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Order in layered smectic and cholesteric liquid-cryst &1 films is investigated. Although long-

wavelength fluctuations in the layer displacements destroy translational order at any finite tem-

perature, one must also account for effects of free dislocations. The combined action of 1 ~yer

fluctuations and dislocations is to produce ~ ph ~se ~t finite temper ~tures with persistent orienta-

tional order in the local normal to the layers. At length scales greater than (D —exp(ED/2k&T)
where ED is the energy of an isolated dislocation, the properties are those of & two-dimensional

nematic, with the local layer norm il playing the role of a director field. An intermediate phase

of this kind could conceivably exist in bulk cholesteric liquid crystals ~s well. In two dimen-

sions, an unbinding of disclination pairs eventually produces an isotropic phase. The low-

temperature nematic Frank constants K]( T) and K3(T) are worked out, and compared with the

diamagnetic susceptibility expected in a two-dimensional superconductor. We determine the

characteristic nematic frequencies at low temperatures, using ~ simple model of dislocations in-

teracting with a layer displacement field. Our analysis may also be relevant to the behavior of
Rayleigh-Benard convective rolls in the presence of therm ~l noise fluctuations.

I. INTRODUCTION

A. Purpose

There has been considerable interest recently in

systems where fluctuations are strong enough to des-
troy conventional long-range order. This seems to be
the case for superfluids, solids, and magnets with a

continuous symmetry in both one and two dimen-
sions. For Heisenberg ferromagnets with three or
more components, ordinary spin-wave fluctuations
seem sufficient to produce paramagnetic behavior at
any finite temperature, even in two dimensions, '

Although spin waves cause exponential decay. of
correlations in two-component LY models of magne-
tism in one dimension, ' this is not the case in d = 2.
Instead, one finds a low-temperature phase character-
ized by algebraically decaying correlations with

temperature-dependent exponents. According to
Kosterlitz and Thouless, ' ' vortex pairs unbind above
a finite critical temperature, producing the exponen-
tial decay one expects in a paramagnet. Very similar
ideas apply to the superfluid transition in thin helium
films, where the superfluid density drops discontinu-
ously to zero. ' '

Bound pairs of dislocations are believed to play an
analogous role in melting two-dimensional solids. "
Although long-wavelength phonon excitations alone
are sufficient to replace the usual 5-function Bragg
peaks in the structure factor by power-law singulari-
ties, "a finite density of dislocations is necessary to
actually produce liquidlike behavior. It appears that
order in the orientations of bond angles, which is not
significantly affected by phonons, " persists even in

the presence of unbound dislocations. ' One finds a
"hexatic" liquid-crystalline phase with algebraic de-
cay of bond-angle correlations, and exponential decay
of translational order. A second, disclination unbind-
ing transition is necessary to complete the transition
to an isotropic liquid [see Fig. i (a)].

The purpose of this paper is to examine the effects
of phononlike fluctuations, dislocations, and disclina-
tions on layered materials in two dimensions. In par-
ticular, our analysis should apply to smectic liquid-

crystal films with layering in the plane. As discussed
by DeGennes, ' ' it is possible in principle to make a

two-dimensional nematic liquid crystal, floating on
water, from nematogens with two hydrophillic ends.
Although monolayer films of this kind have not yet
been made, one can certainly imagine smectic order-
ing in these systems [see Fig. 2[a)]. Freely suspend-
ed films of smectic-C liquid crystals, which have, in

fact, been made, ' ' mimic a two-dimensional
nematic, with the projection of the tilted molecules
onto the plane playing the role of "nematogens. "
Layered order may occur in these projections provid-
ed the film does not crystallize into an ordinary tilted
solid phase first. In most physical systems, one
would expect crystallization into this kind of anisotro-
pic solid at a sufficiently low temperature T . The
detailed temperature dependence determined. here for
Frank constants, kinetic coefficients, etc. , would then
hold only for temperatures T && T . The diver-
gences we find in Frank constants, kinetic coeffi-
cients, etc, , at low temperatures (see Sec. I C) would

be replaced by diverging behavior as T T+. Ost-
lund and Halperin" have recently analyzed the melt-

ing of anisotropic solids using the methods of Refs.
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FIG. 1. Different phases involved in the melting of tri-
angular solids and layered systems in two dimensions. (a)
shows a triangular solid at low temperatures, .which first
melts at T~ via a dislocation unbinding transition into a hex-
atic liquid crystal. The sixfold bond orientational order in
this phase is destroyed at a higher. temperature T; by an un-

binding of disclination pairs. (b) sQows a zero-temperature
smectic or cholesteric, which becomes a kind of nematic,
with persistent order in the orientations of layer normals, at
finite temperatures, This phase, which arises from effects of
phonon fluctuations and free dislocations on layered order,
transforms into an isotropic phase via a disclination unbind-
ing transition at T, .

L
g

(b)

6—8. They find that such solids can melt via a dislo-
cation unbinding transition into a phase with the kind
of layered order discussed in this paper.

Anisotropic solids can also occur for molecules
physiadsorbed onto periodic substrates. Recently,
Coulomb et a/. ' have reported evidence for an aniso-
tropic solid phase of ethane physiadsorbed onto ex-
foliated graphite. They find a first-order transition
into an intermediate phase which may possess only
"partial" translational order, followed by a contihu-
ous transition to a fluid. The intermediate phase'
could be an example of the layered structures con-
sidered here. The periodicity of the layers appears to
be commensurate with the substrate. ' Although we
have not studied the effect of a periodic substrate po-
tential, it appears likely that such a potential could
stabilize a layered phase at finite temperatures. As
will be discussed in Sec. I C, layered order is particu-
larly susceptible to breakup. by thermal fluctuations in
the absence of a periodic substrate.

Cholesteric liquid crystals provide examples of lay-
ered structures where the wavelength associated with
the periodicity is thousands of angstroms, instead of
the 20—30 A repeat distance one might expect in a
smectic. In cholesteric's, chiral nematogens rotate
slowly in space along a preferred axis, as in Fig. 2(b).
Although the properties are those of a nematic at dis-

(c)

FIG. 2. (a) Arrangement of the constituent molecules
(nematogens) in the smectic-A phase. Note the orientation-
al ordering, the layering, and the lack of translational order
within each layer. (b) Arrangement of nematogens in the
cholesteric phase. As one moves along the vertical helical
axis, the nematogens rotate slowly in a plane perpendicular
to this axis. There is no translational order in the centers of
mass of the nematogens, although this is not clear from the
figure, (c) Rayleigh-Benard convective rolls. Above a
threshold temperature gradient across the two plates, a roll
pattern of circulation forms, with the fluid within each roll
moving in an opposite sense to its two neighbors'.

tances short compared to the pitch, the ordered state
resembles a one-dimensional crystal when the pitch is
short compared to a nematic correlation length. '

Evidently, one can prepare cholesteric films with
thicknesses less than or comparable to the pitch
which form layers in the plane of the substrate. ' If
the thickness is much greater than the nematic heal-
ing length, most nematogens in the film will be free
to rotate about the local helical axis, independent of
the boundary conditions at the substrate. In princi-
ple, one might hope to study the effects of fluctua-
tions on layering in such systems. The energy scale
for the effects discussed in this paper is a dislocation
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energy, which for cholesterics may be written

B. Layered order in three dimensions

Considerable experimental and theoretical attention
has been focused on three-dimensional smectic and
cholesteric liquid crystals. Before summarizing our
results in two dimensions, we discuss layered order in
these bulk systems. The experimental and theoretical
situation is rather controversial, and we believe our
conclusions for d = 2 may have some bearing on this
important problem.

At sufficiently low temperature, smectic-3 and
cholesteric liquid crystals should be describable at
long wavelengths by a free-energy functional of the
layer spacing u ( r ) alone. If the layers are oriented
on average in the z direction, we have, to lowest or-
der in gradients of u, "

F = —,'8 J d'r[( I)u)' +h, '( il)u)' ] (1.2)

where 8 is an elastic parameter, 8q is a gradient act-
ing on directions perpendicular to z, and A. is a length
comparable to the layer spacing d. More generally,
one can imagine a functional of a complex field,
P( r ), which is the amplitude of the first harmonic of
the one-dimensional density wave associated with the

ED —K2d

where K2 is a twist nematic Frank constant and 1 is

the film thickness. Unfortunately, the temperatures
necessary to obtain a reasonable density of oppositely
charged dislocations in equilibrium may be prohibi-
tively high at film thicknesses comparable to the pitch.

The Rayleigh-Benard instability ' provides an in-

teresting example of layered two-dimensional order
out of equilibrium. Above a threshold temperature
difference applied across two confining plates„heat is
often transferred through fluids by a layered pattern
of convective rolls [see Fig. 2(c)]. The effect of fluc-
tuations on the convective instability have been treat-
ed by a number of authors. Swift and Hohen-
berg'4 have argued that thermal fluctuations cause a
linear combination of the temperature deviation and
fluid velocity to relax to a steady-state probability dis-
tribution of the kind commonly used to describe
smectics and cholesterics in equilibrium. If so, our
results will describe the effect of thermal fluctuations
on the Rayleigh-Benard convective rolls. "

Although this is an intriguing problem, it may be
of academic interest only, since estimates of
thermal-fluctuation effects" suggest that they will be
unobservable experimentally. Our results could be
quite relevant, however, if the developing chaos in a
Benard cell produced a high density of dislocations.
The model of dislocation dynamics discussed here
could be used to study nonequilibrium processes
above the convection threshold.

ordering,

p(r)=poRe[l+y{r)e ' ]

Here, pp is the average density and qp is the wave
vector associated with the periodicity. At low enough
temperatures, we can take

Q( r ) = Qo exp[iqou ( r ) ]

where itIIp is real, independent of r, and less than uni-

ty, and u ( r ) is the layer displacement field.
If Eq. (1.1) is used to model smectic-A liquid crys-

tals, it may be important to include explicitly a cou-
pling to the director field of the nematogens. When
this is done, and fluctuations in the magnitude of Qp

are allowed, the resulting free-energy functional
resembles the Landau-Ginzburg phenomenological
model of superconductivity. " (See Sec, II.) This
model of a smectic is only approximately gauge in-
variant, however, in contrast to a real superconduc-
tor. Renormalization-group studies'" ' suggest that
the coupling to the director field drives the smectic-
to-nematic transition first order, at least near four di-
mensions. This conclusion rests on the equivalence
at long wavelengths of superconductors and smectic-
A's near their transition temperatures. In particular,
"asymptotic gauge invariance" of a smectic requires
that the rescaled Frank constants satisfy K2 = K3
&) K& just above the transition temperature.
Although this requirement can be checked near four
dimensions, " its justification in d = 3 is an open
question. Lubensky and Chen'9 have argued that an
anisotropic fixed point, with K] && K2, K3, may also
be important in the critical region. Unfortunately, no
first-order smectic-to-nematic transition has been ob-
served experimentally, ' and the entire situation
seems very unclear.

Unlike smectics, cholesteric liquid crystals are be-
lieved to undergo a transition directly to an isotropic
phase in three dimensions. " A conventional nematic
phase does not usually occur in nonracemic materials,
since a cholesteric is itself already a kind of twisted
nematic. When the pitch is long compared to a
nematic correlation length, the transition should be
weakly first order, just as for a nernatic-isotropic tran-
sition. When the pitch is short compared to a nemat-
ic correlation range, however, one can argue' that
the ordered phase is better described as a kind of
one-dimensional "solid. " To model the melting of
this "crystal, "Brazovskii and Dmitriev' have pro-
posed a Landau free-energy functional of. the form

F = Jt d'r {—[( (V (
—iqo) w ]'+ rw'+ uw ], (1.5a)

where w(r ) is a scalar density. The operator ~'7~ is
understood to give i

~ q ~
when acting on the Fourier

transform w(q ). Well below the mean-field transi-
tion temperature (i.e. , for r large and negative),
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w(r) =2Re[p(r)e 0 ] (1.5b)

w ( r ) becomes spatially modulated in some direction

qo and we can write

that
' 1/2'

qoka~ )z(
B 4~x (1.8a)

where the complex quantity p(r ) varies slowly on a

scale set by qo '. Assuming fluctuations in the ampli-
tude Po are negligible, the decomposition (1.4) leads
to a free energy of the form (1.2). This simple
model of a cholesteric was studied in detail by Bra-
~ovskii, "who concluded that there would again be a
first-order transition, due in this case to fluctuations
in the neighborhood of a preferred sphere in Fourier
space. There are, at present, few experimental
checks of Brazovskii's detailed predictions. The
cholesteric "blue phases, " which are in a sense inter-
mediate between the usual cholesteric and isotropic
phases, will be discussed briefly in Sec. IC.

It is important to remember that fluctuations in the
layer displacements of smectics and cholesterics are
logarithmically divergent in three dimensions. "
Indeed one has immediately from Eq. (1.2) that

x' && A.z,
k T

(y( r )y" (0) ) —exp — '
(x ~4Bx

(1.8b)

Az (&x
for d =2, in contrast to the power-law decay of this
-correlation function in three dimensions. " In deriv-

ing Eq. (1.8), we have set r = (x,z), and assumed
layering in the z direction. The decay is more rapid

in the x direction, since this is chiefly due to the fluc-
tuations displayed in Fig. 3(a). These have a lower

energy than the fluctuations diplayed in Fig. 3(b),
which decorrelate correlations in the z direction.
Phonons are much less important in decorrelating
layer orientations, which can be described by the an-

gle the layer normal deviates from the z direction,

(tr (r)) — —ln —,(1.6)
ka ~ ' d'q R

q 2+ g2q 4

&e(r)) =0 . (1.7)

where R is of order the system size. As a result,
there is no long-range order,

e( r ) =-B„u(r )

Upon defining a nematiclike orientational order
parameter,

cos8( r )
N(r) =

(1.9)

(1.10)

and one finds power-law decay of correlations in

p( r ),"with different exponents in directions paral-
lel and perpendicular to z. In this sense, smectic arid

cholesteric liquid crystals may be at a "lower critical
dimensionality" in d =3, just as crystals, superfluids,
and XY magnets are in d =2. One might guess that
defects ~ould be important in understanding bulk
smectic and cholesteric transitions, although such ex-
citations were not considered explicitly in the theoret-
ical treatments described above. Helfrich~' has, in

fact, suggested that the smectic-A —nematic transition
may be understood as a break up of order by disloca-
tion loops. It is not yet clear whether this point of
view can resolve the discrepancies between theory
and experiment.

we find from Eq. (1.2) that long-range order in N( r )
persists, even in the presence of phonons,

lim (N( r ) R(0)) =const %0

C. Results and outline

Because d = 2 is one below an apparent lower criti-
cal dimensionality of layered materials, phonon fluc-
tuations are quite effective in destroying translational
order at any finite temperature. Both phonon and
dislocation excitations are necessary to describe these
materials properly at low temperatures, however. To
characterize the effect of phonons on layered order,
we consider correlations of the translational order
parameter P, r ) = poexp[iqou ( r )], discussed in Sec.
I B. Using the free energy (1.2), one readily finds'~

FIG. 3. Different kinds of phonon excitations in layered
systems. (a) shows a phonon with q„A 0 and q, =0, which

keeps the interlayer spacing d fixed. This has a lower energy
than the phonon in (b), where q„=0 and q, & 0.
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(b) (c)

Since the behavior summarized by Eqs. (1.8) and
(1.11) is rather peculiar, one might expect that a
description of layered materials purely in terms of
phonon fluctuations is incomplete. Other excitations
possible at low temperatures include dislocations and
disclinations (see Fig. 4). Isolated dislocations have a
finite energy ED in layered substances, ' ' so one ex-
pects them to occur with density

no =a -ex P ( E22/ka T)— (1.12)

FIG. 4, Dislocation and disclinations in layered materials.
(b) and (c) show two oppositely charged disclinations. Ordi-

narily, isolated disclinations would have much too high an

energy to exist in thermal equilibrium. Note, however, that
bringing the two disclinations together forms a dislocation of
the kind shown in (a). Isolated dislocations have a finite
energy, and may be characterized by their Burger's vector,
which is the amount by which the path shown as a heavy
line fails to close.

FIG. 5. Crude physical picture of the "nem [tic ph &se" of
layered systems «t low temperatures. Layered order is
decorrelated only by phonon fluctu ~tions in blobs, or "cybo-
tactic groups" {see Ref. 12), of sizes coritrolled by the dislo-
cation correlation length (D. The width of the blobs v iries
like (&~, while the length v [ries as (D, The nematic order
parameter is the average layer normal within each blob. The
directions of these average normals are indicated by
double-headed arrows. The distortion energy [ssoci ~ted

with spatial variations in this direction h ts the same form as
the Frank expression for a nematic. A ph &se of this kind is

predicted for cholesterics as well as smectics.

at finite temperatures, where a is a dislocation core
diameter. Disclinations are much less important,
since their energy diverges with the size of the sys-
tem. Note, however, that a dislocation can itself be
regarded as a tightly-bound pair of oppositely charged
disclinations.

When effects due to a finite density of free disloca-
tions are accounted for, the properties of layered sys-
tems at length scales greater than

Fn = —,
' K(T) J d'r (Vt))' (1.15)

tropic correlation lengths in the bulk smectic-A to
nematic transition. '

At sufficiently long wavelengths, it can be shown
that a nematic free energy of the form (1.14) can be
replaced by a free energy characterized by a single
Frank constant, namely,

2):D = n23' '= a exp(ED/2k2) T) (1.13)
The decay of orientational order is then given by

are those of a nematic liquid crystal. In a kind of
Debye-Huckel approximation, we find that the
behavior at long wavelengths is given by an effective
free energy,

with

e2ii)( r )e 2ii)(0)) r-~2 (1.16)

(1.17)

Fn= —,
' „d'r [It' )(T)('7 N)

+ IC3( T) [N x (V x N) j' ) (1.14)

The "twist" elastic constant K2 is absent in two di-

mensions. Although nematic order is to be expected
in materials which are smectics at T =0, it is certainly
surprising to see this kind of persistent orientational
order in the layer normal of cholesterics and
Rayleigh-Benard convective rolls. Orientational
correlations in the director field N( r ) should decay
algebraically when ~ r

~ && $23. Figure 5 provides a

rough illustration of the physical picture we have in

mind. Although the blobs are anisotropic, the area
per blob is just gD. There is some evidence of aniso-

K ( T, ) /ki) T, = 8/2r (1.18)

The persistent orientational correlations found here
for layered materials are very analogous to the per-
sistent bond angle order of the hexatic phase in re-
cent two-dimensional melting theories applied to tri-
angular crystals. ' The sequence of phases —smectic,
nematic, isotropic —corresponds to the sequence—
solid, hexatic, liquid —found in this theory [see Fig.

At high enough temperatures, one expects an un-
binding of logarithmically bound disclination pairs at
a temperature T, into an isotropic phase. Just below
this Kosterlitz-Thouless transition, one has the exact
result, 36
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1(b)]. In layered systems, the dislocation unbinding
transition has been pushed down to T =0, because of
the peculiar nature of parabolic elasticity theory.

These results may be relevant to bulk cholesteric
liquid crystals. Recent light scattering experiments"
show two apparently distinct "blue phases, " inter-
mediate between ordinary cholesteric and isotropic
phases. It is intriguing to speculate that one of these
blue phases couM be a "nematic, " of the kind found
here for two-dimensional cholesterics. Translational
order in the pitch would persist over large chunks of
material, with the average normal playing the role of
a "nematogen. " If this order parameter really
behaved like a nematic at long wavelengths, one
would expect a first-order transition to an isotropic
phase in three dimensions.

Our conclusions differ from those reached by Swift
and Hohenberg, '4 who argued that the transition to
Rayleigh-Benard convective rolls should be first order
with no nematic phase, in analogy to the conclusions
of Brazovskii ' for three-dimensional layered systems.
They recognized, however, difficulties associated with
the lack of long-range order, which are especially
severe in two dimensions. Their analysis was restrict-
ed to situations such as Lqo &( g ' ', ~here L is the
lateral extent of the system and g is a dimensionless
coupling constant. Strictly speaking, our results apply
only to infinite aspect ratio convection problems. We
hope to explore the precise connection, if any, of our
results with the Rayleigh-Benard problem in a future
publication.

Although properties of the disclination unbinding
transition follow from a transcription of Kosterlitz's
results4 for XY models, it is also interesting to ask
how layered order sets in at low temperatures in the
nematic phase of smectics and cholesterics. The criti-
cal point at T =0 is a two-dimensional analog of the
bulk smectic-A —nematic transition. The wave-
vector-dependent renormalized Frank constants
Kf (q, T) and K3a (q, T) behave differently in regions
of the (go', q ) plane shown in Fig. 6. For sufficient-
ly small q, the Frank constants become equal to their
common value K( T) and appear to diverge like go2,

K CONSTANTI
ONE-FRANK
CONSTANT
NEMATI C

CD (T)

FIG. 6. Summary of the behavior of layered systems as a
function of wave vector q and the inverse dislocation corre-
lation length, (D'(T) = (I/a )exp( —ED/k&T). As tempera-
ture decreases with small, fixed q,

' one in principle first en-
counters a one-Frank-constant nematic, followed, by two-
Frank-constant nematic behavior. Finally, the behavior be-
comes like that of a smectic or cholesteric decorrelated by
phonons at temperatures such that q(D(T) P 1. As dis-

cussed in the text, the boundary between one- and two-
Frank-constant nematic behavior occurs at astronomically
small wave vectors.

most always be encountered in practice for tempera-
tures less than Eo/ks. The vanishing of the ratio

K~(q, T)/K3(q, T) at low temperatures in this case
signals the onset of smectic order at T =0. The qual-
itative behavior of K~ and K3 with decreasing tem-.
perature is shown in Fig. 7.

It is interesting to contrast our results with the
behavior expected in a two-dimensional superconduc-

KR =K,' =K —g' (1.19)

As T tends to zero for any fixed, finite q, the Frank
constants ultimately acquire a different temperature
dependence,

Kf (q, T) —go'[In(I/qd)]' '

K,"(q, T) -g,' .
(1.20)

In go(T)

ks T = ED/(In[In(I/qd) ] ] (1.21)

This condition means that the behavior (1.20) will al-

This crossover between these two behaviors occurs at
temperatures and wave vector such that FIG. 7. Plot of the logarithm of the renormalized Frank

constants K~ (q, T) and K3~ (q, T). vs ln(D', for small fixed

q. These two quantities first appear to diverge in the same
way, but ultimately acquire different temperature depen-
dences.



322 JOHN TONER AND DAVID R. NELSON 23

tor, which we discuss in Sec. IV. Here, currents
screen out the effects of Abrikosov vortices exponen-
tially fast, and isolated vortices have a finite energy
E„. A finite density of such vortices produces a nor-
mal material at any nonzero temperature. Taking
over arguments of Schmid, ' we find that the di-

amagnetic susceptibility X should diverge at low tem-
peratures like the square of a vortex correlation
length g„,

)( —g'„—ex p(E„/ka T ) (1.22)

Since the diamagnetic susceptibility is the analog of
the Frank constant Kq(T) in smectics, '6 this result
agrees with Eqs. (1.19) and (1.20). In superconduc-
tors, however, K, (T) —= 0, and there is no crossover
behavior of the kind we have found for K~(T) in

smectics.
At very low temperatures and finite wavelengths,

we would have to say that two-dimensional smectics
are equivalent to two-dimensional superconductors,
in agreement with the conclusions of Halperin and
Lubensky near four dimensions. ' There are suffi-
cient differences in the detailed behavior of the two

systems, however, to make us uncertain of this
equivalence in d =3. If one considers only defects
like dislocations and vortices, d =2 is the lower criti-
cal dimensionality for both problems. "Kink" excita-
tions enforce a lower critical dimension d =1 for Is-
ing models in a very similar fashion. As we have
seen, however, the behavior of phonon excitations
suggest that d =3 is a lower critical dimension for
smectics. Nothing special happens for superconduc-
tors in d = 3. The character of the smectic-
A —nematic transition in d =3, and, in particular, its
equivalence to the superconducting transition, seems
to us an open question.

We have also studied the dynamics of the nematic
phase at low temperatures, using techniques
developed by Ambegaokar et al. and Zippelius
et al. ' for superfluidity and melting. We find that a

simple diffusive model of layer motion, coupled to a
finite density of dislocations, gives rise to the charac-
teristic relaxation frequency ru(q) of a nematic on a
substrate"

cu(q) = i I'n[K", (q, T)q„'+—K, (q, T)q,'] . (1.23)

provided qgo & 1. There is also a nonhydrodynamic
mode in the nematic phase which exhibits critical
slowing down as T 0. The characteristic relaxation
behaves like Dgo, where D is a dislocation diffusion

This model would be appropriate for srnectics on a
substrate, or for the Rayleigh-Benard problem. ' We
find critical slowing down at low temperatures, with a
nematic kinetic coefficient I"n( T) which tends to
zero,

(1.24)

constant. This is just the characteristic rate for dislo-
cations to diffuse one correlation length.

In Sec. II, we discuss the effective free energies for
smectics, cholesterics, and Rayleigh-Benard convec-
tive rolls, and how to incorporate dislocations into
this description. Translational and orientational order
in this model is studied in Sec. III, where we also
work out the renormalized nematic Frank constants
K f ( T, q) and KqR ( T,q). The properties of a two-
dimensional superconductor at low temperature are
described in Sec. IV, for comparison. A simple relax-
ation model of dislocations interacting with layer dis-
placements is constructed and solved in Sec. V.

II. SMECTICS, CHOLESTERICS, AND CONVECTIVE
ROLLS %ITH DISLOCATIONS

A. Effective free energy

In this subsection, we review the connection
between standard descriptions of smectics, cholester-
ics, and Rayleigh-Benard convective rolls, and the
two-dimensional version of the effective free energy
Eq. (1.2), namely,

F = BJt d—'r [(B,u )'+ X'(8'u )'] (2.1)

+ ,'r(iy]['+u—(q ['+ ,'K, (a n)'—
+ —,'K, [n x ('7 x n)]'} (2.2)

where the twist nematic elastic constant K& is absent
in two dimensions, Sn(r ) is the deviation of the
director field from a unit vector in the z direction,

An= n —z (2.3)

and M& is an "effective-mass" tensor.
The smectic free energy (2.2) simplifies consider-

ably upon making several approximations valid at low

temperatures. Well below the mean-field transition
temperature, we can neglect fluctuations in the am-
plitude of p( r ), and write

P(r ) =P expo[iq u( or )] (2.4)

Throughout this paper, r will denote the two com-
ponent position vector (x, z ).

DeGennes " has observed that the requirement
that the smectic free energy remain invariant under a
simultaneous rotation of the nematic molecules and
the planes of constant density leads to a coupling
between the director field n ( r ) and the complex
Fourier component of the density P( r ) defined by
Eq. (1.3). The Landau-Ginzburg free energy which
exhibits this coupling is,

F, = ~td r [
—(8;+iqogn;)p'Ma '((Ii —iq05nj)p
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where the amplitude Pp is given by minimizing Eq.
(2.2) with all other quantities held fixed. It is readily
seen that u (r ) is just the layer displacement —i.e.,
the amount by which a surface of constant density is

displaced from its equilibrium position. Taking M& to
be diagonal, with nonzero components M and M„,
Eq. (2.2) becomes

Fs = „I d r [ '8(S—,u +Sn, )2+ 'D(B—„u + Sn„)z

+K, ~ln x (V x n))') . (2. 1 2)

The second term favors helical distortions. Consider-
ing now a cholesteric film in the (x,z) plane of thick-
ness d —qo, we assume for simplicity that the direc-
tor n ( r ) takes the form

tomary nematic free energy, namely, "
F, = —, J d'r [K~('7 n)'+K2[n (0 x n)+q, ]'

+ —,K~('7 n)'+ —,K3[n x (& x n)]')

(2.5) with

n(r) = I (r ) x [z+(S„u)x] (2.13a)

with

8 = ppqp /M„, D = ypqp /M (2.6)

I ( r ) = (cos(qpz + qpu ), sin(qpz + qpM ), 0)

(2.13b)

and where we have ignored constant contributions.
At low temperatures, the director n( r ) becomes

locked in a direction normal to the layering. To in-

vestigate this further, we assume layering in the z

direction, and write

n ( r ) = (sinq, cosq) (2.7)

To quadratic order in 8, the smectic free energy be-
comes

F, =
J d'r [ ,'8(S,u)'+——,'D(B„u)'

+ D89„u + —,D8'

+ —,'K, (B„e)'+—,'K, (h, e)'] . (2.g)

Fluctuations in 8( r ) cost a finite energy even at long
wavelengths, due to the term —,D8'. It is convenient

to integrate out these fluctuations, and define an ef-
fective free-energy functional F of u( r ) only, by

The functional integral over 8( r ) is easily done in

Fourier space, and to leading order in the gradients,
one finds free energy of the form (2.1), with 8 given
by Eq. (2.6), and where

exp[ —F([u))/ksT]=—J~ DHexp( F/ksT) ., (—2.9)

where the phase variable u varies slowly, and is a
function of x and z only. Inserting Eq. (2.13) into
(2.12), expanding in u (x,z), and averaging rapidly
fluctuating terms like sin4[qp(z + u ) ], one is led to a
two-dimensional effective free energy of the form
(2.1) with4'

2 38 = K,q,'d, h, '= —K,/Kzqp (2.14)

(((r, t)) =0,
((( r, t ) $( r ', t') ) = 2ks TI S( r —r ') S(t —t')

(2.16a)

%'e have assumed that d is much greater than a
nematic healing length, so that n( r ) is free to rotate
independent of the boundary conditions at the sub-
strate.

The connection between the Rayleigh-Benard prob-
lem and layered systems in equilibrium has been
described by Swift and Hohenberg, '4 who studied the
dynamics of a slowly relaxing linear combination
w (r, t) of a temperature deviation and the fluid velo-
city. They found that the dynamics could be
described by a nonlinear Langevin equation,

Bw &SF
Se

where the Gaussian noise source g( r, t) satisfies

=z(K/ 8 (2.10) (2.16b)

For a given field u ( r ), the integrations over q are
dominated by those configurations with

q(r ) = —B„u(r) (2.11)

which shows that I)( r ) is indeed locked to the layer
normal on average.

An effective free energy of the form (2.1) also
arises from Brazovskii's model (1.5) of a cholesteric at
low temperatures in a "fixed-length" approximation.
It is also instructive to see the connection with a
more microscopic description of a cholesteric phase.
The usual model assumes a modification of the cus-

and

Faa=„fd r (w[r e+(V' +q)p]w+gw ) . (2.17)

The quantities e and g are taken to be constant near
the transition, and v is proportional to the Rayleigh
number minus its critical value in the absence of
fluctuations.

As can easily be checked, a steady-state solution of
the Fokker-Planck equation associated with Eq.
(2.15) is a probability distribution proportional to
exp( —Faa/ka T), where Faa is the Rayleigh-Benard
"free energy" (2.17). Thus, equal time correlation
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functions can be calculated just as if the convective
rolls were in thermal equilibrium. Well below the
mean-field transition temperature (r « 0) associat-
ed with F~~, we look for condensation at wave vec-
tors somewhere on the circle in Fourier space,
~q ~

=qo. Assuming the condensation takes place in

the z direction, we expand F&& about this state, writ-
'

ing

8 = geqo4goz, X'= —qa
' (2. 1 9)

8. Dislocations and layered systems

As.discussed in the Introduction, the long-
wavelength, low-amplitude, phonon fluctuations asso-
ciated with Eq. (2.1) are sufficient to destroy transla-
tional oider, but not orientational order in two di-

mensions. In analogy to other treatments of singu-
larities in two-dimensional materials, ' ' we would like
to assess the additional effect of dislocations on the
layered order implied by Eq. (2.1). e first review
the standard treatments' ' of dislocations embedded
in a layered medium.

Consider an isolated dislocation in a layered ma-

terial. We want to determine the associated displace-
ment field uD( r ), which solves the Euler equations
associated with Eq. (2.1),

|v(7) =2Re[p(r )e ]

where g( r ), as usual, is complex, and slowly varying
over distances of order qp '. Neglecting fluctuations
in the amplitude Po of IP —= $0 exp(iqou ), we find, to
leading order in the gradients, the ubiquitous effec-
tive free energy (2.1), with

Il, x ) 0

I0, x & 0 (2.23b)

Equation (2.23) is readily solved by Fourier transfor-
mation to give

( )
md Vz

2m q„(q,'+ Z'q„)
(2.24)

or, returning to real space,

uo( r ) = —,md sgn{z) [erf(x/44g(z () +1] . {2.25)

The corresponding layer orientation field is
r

] 1 —X
80 ( r ) = , md —sgn(z) exp

~Xiz[ 4a~z
(2.26)

These are, of course, results for a single dislocation
at the origin. We can obtain these fields for an arbi-

trary configuration of dislocations by superposition:

uo(r) = JI d'r'm(r')G(r —r') (2.27a)

OD( r ) = —
&

d'r' m (r') B„G( r —r '), {2.27b)

where m ( r ) is an integer-valued field specifying the
dislocation strength at point r, and

tinuity of size md across the cut. Considering the ef-
fect of the operator 8,' —

A. 'B„near this cut, we see
that a source term must be added to Eq. (2.20) to
satisfy this boundary condition. Thus, we must solve
instead the equation

((1,' —X'(1„")uo ( r ) = md [8,5(z) ]O(x), (2.23a)

where O(x) is the step function

(8,' —a'84) uo ( r ) =0, (2.2o)

. I

G(r —r') = —dsgn(z —z') erf - +1
, &4) [z —z'[,

subject to suitable boundary conditions. We shall

also need the distortion of the layer normals pro-

duced by a dislocation,

HD( r ) =-(i„uo( r ) (2.2 1)

The strength of a dislocation is characterized in the
usual way by the integral of V'u along a path drawn
counterclockwise around it which traverses an equal
number of layers going up and going down [see Fig.
4(a)]. For a dislocation made by removing m layers on
the right, this path fails to close by m layer spacings d,

F =Fp+FD (2.3O)

~ =-'B J)d'r [(9 y)'+) '(8'y)'1 (2.3l)

(2.28)

To study the statistical mechanics associated with an

array of interacting dislocations, we decompose u ( r )

in Eq. (2.1) into a smoothly varying part $( r ) and a

part due to dislocations,

u(r) =P(r)+uD(r) (2.29)

The effective free energy then breaks up into two parts

u di= md (2.22) and

If layers are added on the right, m is negative.
In order to satisfy this condition, cuts must be in-

troduced to make the function uD( r ) single valued.
By convention, we take this cut to run from the
center of the dislocation out the positive x axis in Fig.
4(a). The function uo( r ) exhibits a jump discon-

FD = B' d'r~ d'rq d—'r m ( )mrl(rq)]

J

x [(),G (7 —r 1 ) B,G ( r —r &)

+ X'() 'G ( r —r ) () 'G ( r —r z ) ] .

(2.32)
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8,G(r ) =) 8„'G(r)

8,G ( r ) =)t826( r ) .

(2.33a)

(2.33b)

As can easily be checked, the harmonic conjugate of
6 is

The dislocation part of the free energy can be sim-
plified by a trick analogous to the use of harmonic
conjugates in electrostatics. Let us define a conjugate
function G ( r ) to G (r) by the relation

The partition function is then,

Z = „Sg( r ) exp( —Fo/k& T )

x X exp( —FD/ks T )
tm(T) -oo)

(2.40)

The variables {m(r ) ) take on all possible discrete
dislocation strengths from —~ to +~.

G( r ) = —„d [erf(x/U'4${z {)+1] (2.34)

The relations (2.33) allow G ( r ) to be replaced
everywhere in Eq. (2.32) by the simplier function
G (r), which satisfies

III. EQUILIBRIUM PROPERTIES

A. Translational and orientational order
at finite temperatures

(8,' —Z'8„') G ( r ) = Zd 8„8( r ), (2.35)

in contrast to Eq. (2.23a). Repeated integrations by
parts in Eq. (2.32) then allows us to use this relation
to eliminate the integration over r, and obtain finally

Fa = — d r, d r2 U(r~ —r2)m(r~)m( r2)"I f )-f2I&~

+ED J~ d'r m'(r) (2.36)

where

U( r ) =BAd8„G(r)

Sp(r) =p(r) —po (3.1)

we find using Eqs. (1.3) and (1.4) that

&gp(q)gp( —q)) =4po2 J d2r e'q & cos(qo' r )Qo

We are now in a position to study effects of pho-
nons and dislocations on layered systems at finite
temperatures. Translational order is measured direct-
ly by the Fourier-transformed density-density correla-
.tion function. Upon defining

lif2

= 48d
a {z{

exp( —x'/4Z {z { ) (2.37)
x &exp{iqo[u(r) —u(0)])),

(3.2)

m(r) =m, h(r —r, )+mo8(r —rb) (2.38)

we recover the results of DeGennes' and Pershan'
for this problem.

In order to impose an ultraviolet cutoff on the sta-
tistical mechanics implied by Eq. (2.36), it is con-
venient to convert the integrals in Eq. (2.36) to
discrete sums over, say, a square lattice of possible
sites for dislocations,

Note that U(r) tends to zero for large r, so that iso-
lated dislocations have a finite energy. We have add-
ed a term proportional to ED in Eq. (2.36), which
gives the energy of an isolated dislocation. This
depends in part on microscopic details near the core
region, which are not well described by continuum
elastic theory. The dislocation interaction U(r) is
also not well described near the core, so we have im-
posed the restriction { r, —r 2{ ) a, where a is the
core diameter [a = 0 (d) ], in Eq. (2.36). Specializing
for concreteness to the case of two dislocations with
strength m, and mq at r, and rq,

Evidently, density correlations are determined by

C( r ) = go &exp {iqo[u ( r ) —u (0) ] ) ) (3.3)

and p( r ) = Po exp [iqou ( r ) ] can be regarded as a
kind of translational order parameter. The thermal
averages in Eqs. (3.2) and (3.3) are understood to be
over an ensemble specified by the free energy (2.31).
If we ignore dislocations, the average over the
smooth phonon field $( r ) is easily carried out in a
cumulent expansion,

&
0'( r )e(0) &

= co&exp {iqo[e( r —4 (0) ] ) )

p{--,' q' &[4 ( ) -d (o)]'& )

(3.4)
The average in the exponential is conveniently
evaluated in Fourier space,

f(r) —= —,
' &[y(r) —@(0)]')

". d2qq &j(q)j(—q))(1 —e"'") .J 4~2

Fa=T X U(r —r')m(r)m(r')+ED Xm'(r)

(2.39)

where

&4(q)4(-q ) =
B

(3.5)

(3.6),
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Carrying out the integrations in Eq. (3.5), we find

f( r ) = exp( —x'/4h, ]z ~)
ksT
8 4~x

correlations cannot hold for all separation vectors r
at nonzero temperature, because of effects due to a
finite density of free dislocations. Because the energy
of an isolated dislocation is finite, we expect them
with density

4& +4gfz i

(3.7) no =—exp( —&o/ka T )
1

a
(3.14)

which simplifies in the limits of large z and x,

f(r)=-, x'«kzkaT fz i

8 4~x

kaT
ixi, x')) )~z48' (3.8)

where E~ is the energy of a screened isolated disloca-
tion, and should be the same order of magnitude as
the dislocation energy appearing in Eq. (3.29). The
core diameter a should be the same order of magni-
tude as the layer spacing d. Associated with this
dislocation density, there is a correlation length gD
giving the separation between dislocations, which
diverges exponentially rapidly at low temperatures.

=exp[ —i(i„u( r )] (3.9)

The local layer normal angle is H(7) = —Il„u ( r ).
Proceeding as in the case of translational correlations,
we have

(N( r ) N(0)) = (exp[i [H( r ) —H(0)] [)
= exp[ ——,

'
([H( r ) —H(0)]') )

Substituting these expressions into (3.4), we obtain
the results (1.8), first derived by Graham. "

Again ignoring dislocations, it is very easy to work
out correlations in the orientational order parameter
N( r ), defined by

N„( r ) +iN, ( r ) =e'" " '

go—= nq
' =a exp(ED/2kaT) (3.15)

As can be seen from Eq, (2.25), a dislocation pro-
duces a translational order parameter ilio exp[iqou (r) ]
which is 180 out of phase far to the right of a dislo-
cation from its value far to the left. The same de-
phasing takes place immediately above and below an
isolated dislocation. For points r and r' separated
only in the x direction, significant dephasing of
(i[i( r )P'( r ') ) will occur only from dislocations
within a region centered about the line r —r' and
bounded by two parabolas. The number of disloca-
tions in this region is of order nD~ r —r'~'/h. . Thus
(p(r ) i]i'( r ') ) will begin to fall off significantly when

~
r —r

' exceeds a correlation length perpendicular to
the z direction,

(3.10) ) Ii3n —Ii3 (3.16a)

Evaluating the average in the exponent with

H(r) =-Il„d (r) (3.11)

A similar argument shows that correlations begin to
fall off for points separated in the z direction beyond

one obtains
) -[/3~ —2/3

S[[= ~D (3.16b)

(N(r ) N(0)) =e g' " 'i' (3.12a)
The length gD, used throughout this paper, is just the
geometric mean of gq and gii,

where 4D=v'4Aii . (3.16c)
2 2ksT I' dq qr (I iq r)

8 ~& 4~2 q2+p2q4

(3.12b)

Since g ( r ) tends to a cutoff-dependent constant at
large r, we have

One can be much more precise about orientational
correlations. Correlations in the layer normal angle
H( r ) = —B„u ( r ) split into a phonon and dislocation
contribution, upon making the decomposition (2.29).
In terms of the Fourier-transformed field H(q ), we
find

Iim (N(r) N(0)) = I(N(r)) I'
f ~oo

=exp( —ksTA/2rrBX) . (3.13)

(H(q)H( —q)) =q„'(d(q)@(—q))
+ (H, (q)H, (—q)),

where HD(q ) is the transform of Eq. (2.26b)

(3.17)

Equation (3.12b) has been evaluated with a con-
venient cutoff. There is long-range orientational or-
der in this approximation.

These results for translational and orientational

Hz(q) = iq„2rrG(q)m(q) =i—d ' m(q)
q 2+) 2q4

(3;18)
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+, ', „,(m(q)m( —q))
dq,

q,~+X~q„" ~

(3.19)

Because the field m ( r ) is constrained to take only
integer values, the average (m ( q ) m (—q ) ) is quite
difficult to evaluate in general. At temperatures such
that ke T ))ED, however, dislocations with very
high strengths will be excited, and we can integrate,
rather than sum, over their possible values. This
"Debye-Huckel" approximation can be justified
by application of the Poisson summation formula47 to
each summation over m ( r ). A systematic high-
temperature expansion can be obtained in this way,
with the first term given simply by integrating, rather
than summing, over the {m ( r ) }. We also expect the
"Debye-Huckel" approximation to hold at long
wavelengths at fixed, finite temperatures. For wave
vectors q such that q)zp (( I, we imagine regions of
size q

' containing screened dislocations interacting
weakly via temperature-dependent elastic parameters
B ( T) and X( T). One should be able to integrate
continuously over the total charge due to the "micro-
scopic" dislocations contained in a region of size q '.
The temperature dependence of B ( T) and h. ( T) will

be determined in Sec. III B.
Treating the {m ( r ) } as continuous variables, we

rewrite Fp [Eq. (2.39)] in Fourier space
)

Fp= d q +2Epa m(q)m( —q)
d'8 A. 'q„'

zz.

4 q +Xq
(3.20)

and find immediately that

ks T(tgz + )t qx )
d & Bq„+2EDp ~q + 2ED a X q

(3.21)

Combining this result with Eq. (3.19) we find our fi-
nal result, correct to lowest order in q„' and q,',

(t)(q)e( —q)) = . . . , , . (322)
BX'q '+ 2Epa' d' q,'

But this is precisely the correlation function one
would expect for a two-dimensional nematic liquid
crystal, aligned in the z direction, and with Frank
constants

K) = 8)).', K3 = 2Epa'/d' (3.23)

Inserting this result together with Eq. (3.6) into Eq.
(3.17), we find that the orientation angle correlation
function is determined by correlations in the
Fourier-transformed dislocation strength field m ( q ),

k T
(8(q)e( —q)) =

The long-wavelength properties, even for cholesterics
and the Rayleigh-Benard problem, are described by
the nematic free energy (1.14)!

When the nonlinear terms in Eq. (1.14) are taken
in account, it can be shown" that the Frank con-
stants K~ and K3 become equal at very long
wavelengths to a common value K, so that one actu-
ally has

Fjy = —K d'r (Ve) (3.24a)

and

(3.24b)

There is no genuine broken orientational symmetry.
Indeed, evaluating Eq. (3.10) using Eq. (3.24) we
find algebraic decay of orientational order,

(e2ii)( r )e 2ii)l 0))-& )2 (3.25)

where q)(T) is given by Eq. (1.17b).
Although free dislocations exist at any finite tem-

perature, disclinations are bound into pairs with a
logarithmic attraction by the nematic free energy
(3.24a). We can then take over of the theory of Kos-
terlitz and Thouless ' for this problem, and find that
disclinations unbind to produce an isotropic phase at
a temperature T, such that

r)p(T, ) = —,
1 (3.26)

Both orientational and translational order decay ex-
ponentially in this phase.

B. Behavior of the Frank constants
at low temperatures

Strictly speaking, the estimates (3.23) for the
nematic Frank constants K] and K3 are only accurate
at high temperatures and at wavelengths such that
the nonlinear terms in the nematic free energy (1.14)
are unimportant. More generally, one would like to
determine the fully renormalized Frank constants
Kai (T q) and K3 (T q) at long wavelengths and at
low temperatures. We do this by first determining
the temperature dependence of the Frank constants
K)(T) and K3(T), dressed only by effects due to
dislocations. These will then be considered as micro-
scopic input parameters for the renormalization-group
theory of two-dimensional nematics, "which takes
into account nematic nonlinearities.

To determine the temperature dependence of
K3(T), we follow DeGennes'6 and apply simple phys-
ical arguments developed in the theory of fluctuation
diamagnetism in superconductors. ' We imagine lay--

ered systems at finite temperatures to be made up of
smectic islands of area gp embedded in a nematic
background. Taking over argumerits of Schmid, we

find that the susceptibility of such a region to bend
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[n x ('7 x n) AO] goes like g, ~gq=gD. Hence, this
susceptibility, which is just Kq(T), is predicted to
diverge,

The advantage of doing calculations with the renor-
malized system is that the recursion relations (3.30)
drive the system toward a fixed line with
K]' =K~' =—K at low temperatures,

K& ( T) —
gD

—exp(ED/ks T ) (3.27)

The temperature dependence of Kt(T) is readily
determined from its definition,

K,
' (T) = lim lim q„'(e(q)t)( —q))

q ~0q 0x z

(3.28)

Kt( T) —const (3.29)

as T 0.
A nematic with different bend and splay elastic

constants in two dimensions has been studied using a
momentum shell renormalization group by Nelson
and Pelcovits. ~5 The behavior of a nematic with mi-

croscopic Frank constants K] and Kq is related to
that of a nematic with Frank constants Kt(l) and
Kq(l) after a fraction I —e "of the degrees of free-
dom have been integrated out. The effective Frank
constants Kt(l) and Kq(l) satisfy differential recur-
sion relations, namely,

dt (I)
dl

de. ( I)
dl

—A(l) t'(I)
2mdl + 5(l)
—4(l)t(0[2+&(I) l

2rrv I + 5(l)

(3.30a)

(3.30b)

We can see from Eq. (3.19), that the dislocation con-
tribution to K~(T) drops out in the limit q, 0.
Thus the splay elastic is unaffected by dislocations, as
one would expect on physical grounds.

lim d(/) =0
I ~oo

(3.35)

KRt (T q) =K, (l')

K,'(T q) =K,(l"),
(3.36a)

(3.36b)

where

I'= ln(A/q ) (3.36c)

This program is implemented in the Appendix,
where the recursion relations (3.30) are studied in
some detail. The results are summarized in Figs. 6
and 7. At sufficiently small wave vectors q, KR] and
Kq are essentially equal, and both appear to diverge
like (o2. These Frank constants begin to separate at a
locus of critical wave vectors q, (T) Acareful solu-.
tion of the recursion relations is required to deter-
mine this critical wave vector, below which nonlinear-
ities enforce equality of the Frank constants. The
result is that

The resulting system is like a two-dimensional XY
model, which can be accurately treated using a simple
spin-wave theory at low temperatures. ' At finite
wave vectors, e'q may grow to be of order of the cut-
off A —a ' before 5(I) becomes very small. At this
point, however, fluctuations are unimportant and we
can use the linearized theory of a nematic with two
Frank constants,

where

t(l) =k T/Ki(I) (3.31a)

q, (T) ——exp[ —c exp(ED/ks T) ]
1

a
(3.37)

and

d, (l) = [Kg(l) —Kt(l)]/Kt(l) & 0 (3.31b)

f (q, Kt, K)) —= (e(q)e( —q))
transforms as

(3.32)

Here, we want to solve these differential equations
with initial conditions, K~(l =0) =Kt, and
K3(l = 0) = Kq. It is straightforward to show that the
quantity which determines KRt ( T,q) and Kf ( T, q ),
namely,

2/3

KR g2/3 l
I KR g2

qd
(3.38,)

as shown in Fig. 7. Although K] now diverges, the
ratio KRt/Kq~ tends to zero

where c is a numerical constant of order unity. The
wavelength necessary to see equality of the Frank
constants rapidly becomes of order of the size of the
universe with decreasing temperature.

At low temperatures, or at wave vectors greater
than this critical value, K~ and K~ diverge with dif-
ferent powers of gD,

f(q.Kt, Kq) = e"f(etq, Kt (I),Kg(l)) (3.33)
KR /KR g

—4/3 (3.39)
under the renormalization group constructed in Ref.
35. The renormalized Frank constants are related to
f (([,K),Kg) by

as one would expect in layered systems. At tempera-
tures such that

4D»q ' (3.40)
k, T/KR = q„'f (q, K, ,K,),
ks T/Kj = q,' f ( q, K t, K3)

(3.34) the system behaves like a layered material, decorre-
lated only by phonon fluctuations.
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IV. COMPARISON WITH T%0-DIMENSIONAL
SUPERCONDUCTORS

As observed by DeGennes, ' the Landau-Ginzburg
free energy for a superconductor bears a striking
resemblance to the expression appropriate for a
smectic liquid crystal. For a superconductor, we have

can readily determine the correlation function which
gives the susceptibility x(q ) at finite temperatures.
Upon defining

x '(q) —= —q' 5;, — ',' (A;(q)&, ( —q)), (4.5)

we find that
1

h2
F„= td'r V — A P2m tc

—1x(q) =
4'fT p,okg T

4(e/tc )'K
q AT

(4.6)

(4.1)

(4.2)

In the Coulomb gauge, (0 A =0), the free energy
(4.1) becomes, neglecting constant contributions,

which should be compared with Eq. (2.2) for a smec-
tic. Here, P( r ) is a complex order parameter, A( r )
is the vector potential, and p, is the magnetic perrnea-
bility. We assume that A( r ) is a vector in the two-
dimensional plane, so that the magnetic field
A =0 x A is always normal to this plane.

Just as for smectics, we assume r ( 0 and neglect
amplitude fluctuations, writing P( r ) = Joe'+ " ', with

&/2—r4o= =const .
4u

where m( r ) is an integer. Upon decomposing I) and
A into smoothly varying parts P and a, and contribu-
tions due to a collection of vortices,

I) ( r ) = @(7)+ 8„( r )

A(7) = a(r ) + A„(7)

where

(4.8)

which diverges as q tends to zero. We now show
that, if vortices are included, the properties are those
of a normal material, and the susceptibility is finite at
all nonzero temperatures.

Abrikosov vortices have been extensively studied
in the literature, so we only quote the necessary
results. The strength of an isolated vortex at position
r is characterized by the requirement that the wave
function P( r ) be single valued,

'78 d l = 2am ( r ) (4.7)

r

F„=J d r —,K('78) +2 —K (A )~
hc

Q x A„(r ) =2mm(r) (4.9)

where

K = $02t~/m

+ ([P xg [')
8mp,

(4.3a)

(4.3b)

F(0) +F(o) (4.10)

The analog of the "phonon part" in layered sys-

tems is just

the superconducting free energy F„breaks up into
two parts,

Although the phase and vector potential appear to be
decoupled [in contrast to the variables appearing in

the smectic free energy (2.6) j, there is an indirect
coupling when Abrikosov vortex solutions of the
field equations are taken into account. In fact, the
auxiliary condition, analogous to Eq. (2.21) for smec-
tics, which must be satisfied is

F,, = d r K("7@)2+2—— K (a ~2

hc

fV x a['
8m@,

(4.11)

2e-
Vg ——A ~ d 1 =0

hc
(4.4)

while the contribution from a collection of interacting
Abrikosov vortices may be written

for any closed contour around a vortex. Because the
vector potential enters Eq. (4.4) explicitly, we cannot
simply integrate it out, as was done with the layer
orientation field in the case of smectics.

If vortices are ignored, the free energy (4.3a) is
just what one expects for a superconductor far below
the superconducting transition temperature, and one

F,',"' = —,
'

X U„(lr —r'~)m(r)m(r')

+E„xm'(r ) (4.12)

As in our discussion of layered systems, we restrict
the vortices to lattice with spacing of order the core
diameter a. The interaction energy between vortices



330 JOHN TONER AND DAVID R. NELSON 23

is isotropic, 48

U„(r) = ——,Kp
bc I. r

8 e ~L ~L
(4.13)

Applying Schmid's analysis' of fluctuation diamagne-
tism in superconductors, we conclude that X( q = 0)
diverges like $„',

X(q =0) —exp(E„/k ttT) (4.21)
where A.~ is the London penetration depth,

(4.14)

at low temperatures. The relation between these
results, and the corresponding ones for layered sys-
tems, was discussed in the Introduction.

and F.„ is the finite energy associated with an isolated
vortex. The function Kp(x) is a zero-order Hankel
function of imaginary argument, and vanishes ex-
ponentially fast for large x.

We want to calculate the susceptibility, which may
be written

'2 ' —1

1 4 e+——K kgT4' p, o g ./lc

(4.15)

The first term is just the contribution (4.6), obtained
neglecting vortices. As in our analysis of layered sys-

tems, we can evaluate the vortex-vortex correlation
function in Eq. (4.15) with the aid of a "Debye-
Huckle" approximation, valid at sufficiently high
temperatures. In order to integrate rather than sum
over vortex complexions [m ( r ) ], we need the vor-
tex free energy in Fourier space, namely,

F(„& 1 "d'q (nhc/e)'
2 al' 4&2 8rr2[ 1 + (X q )2']

V. DYNA M ICS

As is well known, layered systems like smectics
and cholesterics have rather different hydrodynamic
excitations than nematics. ' As T tends to zero, one
expects that the nematic phase of these layered ma-
terials will support smecticlike excitations at
wavelengths less than $D. A very similar situation
arises in one-dimensional Heisenberg and XY mag-
nets, '9 which exhibit short-wavelength spin waves
even though there is no magnetic order at finite tem-
peratures. To study this further, we have constructed
a simple model of dislocations interacting with the
layer displacement field u ( r ). The effect of a finite
density of moving dislocations on the layer dynamics
is to produce the characteristic excitations of a
nematic at long wavelengths. This approach allows
us to predict the temperature dependence of the
kinetic coefficient which characterizes nematic hydro-
dynamics. We shall rely heavily on techniques
developed in studies of the dynamics of superfluids
and melting4' in two dimensions.

A. Hydrodynamics with dis1ocations
&& m(q)m( —q) (4.16)

x '(q =0) = —lim (m (q)m (—q) )
q 0

(4.17)

It is now straightforward to evaluate the susceptibility
at small wave vectors. The first term of Eq. (4.15)
vanishes as q 0, and the second gives

It is impossible to define a smooth, single-valued
displacement field u ( r ) in the presence of disloca-
tions. To make u(r ) single valued, one must intro-
duce cuts, across which u ( r ) jumps discontinuously.
Since following the dynamics of the cuts can be diffi-
cult, we work instead with a quantity analogous to
the superfluid velocity in a helium film, namely,

or v —= (Q '7Q —ps7$ ) 2/iqp p|It (5.1)

k Tx(q =0) =—
1

1

8n2 mhc
(4.18)

n „=—exp (—E„/ktt T )
1

0
(4.19)

This is the finite, diamagnetic susceptibility one ex-
pects in a normal material with superconducting Auc-

tuations.
Since we expect a density of vortices,

'7 & v ( rt) =ym ( r, t, ) (5.2)

In contrast to u ( r ), Q( r ) =
Qp exp[iqpu ( r ) ] is sin-

gle valued, and only singular at the actual positions
of the dislocations. By its construction, v ( r ) is just
'7u ( r ), but with the 8 functions arising from the
cuts excluded.

Since the integral of v( r ) around any closed path
is just d times the enclosed dislocation charge, we
have from Eq. (2.22) that

n„' = a exp(E„/2ks T) (4.20)

the system should behave like a superconductor on
scales less than where m ( r, t ) is a dislocation. charge density,

rn( r, t) =d Xm S(r —r' '(t)) (5.3)
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and y is a unit vector perpendicular to the xz plane.
Here m and r ' '(t) are the charge and position of
the 0.th dislocation. Associated with the dislocation
charge density is a dislocation current.

(5.4)

tions, we must take

:(r,r) =I'BB,u, (r, r) —I"Bh.'93u„(r, r) (5.11)

Our final equation of motion for v ( r, r ) can then be
written

and, together, these quantities must satisfy an equa-
tion of continuity,

(5.5)

d v
I B~y~ ~B~2g4

dt

B. Solution of the model dynamics

(S.12)

r

Qx —yx J =08v
Bt

(5.6)

we must have

Since Eqs. (5.2) and (5.5) can be combined to read
To proceed further, we need to close the system of

Eqs. (5.5) and (5.12) with an expression giving the
dislocation current J ( r, t) which appears in response
to inhomogeneities in the layer spacing and disloca-
tion density. A simple model for dislocation motion
1S

+yx I
Bt

(5.7)
dr' ",t =m Df(Y' ')+ ' '(r)

dt
(S.13)

where =( r, t ) is a smooth function of position.
To complete our specification of the hydrodynam-

ics, it is necessary to know the function ( r, r). To
determine this function, we first propose a simple
model of layered hydrodynamics in the absence of
dislocations. A particularly simple dynamical model
is summarized by the equation of motion

Qu ~SF +y
Qt Su

where F is the free-energy functional (2.1), and

Y( r, t) is a zero-mean Gaussian Langevin noise
source with autocorrelation

(5.8)

(Y(r, t)Y( r, t )) =2ksTI 5(r —r )8(r —r ) . (5.9)

This would be an appropriate model for a smectic on
a substrate in equilibrium with its vapor pressure, so
that momentum, energy, and particle number are not
conserved. Moreover, the dynamical equation (2.14)
of Swift and Hohenberg'4 for Rayleigh-Benard con-
vective rolls reduces to this model when amplitude
fluctuations are neglected.

Surpressing for simplicity the noise term in Eq.
(5.8), the equation of motion for u neglecting dislo-
cations is

where D is a diffusion matrix and where the
Langevin noise source g;(t) satisfies

(& '(r)»'a'(r')) =25 &D,,k T5(r —r') . (5.i3a)

f„( r ) = Bd u, ( r )

f, ( r ) = 8k'd Il„'u„( r )

(5.14a)

(5.14b)

The diffusion matrix D should be diagonal in a coor-
dinate system aligned with layers,

D 0
D=

0 (5.15)

By studying the Fokker-Planck equation for the
dislocation charge density associated with Eq. (S.13),
we easily find that the conserved current density for
small inhomogeneities is

The quantity f ( r ) is the layered analog of the
Peach-Koehler force which acts on dislocations in or-
dinary crystalline materials. ' It can be extracted
from the paper by Pershan, ' or more directly, by
asking for the force on a dislocation at r ' ' with

strength m in the presence of specified layer dis-
placement gradients v. The requirement that this
force gives the correct energy of a dislocation pair
leads to a force with components

=1 Bg, u —I BA. B„u
Qt

(S.loa)
J ( r, t) = nDDY( r, t) +knTD'0m ( r, r), (5.16)

or, in terms of v ='7u,

— =I"8Q2v —I BX 94 v
Qf

(S.lob)

In order that Eq. (5.7) agrees with the layered hydro-
dynamics implied by Eq. (5.10) far from any disloca-

where nD —exp( ED/ka T) is the eq—uilibrium density
of dislocations. That J must have this form is clear
on physical grounds. The ratio of the coefficients of
f and Om is fixed by the requirement that the cur-
rent in the presence of a uniform, time-independent
force, i.e., when m(r, r ) =no exp( —f r/ksT),
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vanish to lowest order 1n f. Equation (5.16) reflects
a kind of Einstein relation for the dislocation charges.

Using Eq. (5.16) to eliminate J from the equation
of continuity (5.5) and from Eq. (5.12), it is straight-
forward to determine the eigenfrequencies of this
coupled system of equations,

co ) (q) = i D, —() 'B dno q„'+ ks Tq,')

~2(q) = iD„B—dno

(5.17a)

(5.17b)

F, = —,
' d'r [K,(b„e)'+K,((),(()'] . (5.18)

The simplest relaxational model is

98 SF
I N + o ~ ~

Qt 58
(5.19)

The first eigenfrequency is exactly what we would ex-
pect for a purely dissipative nematic with no conser-
vation laws. To see this, we take as our nematic free
energy (1.14) linearized in 8( r ), with a local align-
ment in the z direction,

r, behaves as in Eq. (5.23).
The second eigenfrequency (5.17b) has a very sim-

ple physical interpretation. It is associated with the
dislocation density m ( r, t ), and is just the rate at
which a dislocation diffuses one correlation length.

Note addedin proof. After this manuscript was
submitted, we learned of a number of references
which draw attention to defects in the Rayleigh-
Benard problem. Graham emphasized the analogy
with smectic-1 liquid crystals in the last part of Ref.
23. A discussion of defects in real experiments has
been given by P. Berge, in Lecture Notes in Physics:
Dynamic Critica/ Phenomena and Related Topics, edited
by C. P. Enz (Springer, New York, 1979). See also
P. Berge and M. Dubois, in Proceedings of the
Symposium: "Systems Far from Equilibrium, "
Sitges, Spain, June, 1980 (unpublished). The
breakup of a square lattice of convective structures in
a nematic has been described in a recent preprint by-
3, M. Dreyfus and E. Guyon. These authors suggest
a connection with two-dimensional melting theories.

~here the ellipsis represents a noise term and I & is a
nematic kinetic coefficient, and the noise brings the
system into equilibrium. The characteristic nematic
frequency is

(gn(q ) = /
I'n(K )q„—'+ K3q,') (5.20)

which, when compared with Eq. (5.17a), gives the
identification

I ~K) ——Dza dn~), ',
I"gK3 =D,ka T

Taking the ratio of these equations, we find

K] B dna',

K3 kg T

(5.21a)

(5.21b)

(5.22)

which checks with our equilibrium results (3.27) and
(3.29). Equations (5.21) can only be completely con-
sistent if the nematic kinetic coefficient shows critical
slowing down,

ACKNOWLEDGMENTS

It is a pleasure to acknowledge informative conver-
sations with B. I. Halperin, T. C. Lubensky, P. C.
Martin, S. Meiboom, P. Pershan, R. Pindak, and S.
Ostlund. The possibility of a connection between the
melting theory of Ref. 7 and the Rayleigh-Benard
problem was pointed out to us by E. Guyon and R.
Graham. This work was supported in part by the
NSF under Grant No, DMR77-10210 and through
the Materials Research Laboratory. One of us
(D.R.N. ) acknowledges the receipt of a grant from
the Alfred P. Sloan Foundation,

APPENDIX: RECURSION-RELATION ANALYSIS
OF FRANK CONSTANTS

In this Appendix we calculate the renormalized
Frank constants from the recursion relations (3.30):

I n —(o' —exp( Eo jks T)—(5.23)

at very low temperatures.
These results neglect effects of nonlinearities in the

nematic free energy (1.4). As discussed in Sec. III 8,
these drive K] and K3 toward equality at long
wavelengths, and cause K] to ultimately diverge like
go2/' at finite wave vectors. We have considered the
effects of these nonlinearities on the dynamical
model (5.19), and find no significant renormalization
of the kinetic coefficient I ~. Thus, we conclude that
the characteristic frequency con(q ) is well approxi-
mated by

ruN(q) = i I'n]K~ (T,q)q„'+K—3 (T,q)q, '], (5.24)

where K~ and K3 were determined in Sec. III 8 and

with

Ck(I) —6(/)/'(/)
cl 2~ii + a(/)

dA(/) &(/)/(/) (2+ &(/) ]
dl 2rril + 5(l)

ks T K3 ( I) —IC ) ( I)

K, (/)
'

K, (/)

and the initial conditions

K)(l =0) =K), IC3(l 0) K3

We begin by noting that

(~(/) +2] dt(/) (() dh(/)
di

'
dl

(Ala)

(A lb)

(Alc)

(A2)
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from which it follows that:

= consta(i)+2 (A3)

which is readily solved for h(i)
' -2/3

(A8)

or equivalently,

K j (I) + K3(I) = const~ 2K„ (A4)

The reason for this notation is that as l
I}(I) 0 and hence K~(l = 00) = K3(i =~) =-K
The value of K can be evaluated from the initial
conditions

f kB~ kB~
b +2 2K„K, (A6)

Using this relation one can easily solve the recursion
relations (Al) when It, (I) » 1 or K3(i}» K~(l)—
limits that are certainly satisfied by the initial condi-
tions (Alc). ln this limit it follows from Eqs. (Alb)
and (A6) that

di 2rr(K /k T)
(A7)

K =-, (K~+K3) = —,K3ccgrj as T 0 . (AS)

Thus, at wavelengths such that I =ln(A/q) is large
enough that the Frank constants are renormalized to
equality, both Frank constants diverge as go as T 0.

%e also have

ln the long wavelength (I ~) limit we thus have

d(i) = 3l

4rr(K3/ks T )

2/3

(A9)

Combining this with Eqs. (A4) and (AS) we can
solve for K~(l) and K3(i):

3lk T
' 2/2

K (I) =K'' "'I"'
4n

(A10a)

(A10b)

which gives us the results quoted in Sec. III, upon
setting I = ln(A/q ).

The results (A10) were based upon the approx-
imation 5(l) » 1, which according to Eq. (A9)
clearly breaks down when I = I, = K3/ka T. Recalling
that K3 a exp(E /ks T) and I = ln(A/q ) we see
that this condition is equilvalent to q, (t) = (1/d)
x exp[ —C exp(E, /ka T) ], which is the result quoted
in Sec. III. For wave vectors smaller than this, since
h, (l) is small, the two Frank constants should both
equal K and diverge like go, whereas for q » q, (I)
the results (A10} should hold.
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