lattice. This suggests that the HD line shape is nar-
rowed by some mechanism which modulates the
dipole-dipole interactions between the HD molecules
and the ortho-H2 molecules (the para-H~ molecules
with total nuclear spin I =0 do not contribute).
Nevertheless, thc linewidths of thc signals attributed
to isolated ortho-H2 molecules' are not narrowed and
any mechanism used to explain the motional narrow-

ing of the HD spectra must bc effectively quenched
for the ortho-H2 molecules.

These properties can be understood if one intro-
duces a large three-body cyclic permutation rate for
molecules in hcp hydrogen analogous to that predict-
ed for hcp 'He. ' Early estimates of the tunneling (or
exchange) rate in solid hydrogen based on two-

particle exchange calculated using single-particle
Gaussian wave functions and two-body Jastrow corre-
lation functions lead to very small two-body exchange
frequencies4 (10 4 to 10 ' Hz) which are at least
t)ree orders of magnitude too small to explain the
NMR results. This method which considers only
two-body correlations is, however, inadequate for thc
description of the correlations during the tunneling
processes. The theory of tunn'cling in quantum crys-
tals has to be reexamined in order to understand the
origin of the preponderant four-body and three-body
tunneling rates (with respect to two-body exchange)

needed to explain the unusual properties of solid 'He
at temperatures ~here the exchange leads to nuclear
spin ordering. 5 8

Delrieu, Roger, and Hetherington3 '8 have made a
first step in this direction by considering the restric-
tion imposed by the hard-core repulsions on the
"true" wave function during the tunneling. They
show that the most significant type of tunneling is
that which requires the least disturbance for the sur-
rounding atoms. Four-particle permutations are
favored for bcc 3He while three-particle permutations
dominate the tunneling processes in hcp 'Hc. , This
means that thc "exchange" frequencies deduced
from NMR experiments in hcp 3Hc should bc attri-
buted principally to three-body cyclic permutations
rather than two-body exchange. For example, we
consider a box of hard spheres representing the
atoms located at the sites of an hcp lattice; at high
densitics, when thc box is small, no exchange of the
spheres is allo~ed and on increasing the size of the.
box (thereby reducing the density) the first type of
exchange that is allowed is a three-body cyclic permu-
tation. (The reader is referred to Ref. 3 for a
comprehensive discussion. )

In Sec. II we present two methods for the estima-
tion of thc permutation frequency in solid para-H2
using the simple model of Dclrieu et al.3 '8 %e
show that solid H2 is similar to solid 'He at a density
of 15 cm'/mol. This model fits quantitatively the
observed frequencics in solid hcp 3He as a function
of the density and we use it to calculate the tunneling
frequency in solid H2. The essential point is that the
Gaussian overlap formula for the exchange used by
Oyarzun and Van Kranendonk' must be replaced by a
formula for the tunneling frequency which is ex-
ponential and not Gaussian. The physics of the tun-
neling processes in the model presented below is par-
ticularly transparent and wc limit the analysis to a
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simple formulation.
In Sec. III we discuss the physical consequences for

the experimental results and in particular explain why
HD impurities undergo fast movement contrary to
ortho-H2 impurities for which interchange is inhibited

by their large mutual quadrupolar interactions. Final-
ly, we present additional physical consequences of the
tunneling motion which remain to be tested.

II. CALCULATION OF THE TUNNELING

FREQUENCIES

A. Previous calculations

Oyarzun and Van Kranendonk have estimated the
exchange frequency in solid hydrogen by using the
simple formula obtained by Guyer and Zane from the
overlap of single-particle Gaussian wave functions

a' smaller than those quoted by Sarkissian" (by ap-
proximately 2) and for Hansen and Levesque's
values we calculate using formula (I), exchange fre-
quencies J —5 GHz for V,„=24 cm'/mol and
J-200 MHz for V,„18cm /mol for solid He.
These theoretical values are 300 times larger than the
experimental values.

In a revised calculation Landesman9 finds a dif-
ferent preexponential factor for formula (I) which
reduces the calculated values of J by a factor of ap-
proximately 10. Since the values of 0, are signifi-
cantly larger for solid H2, it is clear that we cannot
have any confidence in the crude formula (I) for the
exchange frequency. The most compelling reason for
reanalyzing the calculation of tunneling frequencies
in quantum solids is the need to understand the ori-
gin of the three- and four-particle exchange needed
to explain the low-temperature properties of solid 'He.

B. Similarities between the tunneling
in solid H2 and solid He

0- is the Lennard-Jones diameter, Rp the lattice con-
stant, m the molecular mass, and o. the width of the
single-particle distribution. They find for H2 at
P =0, J —10 4—10 ' Hz. It is instructive to observe
to what extent the values of J given by formula (I)
fit the experimental values for the exchange in solid
'He. The calculated value of J is extremely sensitive
to the exact value of 0,' in the exponential but the
values of 0.2 reported in the literature are unfor-
tunately inconsistent. Guyer and Zane find values
of J three times smaller than the experimental ones
using the values of 0,' given by Sarkissian'p and it has
been shown by Mac Mahan" that 0,' remains essen-
tially undetermined to within a factor of 2. The most
reliable value of n seems to be that obtained by

Hansen and Levesque" who use an exact Monte Car-
lo integration of the variational wave function to cal-
culate the ground-state energy. They find values of

The first obvious approach is to use the experi-
mental tunneling frequency for solid 'He as a scale to
estimate the frequency in solid H2. %e first consider
the difference in the interaction potentials for H2 and
'He. Both are essentially hard-core potentials with a
small long-range attractive contribution (see review
paper of Silvera"). It is interesting to normalize
these potentials U(r) to their hard-core diameter a
using reduced units r/a and (U)2mo'/lr' The v. alue
of the hard-core diameter is given by Kalos et al. '4 as
the scattering length of the respulsive hard-core con-
tribution to the potential, a =0.8368'-, where o- is
the characteristic length of the Lennard-Jones poten-
tial [U(o) =Ol. The values of these parameters for
H2 and 'He are listed in Table I and the normalized
potentials are compared in Fig. 1. The potential for
H2 is deeper than that for 'He resulting in a shorter
equilibrium distance r„(in reduced units) for H~.
The value of I'« for H2 at V,„=22.8 cm '/mol

TABLE I. Parameters used in the calculation of the tunneling frequencies in hcp He, hcp H2, and hcp D2. R,„and ~,„define
the minima of the pair potentials of Fig. 1 in reduced units. a =0.8368cr is the hard-core diameter (Ref. 14). The compressibil-
ities are taken from the experimental results given in Refs. 20 and 13.

V,„(cm3/mol) Rp (A) o (A) a (A) P (bar) P (10 bar ') J (p,K) J (kHz)

3He
19.25
18.0
17.75

3.56
3.48
3.47

2.556 2.319 1.34
2.556 2.319 1.34
2.556 2.319 1.34

8.32
8.32
8.32

118
171
188

1,64
1.04
1.00

14.4
1.28
0.88

300
27
18

H2(para)

D2(ortho)

23.16
22.0

19.95

3.79
3.72

3.61

2.96
2.96

2.96

2.477 1.42 24.95
2.477 1.42 24.95

2.477 1.42 24.95

0
110

0.48
0.36

0.25

0.46
0.006

10-6

9.5
0, 12
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40 C. Model calculation of the tunneling
in hcp 3He and hcp H2

1.0
I

2.0
l

equilibrium Vrrt = 23.1 cm

FIG. 1. Pair potentials for 3He and H2 in reduced units

V (R ) = &(R )/(t /2m o ) and R = R/a where o. is the
characteristic length of the Lennard-Jones potential

I V"~(o-) =0] and a =0.8368o is the hard-core diameter
(Ref. 14). The 3He-3He potential is calculated for a

Lennard-Jones form ( l I;„=—10.22 K., (7=2.556 A) and

the H2-H2 potential is taken from the semiempirical form
0

discussed by Silvera (Ref. 13) (&~jg 343 K o' 296 A).
The distances corresponding to the nearest-neighbor lattice

spacings are indicated by the arrows in the figure.

in cm'/mol. As first pointed out by Kalos et al. ,
'4

when r„)r,„[ hwreer,„ is the distance for which

U(r) passes through a minimum], i.e., when the
zero-point motional energy remains comparable to
thc potential energy, the wave function for quantum
hard-core solids is very close to that of a hard sphere
quantum solid. In this case the total energy is given
by zero-order perturbation theory using thc exact
wave function of the hard sphere quantum solid. For
this reason the wave functions of solid H2 and solid
'He at the same reduced volume are quite similar and
their tunneling frequencies are therefore of the same
order of magnitude in reduced units

)
3 3

t2 8'
(2)

An extrapolation of the experimental values of J for
hcp solid 3He given in Fig. 32 of Ref. 1S for
15 ( V~ ( 17 cm /moi gives 1(Hp) = 2 kHz. This
result is at least four orders of magnitude larger than

that given by Oyarzun and Van Kranendonk. 4

corresponds to reduced units to solid 'He at a density
of

3
'3

V (H) (H ) 151
a (H2)

A second method is to consider thc physics of tun-
neling in solid 3He, in order to derive a simple ex-
pression fitting the experimental values in hcp Hc,
which is then used to calculate the tunneling frequen-
cy in solid H2. This enables one to estimate the
difference in the tunneling frequency for H2 and 'He
at the same reduced molar volume V„, duc to the
differences in the attractive potentials. At first sight,
since thc potential decreases morc for H2 than for
'He when the particles are close together, one would
predict qualitatively that the tunneling frequency for
H2 is larger than that given by relation (2).

%e will use the model presented in Ref. 3 based
on the remarks of Thouless. ' Thc atoms spend
most of their time near a given lattice site, i.e., in a
configuration where thc wave function Q is max-
imum. Following Thouless we call this configuration
a cavity. There are N! possible permutations of the
N atoms among the different lattice sites, and conse-
quently there are N! cavities in configuration space
for the positions of the atoms. Exchange of some of
thc atoms then corresponds to a permutation move-
ment of the atoms connecting two cavities via config-
urations of low probability since (as shown in Fig. 2)
the hard-core repulsions severely reduce the avail-
able free space during exchange. In configuration
space the tunneling is therefore described by a move-
ment in a long narrow duct connecting two cavities.
It is important to realize as stressed in Ref. 1S, that
the mathematical structure of the variational wave
function (i.e. , Gaussian) which is valid inside the cav-
ities for the evaluation of the energy can be quite
~rong for the description of the tunneling in the
duct. For example, in a narrow duct of constant
cross section, the wave function decreases exponen-
tially along the duct in contradiction to the extrapola-
tion of the Gaussian wave function. This explains
clearly why the tunneling frequency can be severely
underestimated using the formula (I) at high densi-
ties.

%hat is remarkable is the fact that in this duct, the
pure potential energy U alone is reduced with

respect to that in the cavities since during the tunnel-
ing, the particles are closer together (but remain at
distances larger than r„„except at very high densi-
ties) and therefore see a deeper potential during the
exchange. The exchange in quantum solids should
not therefore be regarded as a tunneling through a

potential energy barrier but rather as a tunneling
through a kinetic energy barrier U' associated with

the reduced available zero-point motion for the ex-
changing particles (Fig. 2). The preceding estimate
(Sec. II 8) of J in H2 starting from the experimental
values for 3He therefore neglects the difference in

the potential energy SU for 'He and H2 with respect
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FIG. 2. Geometrical representation of three-particle tun-

neling (via cyclic permutation) in the (100) plane of an hcp
lattice at the density of solid hydrogen (Ro/a =1.5 where a
is the hard-core diameter). The permuting atoms are the
three atoms in the center which are maintained at the equili-

brium distance Ro from each other. They turn on a circle of
radius (1/v3)Ra. The three surrounding bold faced atoms
move a distance Sx = (1 —1/J3)Ra if they are maintained at

the distance Ro from the exchanging atoms. In order to
take into account the compressibility of these surrounding
atoms, this dispalcement is reduced to 0.85x in the figure.
The volume taken by the three exchanging atoms is that of
a cylinder of radius R =(—+ I/J3)Ra and of height

ho =42/3Ra containing the three exchanging atoms (in the

dashed circle of radius R). [When the upper (or lower)
(100) plane has an atom above (or below) the center of the
ring of exchanging atoms the upper and lower atoms are
not perturbed in the exchanging configuration so that the
equilibrium height ho is taken for the height of the cylinder. ]

to that for the kinetic energy SU' during the ex-
change. This leads to errors since U and U' are of
the same order of magnitude. " For this reason a
more detailed model is necessary.

It has been shown' ' that the true wave function
along a fall line 2(t) in the duct obeys a one-
dimensional Schrodinger equation

f2 Q2 ~ + V ( t) ttr = E tlr,
2 rtl

where the effective potential

plex because one would need to (i) evaluate V(t)
variationally and (ii) determine the optimum trajecto-
ry Z(t) for the tunneling; i.e., the "most probable
escape path" (MPEP)'s defined by the maximum
value of t[t on the exchange surface X midway
between the cavities. The MPEP corresponds to the

trajectory which minimizes Jl 42rrt( V —E) dr It .can

be shown that this corresponds to a displacement of
the surrounding atoms similar to that for a static elas-
tic deformation for short distances with an exponen-
tial cutoff at long distances, in order to minimize the
product JVL. [ Vis the effective potential related to
this deformation and L the length of the line Z(t).]

Although the solution of this complex problem is

possible, it has not been pursued and we therefore
consider a simple physical estimate of Vand L. The
tunneling frequency is then given by the difference in

energy of the symmetrical and antisymmetrical eigen-
states of the one-dimensional Schrodinger equation,
Eq. (3). As shown in the thesis of Roger, 's the ef-
fective potential has an approximately sinusoidal
shape as reproduced in Fig. 3. For this reason we

take the simple shape with only one Fourier com-
ponent.

V(t) = — cos—+ V
O'U

2 L

which when used with Eq. (3) leads to a second-order
differential equation which turns out to be Mathieu's
equation'

d2y + (a —2q cos2u) y =0
d'U

for the variables u = rrr/2L and q = —2mL~N3/rr'tt.
The solutions b~ and ao of Mathieu's equation as
given by formula (20.2.31) of Abramowitz and

v(t)

V(r) =— rv'tj)ntlr(t) + U;2'
V~ is the gradient in configuration space orthogonal
to the tangent to the line Z(t), t being the curvilinear
coordinate along the fall line. V(t) can be evaluated
using a variational function p in the place of tIj, be-
cause V is essentially the energy of the system in the
exchange configuration for a given value of t. A
complete consistent treatment of the problem is com-

tp=L

FIG. 3. Approximate form for the potential for the tun-
neling as a function of the distance t in configuration space.
The point t = t& corresponds to the configuration shown in

Fig. 2 for which the permuting particles are in positions of
closest approach to their neighbors. (This corresponds to
the center of the duct connecting the two cavities in con-
figuration space. )
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Stegun'9 give the exchange frequency

2» = F~ —&s

= k'
2 2L2m 2L

' 1 j2

25 2 ~ ~ 3j4 -4vq
2m 4L2

For the J defined here the tunneling Hamiltonian be-
comes H = JXO';,I, where 8';II, is the corresponding
permutation operator. For a given tunneling process,
J can be calculated once 8Q and L have been evaluat-
ed.

A simple valid estimate of the effective potential
energy can be obtained by observing that the ex-
changing particles compress their surroundings and
Sv can therefore be taken to be the energy of
compression of the surrounding particles due to the
increase in volume 6 V taken by the exchanging parti-
cles

as shown in Fig. 2; R is the radius of the circle drawn
through the center of the three-nearest surrounding
atoms at their equilibrium position. The increase in
volume is therefore

5 V = V —Vo= vrR2AO —Vo=1.21 V,„
The exchange length L = [ X, (Sx,)']'~' is given by

the sum of the squares of displacements of (i) the
three exchanging atoms, each of which moves on a
circle of radius R ——,Ro= Ro/J3 with an angular dis-

placement m/3, giving
t [/2

Lo= 3—m Ro n.

343 3
—Ro (12)

and (ii) the displacement of the surrounding atoms
which is essentially that of the three neighboring
atoms as shown in Fig. 2. If the latter are maintained
at a distance Ro from the other atoms, they move a
distance

r V
1 (&V)' .eV = PdV = —PAV+

Vo 2P Vo

Sx =— 1 — Ro
1

3
(13)

5 V = V —Vo is the increase in volume of the
exchanging atoms, P the pressure, and P
=—(1/ V) 8 V/BP the experimental compressibility at
equilibrium at T =0. The tunneling is maximum for
minimum EV(for a given length L) and the
geometrical analysis of Ref. 3 shows that this
corresponds to the cyclic permutation of three atoms
as shown in Fig. 2. It should be noted that different
types of three atom cyclic permutations can occur for
an hcp configuration according to the different possi-
ble arrangements of the nearest neighbors of the ex-
changing atoms. For example, in Fig. 2, the upper
(and lower) plane may, or may not, have an atom lo-

cated at the center of the circle of the three permut-
ing atoms. Thc same remark is true for the cyclic ex-
change of three atoms in planes other than the basal
plane.

At equilibrium the volume Vo of the three ex-
changing atoms is

Vo= R03 =3 V,„= 3

2

for the hcp lattice. (Ro is the nearest-neighbor
separation. ) In the exchanging configuration, the
volume taken by the exchanging atoms (taken to be
at a separation Ro) is that of a cylinder of height

(equal to the height of the cylinder occupied by each
atom in equilibrium) and radius

R= —+ Ro
1 1

J3

In order to take into account the compressibility of
the surroundings we reduce this displacement to
0.88x, Only a detailed complex solution of the dis-
placement of the atoms in the potential V could give
an exact description of the compression of the sur-
rounding atoms, and also of the exchanging atoms.
Nevertheless, this simplified estimate will not be far
from the true value. Thus we take

L = [Lg~ +3(0.88x)']'i' =1.2RO (14)

Using the experimental values of the compressibili-
ty given by Straty and Adams'0 (see Table II), the
theoretical values of the three-particle cyclic permuta-
tion (or exchange) frequency can be calculated for
solid 3He using formulas (5), (6), (7), (8), (11), and
(14). The results of the calculation are shown in Fig.
4 as a function of the molar volume and compared
with the experimental values given by Guyer,
Richardson, and Zane. " The agreement is satisfacto-
ry. We have also used this formula for the bcc phase
of solid 3He although the nature of the exchange is in

this case physically different and corresponds to mul-

tiple four-spin exchange for which formula (6) is

valid if we know the values of 4 Vand L. For the
bcc phase we therefore have an equivalent empirical
formula for 5 Vand L, and the close fit to the experi-
mental data sho~s that 5 V and L are of the same
order of magnitude in the hcp and bcc phases at the
equivalent densities, although the nature of the ex-
change is different for the two phases.

Since the tunneling frequencies calculated using the
model described above are in good agreement with

those determined experimentally for hcp 'He for a
wide range of densities, we can confidently apply the
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FIG, 4. Comparison of the calculated tunneling frequen-
cies and the experimental values for He as deduced from
heat-capacity measurements and NMR experiments (see
Ref. 15). The solid line represents the frequencies calculat-

ed from Eq. (16) in the text using experimental values of
the compressibility P for the different molar volumes of hcp
~He. The broken line gives the values obtained from the
same formula using experimental values of P for the bcc
phase of He at different densities. Formula (6) in the text
is of course applicable for both three and four atom tunnel-

ing provided one uses the correct volume change and path

length for the permuting atoms. (All the high-temperature
NMR results have up until now been interpreted in terms of
a Heisenberg exchange interaction. ) In the hcp phase the
predominant three-atom tunneling can be expressed as a

sum of three Heisenberg interactions and the values of J cit-

ed in Ref. 15 are directly related to the three-atom tunneling

rate. While both four-atom and three-atom exchange
predominate in the bcc phase, thereby complicating the

analysis of the NMR results, the values of J cited in the
literature do nevertheless provide an estimate of the three-
atom and four-atom tunneling rates (Ref. S).

same formula (6) to hcp H2 using the compressibility
data published by Wanner and Meyer ' (see Table
I). We find J =9 kHz at P =0 and J =130 Hz at
P =100 bars. This show that the tunneling frequency
in solid H2 is also a very sensitive function of the
pressure as a result of the rapid decrease of the
compressibility with increasing density. '

This new physical model of the exchange relates
the tunneling frequency to the elastic properties of
the solid. The experiments of Refs. 1 and 2 were
sensitive to the movement of HD impurities in hcp
H2. We therefore need to estimate the cyclic permu-

tation frequency of one HD molecule with two para-

H2 molecules. The potential U between the HD
molecule and a para-H2 molecule is the same as that
between two para-H2 molecules. Nevertheless, the
mass of the HD molecule is 3 compared to the mass
2 of the H2 molecule and this leads to two opposing
effects for the effective potential FV in expression (4).
Firstly, at equilibrium, the zero-point motional devia-
tion of an HD molecule is reduced by a factor of
42/3 with respect to that of H2, so that the surround-
ing para-H2 molecules around an HD impurity have
more available space for their own zero-point motion.
For this reason, the compressibility of the para-H2
around an HD impurity is larger than that of pure
para-H2 and O'U is therefore expected to decrease
slightly. Secondly, the increased mass of HD is

equivalent to an increase in the path length L for the
exchange, each displacement being weighted by the
mass of the corresponding atom in Schrodinger's-
equation. The total mass of the exchanging particles
(two para-H2 and one HD molecule) is 7 in contrast
to the value 6 for pure para-H2. The length L is
therefore increased by a factor 47/6. The value of
q c 5'UL entering in the calculation of the tunneling
frequency therefore changes only slightly for HD im-

purities due to the opposing variation of L and 5Q
In the context of this model which explains quantita-
tively the observed exchange in hcp He we expect a
significant three-body tunneling frequency of the or-
der of 1 kHz for HD impurities in para-H2.

We will now consider the physical consequences of
this model for the tunneling in solid H2 for the NMR
properties of HD and ortho-H2 impurities. In view of
the complexity of the interactions between the dif-
ferent types of impurities we will limit ourselves to a

simple physical description of the essential features,
leaving a large number of unsolved problems.

III. DISCUSSION OF THE NMR RESULTS

The rapid tunneling in hcp H2 predicted by the
above arguments leads to a delocalization of the HD
and ortho-H2 impurities if the interactions between
the impurities are negligible. These impurities then
behave as quasiparticles" (wavelike excitations) that
migrate freely through the crystal with constant group
velocity. The NMR properties of these impurities in
para-H, (linewidth, spin diffusion, relaxation, etc.)
are therefore to be closely related to those observed
for He impurities in He. ' ' We therefore expect a
substantial motional narrowing of the HD line
shape due to the modulation of the dipole-dipole in-
teractions between the HD molecules and the ortho-
H2 molecules. In order to estimate the NMR
linewidth of the HD or ortho-H2 molecules we need
to consider how the motion of these impurities is af-
fected by their mutual interactions. We consider
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firstly the motion of the ortho-H2 molecules and
secondly, that of HD impurities.

As pointed out by Oyarzun and Van Kranendonk4
it is important to note that the tunneling of the
ortho-H2 molecules is severely reduced by their rela-
tively large quadrupole-quadrupole interactions

V,8 = r(R,/R)',
with

I" =0.8 K

which leads to a band of energies of half-width

@co~ =20I X', ' where X is the ortho-H2 concen-
tration. This value-for tao~ is consistent with the
NMR experiments of Buzerak et al." After tunnel-

ing from one site to a neighboring site, the energies
of the initial and final states of the ortho-H2
molecules differ by

t~o &) hJ (J =104 Hz)

and only a fraction

2'KJ
2 1p 7g

QJg

of all possible transitions can conserve energy. The
effective tunneling frequency of the ortho-H2
molecules is therefore reduced to 2.10 ~ Hz for
X =1 and the line shape of the isolated ortho-H2
molecules retains its rigid lattice linewidth. It is in-

teresting to note that for very low ortho-H2 concen-
trations, the tunneling frequency is no longer blocked
and one expects a motional narrowing of the ortho-
Hq line shape for ortho concentrations.

' 3/5

g &ye/- &0.01% .
QJ0

For ortho concentrations X greater than Xcq we

therefore consider the ortho-H2'molecules as remain-

ing fixed, .

%e now consider how the interactions between the
static ortho-H2 impurities and the mobile HD impuri-
ties affect the motion of the HD molecules. For the
experiments discussed in Refs. 1 and 2, the ortho-H2
concentrations (0.1 —4 at. %) are much higher than
the HD concentrations (400 ppm) and the contribu-
tion of the HD-HD dipolar interactions to the HD
linewidth can be neglected. Unlike the ortho-H2
molecules, the HD molecules are in an orbital quan-
tum state /=0. They have no orientational degree
of freedom, and we can treat them as spherical de-
fects.

Each HD impurity creates a lattice deformation in

its neighborhood due to the difference in the zero-
point motion of the impurity compared to that of the
host para-H2 molecules. This elastic deformation sets
up an anisotropic interaction between the HD and the

ortho-H2 impurities. The strain surrounding an HD
molecule is due to the difference between the zero-
point translational motion of the HD molecule and
the lighter para-H2 molecules. This creates a long
range 1/R3 elastic strain field in the crystal analogous
to that estimated for He impurities in hcp He."
The origin of the deformation surrounding an ortho-
H2 impurity is quite different. In this case the mass
of the ortho-H2 molecules and the para-H2 molecules
is identical and the strain field results from the cou-
pling of the rotational degrees of freedom of the
ortho-H2 molecule with the translational degrees of
freedom. In an otherwise pure para-H2 crystal isolat-
ed ortho-H2 molecules experience a crystal field.

V; = $8 (R,;) (1 —3 cos'8;, )

where 8(R ) contains a short-range repulsive term
and a relatively long-range attractive term a(RO/R )6

(Refs. 34 and 3S). For an hcp lattice the lattice sum

X,. is vanishingly small and the observed crystal

field V,, =10 mK is due to the weak dependence of
8(R) on the angular momentum (8=1) of the
ortho molecule and deviations from ideal hcp pack-
ing. The crystal fields quoted in the literature ' '
refer in general to the separation of the lowest energy
levels g, =0 from the degenerate levels P, =+ l.
While this describes the energies of the orientational
configurations of the ortho molecules with respect to
the local crystal molecules it must be remembered
that the crystal-field interactions lead to t~o effects:
(i) the lifting of the degeneracy of+ levels (i.e., the
orientational crystal field) and (ii) an isotropic lower-

ing of the center of gravity of the g levels with

respect to the energy of the unperturbed ortho-H2
molecule. These two effects are comparable ' and
both must be considered in estimating the interaction
between the ortho-H2 and the HD molecules. If the
isotropic crystal fields of the ortho-H2 impurities were
considered separately one would expect a long-range
interaction between the HD and ortho-H2 impurities
of the form

U'(Rt2) = Uo (Ro/Rt2)3F'(8)2)

analogous to that estimated for 'He impurities in

4He. ' RI2 is the separation of the impurities and

F(8t2) is an angular factor depending on the aniso-

tropy of the elastic force constants of the host crystal.
The anisotropic coupling of the ortho-H2 molecules
to the lattice would lead to a shorter-ranged interac-
tion

U"(R )=tzU '(R0/R O)'tF2" ( )8tg

In view of the complexity of this problem we have
not attempted any calculation of Uo or Uo' for H2
and we will consider only a generalized interaction of
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the form

U(R t2) = Up(R p/R t2) "F(Ht2) (15)

The kinetic energy of an HD impurity is -h J and
it can approach an ortho-H2 molecule to within a dis-

tance R, such that U(R, ) =J

R, =
R 0( Uo/J ) 'i" (16)

If' the mean separation of the impurities R = X ' 'Rp
&) R„ the HD impurities can be regarded as a rare-

fied gas of quasiparticles or impuritons having

states of well-defined energy and momentum.
(Energy bandwidth —hJ, group velocity u, = BF/Bp
= JRo.") The diffusion of the HD impuritons can

therefore be treated using ordinary gas-kinetic theory.
The diffusion constant D = v, A. where the mean free
path

the modulation of the local field during the collision
is 4H~ = (yf/R, 3). For the diffusive motion
described above the collisions occur at a frequency
r,,'„=u„'/D and the transverse NMR relaxation rate is

given by

= ((yd, Hdt, )') 7,,'„
2

r

M2, Rp

J R,

M2„=67X kHz is the rigid lattice second moment for
the HD —ortho-H2 nuclear dipole-dipole interactions.
Using the expressions (16) and (17) for the concen-
tration X, for which the impuriton gas regime crosses
over to the continuous interaction regime, we have
(R,/Ro) =X, '~3 for all values of n and the relaxation
rate can be written as

h. = I /(n o ) =
R03 /( a.X), o = m R 2

X, = (J/Uo)'~" (17)

is the concentration for which the mean separation R
becomes equal to the distance R, for which the kinet-
ic energy is comparable to the elastic interactions.
For high concentrations X &) X„ the motion of the
HD impurities is completely modified. As a result of
the elastic interactions the HD molecules are in

strong continuous interactions with the ortho-H2 im-

purities, the motion is no longer coherent but can be
described by a diffusive motion" with D» = v, 7 &

where

To = =tX "+'
/UQ

/arrU/
(18)

Having established the nature of the movement of
the HD impurities as modified by the crystal-field in-

teractions we are now in a position to estimate the
transverse NMR relaxation rates.

A. Impuriton regime X && X,

In this regime the HD impurities travel freely
through the crystal until they are scattered by the
ortho-H2 impurities. The proton spin of the HD
molecule sees a rapidly changing local magnetic field
for a short time td of the order of the duration of the
collision with the ortho-H2 impurities. The local field
seen by the HD molecules consists of sharp spikes
lasting for a time td = R, /u~, but for all practical pur-

poses constant between collisions, The amplitude of

is the cross section for the impuriton scattering in the
crystal field due to fixed ortho-H2 impurities of con-
centration X.

This impuriton gas regime is valid for very low

ortho concentrations X « X, where

where

(20)

The HD linewidth 5 = I/T2 depends linearly on
the concentration for X & X, and this is certainly
consistent with the experimental results of Constable'
shown in Fig. S. The solid line for the impuriton gas
regime fits the data for J,ff=5.6 kHz. Although
there are insufficient results for a reliable determina-
tion of X, the results plotted in Fig. 5 indicate an on-
set of the continous interaction regime for X, = 3
at. %. Using this value we find from Eq. (20) a tun-

neling frequency J =0.6 kHz which is in good agree-
ment with the above estimates. Some care has to be
taken when comparing these results to the rigid lat-

tice linewidth to be expected in the absence of mo-
tional narrowing. For the range of ortho-H2 concen-
trations we are considering, the rigid lattice line shape
is expected to change from approximately Gaussian
shape with rms width (in kHz)

4 (X) =M'/'(x) =8.2X'",
for X ) 1 at. % to a I.orentzian shape for low X
whose half intensity width is much smaller than the
rms width. In the limit X « 1 at. %'a statistical cal-
culation of the width becomes appropriate 8 and for
spin-one particles we find

Ag =10.1y hn =33X kHz

(n is the density of ortho-H2 molecules). In the in-

termediate concentration range (X —I at. %) the ob-
served NMR linwwidths of dilute ortho-H2 samples
(1.5 (X & 2.5 at. %)' and Si (4.7 at. % abun-
dance)40 are approximately a factor of 2 higher than
those calculated using the statistical theory. For di-
lute ortho-H2, Pedroni et al. observe a half intensity
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for X =1 at. % and we take this value as a realistic
estimate of the rigid lattice linewidth in the inter-.

mediate concentration range. This is given by the
dashed line in Fig. 5.

B. Continuous interaction regime

Although the motion of the HD molecules is no
longer coherent it can be described in terms of a dif-
fusion Dst =vg2rD [Eq. (18)]. The spin-spin relaxa-
tion is dominated by the rapid change in the local
field AHq = (yf/R03 ) which occurs when an HD
molecule diffuses to within a lattice spacing R0 of an
ortho-Hq molecule. This lasts for a time td'= a/v,
and the transverse relaxation rate

FIG. 5. Variation of the HD NMR linewidth in solid hcp
hydrogen as a function of the orthohydrogen concentration.
The solid line represents the best fit to the data assuming a

tunneling frequency J =5.6 kHz. The crossover in the con-
centration dependence at X,, = 2 at. % is interpreted in terms
of a change in regime for the motion of the HD impurities:
free coherent gaslike propagation for X & X, as opposed to a

constant interaction regime for X ) X,. when the mean

HD —ortho-H2 separation becomes comparable to the range

of their interaction. The triangles refer to the data of
Schweizer et al. (Ref. 1) obtained at 25 mK and the open
circles to the data of Constable (Ref. 2) for 33 & T & 80
mK. (For low temperatures T & 50 mK and low ortho con-
centrations X & 1 at. %, both groups report essentially
temperature-independent Lorentzian line shapes. ) The bro-
ken line represents the rigid lattice rms width h„~, = 8,2X'
kHz which gives the half-width for X ) 1 at. %, and the
dashed line represents the estimated rigid lattice half-width
b, Hw

= 354' kHz for L & 1 at. % using the results of Pedroni
et al, (Ref. 39). (See Ref. 40a.)

10

J,'rr = J'/Uo

[The term Xt" "~' becomes X'~' for the cubic in-
teraction U ~ Uo(RO/R )3 which is believed to be
dominant for 'He impurities in 4He."]

The experimental results shown in Fig. 5 for
X & X, = 3% would seem to indicate a much stronger
concentration dependence than the X' ' dependence
predicted for 'He impurities in solid He. The broken
line shown in Fig. 5 is for an X' dependence as ex-
pected for a 1/R6 interaction. One should note that
the apparently well-defined distinction of the dif-
ferent concentration dependences of the linewidth
d(X) shown in Fig. 5 can be used to obtain three
pieces of information: (i) JX '~3 from the slope of
h(X) for X ((X, , (ii) X,. = (J/Uo)' " from the tran-
sition between the two regimes, and (iii) the ex-
ponent n from the slope Xt"+"~' for h(X) for
J & X, These results allow us to infer not only J,
the tunneling frequency, but also the parameters n,

U0 which define the interactions between the impuri-
ties. The results are too sparse to draw definite con-
clusions concerning the latter parameters but they do
point to a 1/R' interaction with a strength Uo = 30
p,K. This value for the HD —ortho-H2 interaction ap-
pears suprisingly small in comparison with the
strength of the interaction between He impurities in

solid 4He. This can be understood qualitatively if we
recall that the crystalline deformation surrounding an
ortho-H2 molecule in a para-H2 matrix arises from
the coupling between the orientation of the ortho-H2
molecule and the lattice displacements rather than
clue to the blowing up the lattice due to the increase
zero-point translational motion of a 'He impurity in
solid He (ortho-H2 in para-Hq is an orientationai de-
fect while 3He in 4He is a mass defect). For a given
ortho-H2 orientation, the orientational crystal-field in-
teractions are of the order of 10 mK, and following
Van Kranendonk and Sears one expects crystalline
distortional energies of the same order of magnitude;
i.e., Uo-—10 mK, and n =3 in Eq. (16). Isolated
molecules at relatively high temperature ( T,„„,
& 25 mK) are, however, free to reorient, the

reorientational rate due to thermal agitation is rapid
compared to the HD tunneling frequency and the ef-
fective interaction between impurities is obtained by
rnotional averaging due to the fast reorientations.
This severely reduces the interaction seen by the HD
molecules but further work is needed to understand
quantitatively the value of the effective interaction
implied by the experimental results. Further experi-
mental results would also be interesting in order to
confirm this tentative interpretation of the concentra-
tion dependence of the linewidth since no such clean
division of the two regimes has been observed for
He impurities in He. '
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The model presented in Sec. II above for the origin
of the motion responsible for the motional narrowing
of the HD line shapes leads to two important predic-
tions. Because of the mass dependence in the ex-
ponent for the expression for the tunneling frequency
[J ~ exp( —4') with q ~ ml, the tunneling frequen-
cy in ortho-D2 is much smaller than that in para-Hq

and no appreciable motional narrowing effects are ex-
pected for HD impurities in solid D2. The HD line

shapes observed in solid D2 [X (para-D2) ~ 2 at. %,
X(HD) =0.12 at. %, X(ortho-H2) =1 at. %]42 show no
evidence of motional narrowing but the concentration
of both ortho-H2 and para-D2 impurities is at the lim-

it X, for which the motion is quenched (for a H2 ma-

trix) and further experiments at much lower ortho-H2
and para-D2 concentrations would be valuable.

An additional test could be obtained by investiga-
ting the density dependence of the motional narrow-

ing. The exponential factor in formula (6) for the
tunneling frequency increases with increasing density
largely due to the reduction in the compressibility P.
(q ~ P '.) Physically, the effective potential energy
5 V for the tunneling determined by the compression
of the surrounding molecules during the tunneling,
increases as the density increases and the tunneling
probability is accordingly reduced. This is the origin
of the density dependence of the tunneling frequency
in hcp 'He, As reported above, the frequency in hcp
H2 reduces from —9 kHz at P =0 to —100 Hz at
P =100 bars. The motional narrowing of the HD
line shapes is therefore expected to decrease rapidly
for an easily accessible range of applied pressures.

A more trivial consequence of the interpretation of
the NMR results in terms of a motional narrowing
would be the existence of a line shift (in addition to
any chemical shift) which is predicted in the case of
extreme motional narrowing. 30 43 The characteristic
feature of the shift being its field dependence: max-
imum (—100 Hz) for Larmor frequencies vL =J and

vanishingly small for vt. » I (or vl ((Jj. While
this would check the validity of the hypothesis of mo-
tional narrowing it would not offer any clues as to the
origin of the motion.

A test of the motional narrowing assumption
would, however, be valuable because there some
questions remain concerning the relevant value of
the second moment M2„(X) for the HD —ortho-H2
dipolar interactions. The second moment used in the
above calculations is that for interactions between
HD molecules and isolated ortho-H2 molecules. In

fact the ortho molecules migrate slowly due to their
nuclear dipole-dipole interactions4 and eventually
form pairs. ' When this clustering is completed
(r, —hour) the second moment is reduced by 9
(semilike spins"') and while this would lead one to
infer smaller values of J from the experimental
linewidths, a strong motional narrowing would still be
needed to explain all the data.

IV. CONCLUSION

We have presented a simple model for the descrip-
tion of the tunneling motion in quantum solids and
in particular shown that the model gives results in

excellent agreement with the experimental values of
the exchange frequency in hcp 'He for a wide range
of molar volumes. This model predicts a tunneling
frequency of the order of —1 kHz for three-body cy-
clic permutations in hcp H2.

Analysis of NMR line shapes of HD impurities in

hcp H2 for ortho concentrations 0.1 (X & 4 at. %
show that the data from different experimental
groups can be understood quantitatively within the
context of a motional narrowing model in which the
nuclear dipole-dipole interactions are modulated by
the tunneling motion of the HD impurities. The ex-
perimental results require a tunneling frequency
J =0.6 kHz which is in good agreement with the
theoretical predictions.

The validity of the model of quantum tunneling in

the solid hydrogens could be confirmed by checking
two simple predictions: (a) the absence of any signi-
ficant motional narrowing for HD impurities in hcp
D2 even at very low J =1 impurity concentrations,
and (b) the density (or pressure) dependence of the
tunneling frequencies in H2 which are expected to fall

in the range of 100 Hz for P —100 bars.
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