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Recent optical free-induction-decay (FID) measurements of the impurity ion Pr + in LaF3 at

2 'K reveal optical homogeneous linewidths of only a few kilohertz, considerably narrower than

the inhomogeneous broadening due to crystalline strains (5 GHz) or the static local magnetic

fields of the ' F nuclei (100 kHz). In this regime, the homogeneous broadening arises from lo-

cal field fluctuations, as in NMR, and is due to the ' F nuclei which'undergo resonant flip-flops

and modulate the Pr + optical transition frequency. We treat the optical response of a two-level

quantum system to an intense coherent field and to fluctuating perturbations using a Monte
Carlo computer routine that assumes (1) the LaF3 crystal structure and (2) a sudden fluorine

spin-flip model. This procedure avoids many of the approximations of previous analytic theories
of spectral diffusion in magnetic resonance and extends the calculation specifically to optical

FID. The decay behavior is obtained by sampling statistically the Pr + phase history as sub-

groups of ' F spins flip randomly in space and time. These fluctuations modify the Bloch equa-

tions where the solutions for the preparative and post-preparative periods are obtained by nu-

merical integration. In spite of the large lattice size assumed (2250 fluorines), only a few ' F
spins contribute substantially to the homogeneous width, a result which shows for the first time

that spin-flip correlations are not significant. Furthermore, a Pr3+ ion polarizes and detunes the

nearest fluorines forming a frozen core that is incapable of resonant spin flipping with the bulk
5

fluorines. We demonstrate that the core grows radially as the ' 'Pr(l =
2 ) magnetic moment

increases with I„but the Pr optical linewidth changes little, producing essentially one rather

than three lineeidths. Our calculations utilize no free parameters and predict a Lorentzian line

shape of 8,4 kHz half-width at half maximum which compares to the optical FID obser-

vation of a 10.1-kHz Lorentzian, The Monte Carlo algorithm is verified further by the static lo-

cal magnetic broadening of a Pr quadrupole transition which is found to be Gaussian, 82 kHz

full width at half maximum, in agreement with a second-moment calculation and current

observations.

I. INTRODUCTION

Optical free-induction-decay (FID) measurements
have been performed recently on the praseodymium
impurity ion Pr3+ in a lanthanum trifluoride host
crystal LaF3 at 2'K yielding a Lorentzian homogene-
ous linewidth of a few kilohertz —the narrowest opti-
cal transition yet observed in a solid. ' Local mag-
netic dipolar interactions, both homonuclear ' F-' F
and heteronuclear ' 'Pr-' F, are responsible for
broadening the line in a way which is reminiscent of
past magnetic resonance studies. The optical prob-
lem, however, is not identical to previous work be-
cause the optical FID effect involves steady state
rather than pulse preparation and because optical
transitions are usually dominated by inhomogeneous
broadening. In this article, we present an optical
line-broadening theory involving no free parameters
that is suitable for describing the current LaF3.'Pr +

FID observations. The calculation utilizes a Monte
Carlo technique that avoids some of the assumptions

and approximations of past analytic theories in mag-
netic resonance and furthermore enables us to gain
new insight into the dynamic processes occurring in

solids.
In optical FID measurements, it is important to

realize that a frequency stabilized cw laser beam
resonantly excites a two-level quantum transition and
thus coherently prepares a single homogeneous Pr'+

packet under steady-state conditions. " Hence, a
narrow hole of a few kilohertz width is burned into
the much broader inhomogeneous line shape which
arises from local crystalline Stark fields (width: 5
0Hz) and static magnetic fields of the surrounding
fluorine nuclei (width: 100 kHz). In addition to the
resonantly excited packet, the remaining packets of
the inhomogeneous distribution are excited in an
off-resonant manner. %hen the laser frequency is
suddenly switched, the Pr'+ ions radiate an intense
coherent beam of light in the forward direction, the
FID signal, where the time dependence is character-
ized by a fast and a slow regime corresponding to the
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(1.2)

is an exponential and depends nonlinearly on the
laser intensity, the leading term being X4 where
)8=1/Tq(1+ x'T) T, )' '. This component corresponds
to the resonantly excited packet which is a power
broadened Lorentzian of angular linewidth

(I/Tq +P), the homogeneous width, where in the
low power limit

lim +P1 2
X-0 T2 T2

(1.3)

The dominant dynamic mechanism contributing to
the Pr'+ optical dephasing time T2 is due to thc time
varying magnetic dipolar interactions where the ' F
nuclei undergo resonant flip-flops and impress weak
fluctuating magnetic fields on the ' 'Pr nuclei. The
Pr'+ optical transition frequency cv is thereby modu-
lated, and as we shall see the low power limit of Eq.
(1.2) omitting trivial factors, takes the more funda-
mental form

exx(i) —e (t) =— exe i J e (i )ei',;,)x„„'
(1.4)

where a time average is to be performed due to the
Pr3+ frequency fluctuations 50)(t') and a spatial aver-
age over the fluorine nuclei surrounding a Pr + ion.
The dipolar mechanism is in fact well substantiated
by current optical FID studies where magic-angle line
narrowing occurs. ' Thus, when the Pr +:LaF3 crystal
is irradiated by an appropriate rf field, the ' F nuclei
undergo forced precession about an effective field in

the rotating frame. The fluotuating ' F-' F dipolar
interaction is quenched thereby and the optical
linewidth drops from -10 to -2 kHz, a behavior
which can occur only when the above broadening
mechanism prevails.

The central issue is the evaluation of Eq. (1.4), a
magnetic resonance problem which has attracted

off-resonant and resonant preparation.
The two time regimes are actually limiting cases of

a general analytic solution3 of optical FID, derived re-
cently for an inhomogeneously broadened two-level
quantum system subject to steady-state preparation
and relaxation characterized by the phenomenological
population and dipole dephasing times T~ and T2. In
the short time limit, the FID heterodyne beat signal

E,'(t) —x'e-' '"' t « 2y/~',

is a Gaussian in time with decay rate o = 2/Tq" —and
depends linearly on the laser intensity, X being the
Rabi frequency. This signal reflects the off-resonant
preparation of an inhomogeneous line shape which is
itself Gaussian with linewidth cr. In the long time
limit, the FID signal

Anderson and gneiss" and also Kubo' showed that
Eq. (1.4) reduces to two limiting cases

e ''"22

C)(t) =
e

)

(1.6)

where the depth of modulation 5 = (Sco') 't' and the
correlation time

//))ef, e /i )s (i +i)e'i'
Thus, the A spin resonance line exhibits a Gaussian
behavior for short times and an exponential decay for
long times. As time evolves, the initial linewidth 5
narrows to 52~„duc either to thermal motion or spin
exchange interactions for example. While Eqs. (1.5)
and (1.6) superficially resemble the time dependence
of the optical problem, Eqs. (1.1) and (1.2), we em-
phasize that the two theories are unrelated, and as
the above discussion indicates, have an entirely dif-
ferent physical origin.

Specific forms for the A spin FID and echo decay
were derived initially by Herzog and Hahn6 using the
same model of Gaussian modulation and the Markoff
assumption for the correlation function

(Sa)(t)Sru(0)) = (Sco(0) )e

The leading FID terms in the short and long time
limit agree with (1.5) and (1.6). Mims also invoked
the Gaussian-Markoff model for the time average but
included the spatial average of Eq. (1.4) assuming
that the dilute A spins are randomly distributed in a
lattice of 8 spins. The resulting echo decay laws are

—(,21/TM) 3/2

of the form E(t) =e ~ for t/r, && I and
—(2//TM) /2

E(t) =e ~ for t/r, && 1 and the FID
behavior exhibits similar fractional power laws. This
model, therefore, seems inappropriate for optical
transients in Pr:LaF3.

Another approach, developed by Klauder and
Anderson, ' assumes a Lorentzian-Markoff model
where the abundant 8 spins execute sudden spin flips

randomly in time. The A-8 spin dipolar interactions
in this case occur less frequently and morc violently
than the Gaussian modulation described above, and

theorists for about 30 years. For the purpose of dis-

cussion, assume a model where isolated A spins of a

lattice are monitored by magnetic resonance and are
frequently but weakly perturbed by the more
numerous 8 spins. The resulting frequency fluctua-
tions 50)(t) of the A spins and thus the phase integral
(1.4) should then follow Gaussian statistics. With

the assumption that Sro(t) follows the Gaussian dis-

tribution

P( Sct))= (I/5427r) exp[ ——'(5 /5) ]
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and reduces in the short time limit to

F(t) =exp[ —happ, t, t(1 ——, Wt)], Wt « I (1.9)

where htutt2 =(16m /943)n p,„ptt/tt, n is the 8 spin

density, p, is a magnetic moment, W is the 8 spin flip

rate, and Ip( Wt) and lt( Wt) are modified Bessel
functions. The leading term Atp, t&t in Eq. (1.9) is in-

dependent of the spin-flip rate 8'and therefore
represents a static magnetic broadening or first order
FID, which is unusual in that it is Lorentzian, and
follows directly from the spatial average given initially

by Mims. ~ The spatial average assumes a continuum
behavior in the A-8 internuclear spacing, extending
from zero to infinity, and therefore is subject to er-

ror, an issue considered by Klauder and Anderson,
owing to the neglect of the minimum lattice spacing
of real crystals. We shall consider the magnitude of
this error later in Appendix A. This model also as-
sumes that the entire inhomogeneous line shape is

uniformly excited with a n/2 pulse so that the hole
burning preparation which occurs in the optical FID
problem is ignored.

The 3-8 spin dipolar interaction for Pr'+:LaF3 is

neither weak enough to fit a Gaussian theory
(Sppt « I), nor strong enough to fit the Klauder-
Anderson theory (Sppt » I). The maximum fre-

quency jump Sco,„due to a fluorine spin flip obeys
Sco,„r—1, where v is the observed Pr'+ dephasing

therefore resemble Poisson statistics' which also ap-

ply in the line broadening theories of atoms undergo-
ing isolated binary collisions. For a single spin pack-
et, the time and spatial averages, which involve ap-
proximations, yield an exponential FID signal of the
form

F(t) =e™ttt

where m =(8rr'/943)nry(p, (, n is the Bspi ndensity,
r is the microscopic 8 spin-flip rate, p, is the 8 spin
moment, and y is the 1 spin gyromagnetic ratio.
The nature of this model and the resulting exponen-
tial decay come closer to explaining the optical FID
behavior of Pr'+:LaF3. Ho~ever, there is a major
difficulty because the parameter R is ill defined for a

T2 process, having been introduced as a device to
satisfy stationarity in the Markoffian distribution
function.

More recently, Hu and Hartmann obtained analyt-

ic results for Eq. (1.4) in the case of the one-pulse
FID, the two-pulse echo, and the three-pulse stimu-

lated echo. The system again consists of dilute A

spins randomly distributed among the 8 spins which

suddenly and randomly flip between two quantum
states because of the spin lattice interaction. The
FID signal after a spatial and a time average is given

by

F(t) =exp [ I tp, tqte '[lp( W—t) +1~( Wt) ] }, (1.8)

time. Since neither regime applies, a numerical
theory is called for.

In this article, a Monte Carlo line broadening
theory is presented with the advantage that many of
the assumptions and approximations utilized in the
past are avoided, and moreover, the role of the dipo-
lar mechanism in the optical FID problem is treated
for the first time. We consider a rigid lattice LaF3
crystal structure' which contains a dilute concentra-
tion of Pr + ions. Each Pr'+ ion replaces a La + ion
where the Pr'+ spatial distribution is random.
Second, an external magnetic field is assumed caus-
ing the fluorine spins to be either in the up or down
orientation. Third, because of a low Pr3+ concentra-
tion, Pr'+-Pr'+ interactions are exluded. Fourth, the
F spins are assumed to flip suddenly and randomly at
a rate 8, a quantity which can be calculated from
other considerations and compared with experiment.
At low temperatures (T «2'K), spin-lattice relaxa-
tion will not induce fluorine spin flips at a significant
rate, but fluorine spin pairs can undergo mutual spin
flips as described in Eq. (2.4). In Sec. II, the Pr3+

equations of motion are developed in terms of the
basic optical field-atom interaction and spin-spin in-

teractions. An expression resembling Eq. (1.4) fol-
lows for the Pr'+ FID signal in the case of coherent
preparation by a monochromatic laser field. In Sec.
III, the details of the Monte Carlo calculation are dis-
cussed. This step includes the preparation and the
sampling procedure for averaging Pr'+ phase histories
resulting from different fluorine spin distributions.
In Sec. IV, the results of the calculations are
described. Thus, the static magnetic inhomogeneous
broadening calculation is tested by comparing it to a
second-moment calculation. For the homogeneous
broadening, the nature of a polarized or frozen
fluorine core surrounding a local Pr'+ ion is analyzed
and the dependence of the linewidth on the ' 'Pr
magnetic quantum number is considered.

II. THEORETICAL MODEL

A. Hamiltonian

We seek a solution of the density matrix equations
of motion

itt =[+ p]+Bp
at

(2.1)

X=X"+X" (2.2)

where the three dots represent damping terms, for the
magnetically perturbed Pr3+ ions when they are
coherently prepared by a laser field and then experi-
ence optical FID.

The Hamiltonian
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contains terms involving either the '9F nuclear spin S
or the ' 'Pr + ion with nuclear spin I. Thus, the
fluorine component

which induces an electric-dipole transition where

~pp" = —p, E„(z t)

3C =DC~ +BCF F

consists of a Zeeman interaction

F 'vslB ~ S

(2.3)
and x and z are the polarization and propagation
directions.

Because 3.'," commutes with p in Eq. (2.1),

the external static magnetic field being 8, and a
homonuclear magnetic dipolar F-F interaction, " the
secular part being

3 co$8kl —1
XFF———y,'ll x

k ( I rh.l

x [S„,S,, ——(Sk+S, +S„S,+)] . (2.4)

[3l,",p]-0 .

Eq. (2.1) reduces to

it P = [Jc ' p] +Bp
8t

where the three dots represent damping terms.

(2.7)

The fluorine raising and lowering operators Sk-S,+ re-
veal the mutual F-F spin flips which generate local
fluctuating magnetic fields that shift the Pr + transi-
tion frequency and broaden the optical transition.

The Pr terms

B. Optical free induction decay

The time-dependent equations of motion (2.7) now
become

pt, ——[ —y+ i [5+Sco(t) ] ) pt2+ —, i X(p,2
—p)))

K '=X '+3'. '+X '+X F+3CO' (2.5)
(2.8a)

include an electronic component H, ', a quadrupolar
term, "since I = —,,

5

Kgp' = D (12—-l~) + E( lii + 12 )—

a Zeeman term

3 cos Hg~
—1

~p —F ylys~ X I Sk «)
k rkJ

(2.6)

Due to the F-F spin flipping, Sk, (t) in Eq. (2.6) fluc-
tuates in time and wobbles the Pr + optical transition
frequency.

Because of the. assumption of a rigid lattice, we
neglect certain T~ processes, i.e., those processes in-

volving phonons or thermal excitation, but not opti-
cal spontaneous emission. Furthermore, because the
Pr3+ ions are dilute, we ignore secular terms such as
Ik, l,, arising from the dipolar interaction. Finally, in
Eq. (2.6) the flip-flop terms I+S are omitted be-
cause the Larmor frequencies of ' 'Pr and ' F are so
different (y~ ))ys).

The last term of Eq. (2.5) expresses the resonant
excitation of a Pr3+ ion from its lower state ~1) to an
upper state ~2) by a light wave

E„(z,t) =e„Eocos(Qt —kz)

and the secular part of the Pr-F heteronuclear dipolar
interaction of a Pr3+ ion with the k surrounding F nu-
clei of the crystal,

P22 Pl} y2P2z+y](p)1 —p))) +iX(p~2 —p»)

(2.8b)

using the definition

p, ( t) p ( t) ei ( 0 i kz)—
and neglecting nonresonant terms. Here, the Rabi
frequency X, the tuning parameter lL, and the Pr +

eigenenergies in the absence of a light wave are given
by

X=p, ~2EO/tt, 6= —0+a+a)2~, E, =tree;(i =1,2)

where o. is the shift in the Pr3+ transition frequency
eo2~ due to an inhomogeneity in the local static rnag-
netic or crystalline Stark fields.

Fluctuations in the Pr'+ transition frequency eo2~

due to F-F mutual spin flips are included in Eq.
(2.8a) through the term

3 cos'g —l
Stu(t) =—(y,' —y")y t X

"
I,S,, (f), (2.9)

k rk

which follows directly from Eq. (2.6). Notice that Sru

vanishes when the Pr + gyromagnetic ratio y] of the
upper (single prime) and lower (double prime) states
are equal.

In Eq (2.8a), the. off-diagonal decay parameter
1

y =
z (y~ + yz) consists of the population decay rates

y& and y2 of states ~l) and ~2) while the total de-
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phasing rate

1r—= = —(y, +y, )+y, ,
T2 2

(2.10)

III. MONTE CARLO CALCULATION

Outline and assumptions

pt2(t) = pt2(0) exp (—y+i 6)t +i Scu(t')dt'

(2.11)

where pt2(0) expresses the coherent preparation at
time t =0. Equation (2.11) involves the phase histo-

ry of a single Pr'+ ion and therefore must be aver-

aged over the distribution of frequency fluctuations
occurring at different Pr'+ sites both duririg the
preparative period t «0 and afterward t ~0. In addi-

tion, averages are to be performed over the local

inhomogeneous static magnetic and crystalline Stark
fields. Writing all of these averages symbolically by a

single bracket, Eq. (2.11) becomes

(pt2(t)) = pt2(0) exp (—y+itt)t+i J S&u(t')dt'

(2.12)

Finally, the FID signal expressed as the field am-

plitude

Et2(z, t) = Et, (z, t)e'"' "'+c,c.

obeys Maxwell's wave equation

(2.13)

includes the contribution y& from fluorine spin flips,
Eq. (2.9). Note that Eq. (2.10) applies only to that
part of the decay which is exponential; it is a con-
venient expression but not an essential one.

Now assume that a narro~ packet from the inho-
mogeneous line shape is coherently prepared by a cw

laser beam under steady-state conditions and that
FID follows at time t =0 when the laser frequency is

s~itched suddenly by several homogeneous linewidths.
The FID solution of Eq. (2.8) takes the form

We begin by writing the Pr'+ density matrix aver-
age (2.12) as a sum

N

(pt~(t) ) = —Xptp(0)
N/ 1

f

x exp ( y+ i+, ) t + I „Sr'd, (t )dt
t

tP, (t) =„S~,(t')dt' (3.2)

following the preparation. Thus, Eq. (3.1) includes

both time and spatial averages. The number of Pr'+

ions N must be sufficiently large that fluctuations in

(p~2(t) ) due to finite sample size are negligible. We
shall see that this criterion is satisfied for a model

where N is in the range 10' to 10 even though about
10"Pr'+ ions are monitored experimentally.

An outline of the numerical evaluation of Eq. (3.1)
is shown schematically in Fig. 1 and yields (I) the

dynamic or homogeneous magnetic broadening due

to fluctuations Sco, (t) in the Pr3+ level spacing and

(2) a static or inhomogeneous magnetic broadening

due to the frequency shift Sru;(0).
The calculation of the random frequency fluctua-

tion Sco, (t) can be simplified by writing Eq. (2.9)

Sk, (t)
S(o;(t) = Xo)„, (3.3)

(3.1)

over N different Pr'+ environments that arise from
the local static and fluctuating fluorine spin config-
uration and the crystalline Stark fields. The index j,
therefore, labels a particular ion's preparation ptq(0)
by a resonant laser field in the presence of a fluctuat-
ing Pr3+ level spacing Sro;(t), a specific Pr'+ Stark
shift o.

/
in the tuning parameter 6/, and a specific

Pr'+ phase history

BEt2(t)
Qz

2rrikN p, t2 (pt —(t) )2 (2.14) in terms of the static frequency shift

for an optically thin sample where N is the Pr'+ ion

density and p, 12 is the electric-dipole transition matrix
element. Because of the laser frequency shift
0 —0', the FID signal F(t) appears as a heterodyne
beat due to the cross terms in the total field intensity,

~k = lyt'- yt"
I &, &k

due to the field of the 0 th fluorine nucleus,

(3cos tt„—1)
~k =PF

(3.3')

(3.4)

1.e.,

F(t) = —'E E O(t)te2'
" " ~'+cc.0 12 (2.15)

Thus, the FID signal is determined essentially by the
statistical behavior of Eq. (2.12) where the fluctua-
tions Sat(t) introduce an additional damping.

Assumption 1. The sudden jump approximation as-
sumes that the fluorine spin 5,'., (t) is restricted to two

1 1
values +—, or ——,, and that the jump occurs instan-

taneously between these two values at random times
with an average rate W —= I/T where T is the mean
time between jumps. The pairwise correlation of spin
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Compute
3 cosB„— 'pF

r

Iterate over
N Pr3 ions

Compute
Static

Broadening

Compute
$m(t)
p(t)

1F
'

Compute
Preparation

p»(oj

MONTE CAR LO
CALCULATION

Sco, (0) is computed using Eq. (3.3) and its distribu-
tion function

dN

d (Sco, (0))
(3.5)

is plotted in Fig. 2.
The third stage computes the frequency histories

Sco, (t) at 400 discrete times tt where the fundamen-
tal interval b, t =—tj+& —t~. The time origin tp =0 now
coincides with the beginning of the preparative period
which extends over the initial 200 points (rp rzpo)

and spans a much longer period than the optical
dephasing time. During this period, the laser induces
a polarization in the sample which simulates steady-
state preparation. The second 200 points
(rzpp r40p), which we consider later, correspond to
the free decay period when the laser is out of reso-
nance with the initially prepared packet.

Assumption 5. To calculate Scv, (t), we assume that
the number of fluorine spin flips per unit time n fol-
lows a Poisson distribution in time with a mean value

Compute
FID

& p)2{tj&

FIG. 1. Schematic diagram of the sequence of operations
of the Monte Carlo calculation.

flips implied by Eq. (2.4) is ignored. It is possible to
write Eq. (3.3) because the only dependence on t or j
in Sra, (r) lies in SJ,(t), and, the various frequency
histories differ only in the time evolution of the signs
of the fluorine fields. The first stage in the IvIonte.
Carlo program is the calculation of a table of fluorine
magnetic fields Bk using (3.4).

Assumption 2. The angles Hk and distances Ik of
the 2250 fluorines in the nearest 125 unit cells
around a Pr site are computed from the LaF3 crystal
structure (P3CI —D3d), data of Zalkin, Templeton,
and Hopkins. '

Assumption 3. The e axis of the LaF3 crystal is as-
sumed to be parallel to an external magnetic field Bp
(z axis), and B„represents the z component of the
fluorine dipolar field where'~' )BC, ' &Kp, F. The
resulting table of field strengths Bk is used in all sub-
sequent calculations.

Assumption 4. For simplicity, we assume only one
g value for the ground and one for the excited elec-
tronic state of Pr'+, avoiding the complexity of the
anisotropic g tensor.

The second stage of the program computes the
static magnetic broadening due to a random initial
alignment of the fluorine spina Sj,(0). For each
value of j, the fluorine magnetic fields Bk, obtained in
the previous step, are summed with a random distri-
bution in their sign. The resulting frequency shift

t

Ll5

Ct.
E

ssian Second Moment
nte Carlo

-80 -40 0 40
Frequency (kHz)

80

FIG. 2. .Magnetic inhomogeneous broadening of a Pr
quadrupole transition showing the Gaussian line shape of the
Monte Carlo calculation (164 kHz FWHM) and an overlap-

ping Gaussian having a width equal to the second moment.

np ——NF W

where NF is the number of fluorine nuclei and His
the average spin-flip rate. Next, a subgroup of
fluorine spins, n (tt) S, t in number at time tt, 'are
chosen randomly in space and undergo a spin flip
(sign reversal in Bk) producing a field fluctuation at
the Pr3+ site and a frequency shift Sru, (t~). The cal-
culation is repeated 400 times, generating a new shift
for each succeeding time interval At so that a fre-
quency history evolves where each shift adds to the
previous value. Once a value for Wis selected, the
temporal distribution in spin flips follows a Poisson
distribution and the spatial distribution varies ran-
domly from one time interval to another, . producing
variations in Sco, (t~). The phase histories $, (tt) are
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p',', (t) =u;(t) +iv((t) (3.7)

For simplicity, it is assumed that the population
difference ~ is characterized by the single decay time

T~, and the other parameters are defined in Sec. II B.
The initial conditions are p(t(t(() p2p(to) =1,
p~2(to) =0, and the preparation is confined to the in-

terval to t200.

Finally, the FID signai (p ((2t) ) is calculated in Eq.
(3.1) by iterating the preceding four steps N times to
obtain the average (p(2(t) ) in the post-preparative
period t & t200. The effect of inhomogeneous
broadening is included by allowing the inhomogene-
ous shift o.; to vary randomly over its line shape.

obtained readily from Eq. (3.2).
In the fourth step, the preparation p't2(t200) is com-

puted by numerically integrating the density matrix
Eqs. (2.8) or equivalently the Bloch equations

('(((t) = —[6, +geo, (t)]t(((t) —yu((t)

i(, (t) = [6, +80(,(t) ]u, (t) + xwj(t) —yu&(t), (3.6)

w, ( t) = Xu—((t) —[ wj(t) —w']/Ti,

where

linewidth, determined either by second moment cal-
culations or by optically detected NMR measure-
ments. Since rf transitions require that Al, =+1, Eq.
(3.3) becomes

(4.1)

A comparison of Eq. (3.3) and Eq. (4.1) reveals that
the Pr optical and NMR magnetic inhomogeneous
linewidths differ only by a scaling factor and are ap-
proximately in the ratio of I, as indicated in Table I.
With the aid of Eq. (4.1), the Monte Carlo line shape
function is derived for the NMR case and appears in

Fig. 2 as a Gaussian profile.
Let us now compare the Van Vleck" method of

moments which has been used to calculate the nu-

clear broadening of EPR lines of dilute paramagnetic
crystals' or the width of nuclear quadrupole transi-
tions. " The second moment

((~ (')(s)..= —,
' y('"ys'S(S+ I)tt' X

k Ik

for a Pr NMR line implies a linewidth

IV. RESULTS

A. Magnetic inhomogeneous broadening

Due to the '~'Pr(1 = —, ) hyperfine structure, the

'H4~'D2 optical transition is expected to consist of
three prominent transitions (I," I,') =(—, —,),
(

2
—,), and (

2 2 ), separated from each other3 3 5 5

by -10 MHz but overlapping due to the crystal
strain broadening of 5 GHz, The Monte Carlo calcu-
lations show that these three lines also are broadened
inhomogeneously by the fluorine static magnetic
fields; the line shapes are given by the distribution
function 6, Eq. (3.5), and are found to be Gaussian
with a full width at half maximum (FWHM)
linewidth of 42(1, =

2 ), 126(
2 ), and 210(

2
) kHz

which are in the ratio of 1:3:5,consistent with Eq.
(3.3). These calculations assume that the Pr
gyromagnetic ratio y('/2m =11.5 kHz/G, derived
from rf optical double resonance, ' and that yi 0
since additional experiments' indicate that
~y('( ~

5
(y('~ where the relative sign of the 'D2 and

H4 splittings are unknown. Erickson has kindly in-

formed us that the above value of yq' corrects a nu-

merical error in his previous publication. ' '
Because the strain broadening is about 104 times

larger than the magnetic inhomogeneous broadening,
the latter has never been resolved at optical frequen-
cies. The Monte Carlo calculations can be compared,
however, to the Pr ground-state quadrupole transition

~ (1 —3 cos'ttk)'
yips Q

7r
, I(

(4.2)

giving b, v =34.9 kHz, only 2.5% lower than the Van
Vleck result.

In addition to the nearly exact coincidence with the
Van Vleck theory, our calculations are supported also
by recent Pr ground-state measurements. A steady-
state rf optical double resonance experiment" yields
180+10 kHz F%HM for I, = —, —, and 200+10
kHz F%HM for I, = —, —, whereas an optically

3 5

detected spin echo measurement' gives 230 + 25 kHz
FWHM for I, =

2 —,. These results are about a3 5

The lattice sum in Eq. (4.2) has been evaluated for
the nearest 2250 fluorine neighbors and equals
0.0548 A 6, giving a root second moment linewidth
A((=35.8 kHz. The FWHM linewidth is 242 ln2

larg««»FwHM =84.5 kHz.
Figure 2 compares the Monte Carlo line shape to a

Gaussian having a width given by the second mo-
ment and the agreement is excellent. Note that there
are no adjustable parameters in the comparison ex-
cept the vertical scale. The Monte Carlo program
also calculates a root second moment by

' 1/2W

((&N')„)'"= —x [&~;(0)]'
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TABLE I. . Linewidths of Pr in LaF3 due to magnetic inhomogeneous broadening.

Transition Linewidth F%HM (kHz)

rf(d I,
"=+1)

optical (364 'D2)

Monte Carlo theory'
Van Vleck second moment'

cw rf-optical double resonanceb

z 2 2
rr

z 2 2

Optically detected rf transients'

Iz 2 2

Monte Carlo theory'

I Iz z 2 2

rrI —+I
z z 2 2

I I =—
z z 2 2

82
84.5

180+10'(-1OO)"

200+10' (--100)"

230 + 25c

8. Single packet case

Rather than deal with the full expression (3.1) im-

mediately, it is possible to use a simplified form

W

(p»(r) ) ——Xcosp, (t)N. ,
(4.3)

'This work,
bReference 17.
'Earth's magnetic field.

factor of 2 larger than the calculated value because
the measurements were conducted in the absence of
an external dc magnetic field. Ho~ever, Erickson'
has noted that his -200-kHz linewidth reduces to
-100 kHz when a static field of 16 6 or larger is ap-

plied, bringing the observations into good agreement
with the Monte Carlo linewidth of 84.5 kHz. The
theory of line broadening in zero field is more com-
plicated than the calculation presented here as the
nonsecular terms of the dipolar interaction must be
included. Such a theory, a second moment calcula-

tion, was developed by Abragarn and Kambe, '0 lead-

ing to a similar static dipolar linewidth reduction, a
factor of 2 or 3, as the magnetic field is increased
from its zero field value. %e should also note that
the observed homogeneous linewidth' displays a

similar reduction when the static applied field exceeds
19 G. The results of this section are summarized in

Table I.
%e conclude that for static broadening the Monte

Carlo result is unambiguous as it agrees accurately
with the second moment calculation and existing ex-
periments. Furthermore, since the optical and NMR
magnetic inhomogeneous linewidths are related trivi-

ally by a scale factor, the ratio of Eqs. (3.3) and
(4.1), the second moment calculation iiseif accurately
predicts the optical linewidrh arising from a lalfice of stat
Ic dIpOles.

dStatic external field of «16 G.
'Reference 18.

which describes many features of the homogeneous
broadening problem. Equation (4.3), in fact, is the

starting point of many line broadening theories. This
expression neglects the sine terms as discussed in

Sec. IVC. The simplest form of preparation is as-

sumed also, namely a single homogeneous packet of
a two-level quantum system in a 50:50 superposition
state. Thus, inhomogeneous and po~er broadening
are ignored.

The use of Eq. (4.3) is preferred over the full

Monte Carlo program when several parameters are to
be varied simultaneously, since it executes at least
two orders of magnitude faster. The essential
features of dephasing in this case have been demon-

strated by studying the variation of the FID decay
time 1/yz as a function of (a) the number of
fluorines in the lattice, (b) the fiuorine position in

the lattice, and (c) the fluorine flip rate fK

Our primary result is that a few nearest-neighbor
fluorines dominate the dephasing of the Pr'+ ion.

Figure 3 shows the optical linewidth of the I, =-
state for a spin flip time T -50 p,sec as a function of
the number of fluorines permitted to flip. The
abscissa counts the number of interacting fluorines,
with the strongest taken first, so that as N c, only

distant, weakly coupled fluorines remain. Thus, the
linewidth of the Pr + in a lattice in which only the

two strongest coupled fluorine nuclei flip is 3
that of

the whole lattice result, and when five fluorines flip,
the linewidth is almost indistinguishable from that of
the full lattice.

This conclusion is suggested again by Fig. 4 which
shows the distribution function dW/desk of static fre-
quency shifts «uk Eq. (3.3'). As expected, most of the
2250 fluorine nuclei interact weakly with a given Pr +
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ion and produce very small shifts, which we see are
in the range 0 to 3 kHz. The largest shifts, which are
discrete at 9, 10, and 20 kHz, result from the five
nearest-neighbor fluorines which are the main con-
tributors to optical dephasing.

This result has three consequences. First, it shows
that our lattice size of 2250 fluorines is a few orders

of magnitude larger than necessary. Secondly, it im-

plies that correlations between adjacent fluorines do
not strongly affect the optical linewidth. We do not
argue that spin correlations do not exist, but merely
that their effect on the linewidth is small since so few
fluorine nuclei are involved. The magnetic resonance
theories described above have not considered the
effect of correlations on the linewidth, and no esti-
mate of its effect has previously been given. From
Fig. 3, we see that the flipping of one fluorine pro-
vides 30% of the linewidth. With two fluorines we
reach 67% of the linewidth but this pair is weakly
correlated since the crystal structure shows that these
fluorines lie on opposite sides of the Pr ion and are

0
about 5 A apart.

A physical explanation for the weak correlation lies
in the strong radial behavior of the individual
fluorine magnetic fields Bk, Eq. (3.4), which are pro-
portional to 1/r3. If a nearest-neighbor and a

second-nearest-neighbor exchange spin orientation,
the second nearest neighbor will produce a shift ( —, )'
that of the nearest neighbor, and to current levels of
accuracy may be ignored. We note further that the
leading role of the nearest neighbors is a familiar
concept in the theory of moments"' in NMR,
where the second moment is proportional to X I/rk

We have also studied this question further by in-

troducing correlation in a model calculation using five
fluorine spins. An extreme form of correlation is as-
sumed where all five spins flip simultaneously. In
one case, we assume that the spins are all parallel so
that their fields add to produce the largest frequency
jump possible. In the second case, a spin orientation
is selected which produces the smallest frequency
shift. The first correlation increases the linewidth by
35% while the second case decreases it by 20%. Since
any physical correlation would be less extreme, we
assert that the effect of correlation on the linewidth is
less than +50%.

The third consequence of the leading role of the
nearest neighbors in optical dephasing is that pertur-
bations of nearby fluorines by the static Pr3+ magnet-
ic moment can cause a large reduction in the
linewidth. We call this effect the "frozen-core"
phenomenon and it has been proposed to explain
anomalously narrow linewidths in ESR.2' The static
dipolar magnetic field due to the enhanced nuclear
magnetism of the Pr + ion' amounts to several gauss
and detunes nearby fluorine nuclei from the reso-
nance frequency established by the external magnetic
field. The flip-flop operators (Sk+S; +Sk S,+) in Eq.
(2.4) thereby connect states of different energy and
for these fluorines spin flips are inhibited. Since
those fluorines most strongly coupled to the Pr3+ ion
are the first to be inhibited, large changes in
linewidth result. Furthermore, the three I, states of
Pr + have different static dipolar fields, in the ratio of
1:3:5. Therefore, the frozen core is "variable, "with
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a size depending on the Pr'+ magnetic substate.
This phenomena has been incorporated into the

Monte Carlo routine by modifying Eq. (2.9) to ex-
clude the detuned fluorines:

2250 3 cos2
Bra(t) = (yt —yt ) ystt X s I,St„(t) .

k Wk

Here Ik' j represents the lattice indices of the de-

tuned fluorines. A fluorine is included in Ik'I if its

detuning by the Pr ion is greater than the fluorine
NMR linewidth of 10 kHz.

In Fig. 5 we plot the optical linewidth with and
without a frozen core, as a function of the Pr3+ mag-

netic moment IM,, '= ylI, A for T =50 p, sec. Without
the frozen core, the linewidth is approximately pro-
portional to lit/it/2, in contradiction with our earlier
prediction' that the linewidth should be proportional
to lyt' —yJ'I. We note that although the inhomogene

ous magnetic linewidth (4.1) scales as Iyt' —yt"I, the
homogeneous linewidth (3.3) does not depend linearly

on this factor because of the time dependence of
Sj,(t).

With the frozen core effect included, the homo-

geneous linewidth is approximately proportional to

25

II
p"It" for lt,"I &10 kHz/G. For It

p
I
+ 5 kHz/G

the frozen core and no frozen core results are identi-

cal, because the radius of the frozen core is less than
the nearest-neighbor spacing. Instead of our earlier
prediction" of a triexponential decay with decay
rates in the ratio of 1:3:5,Fig. 5 shows a ratio of
1:1.4:1.7. A computer plot of this triexponential de-

cay indicates that it is indistinguishable from a single
exponential with a decay rate equal to the average of

I 3 5
the I, = 2, 2, and

2
values. Our experimental ob-

servation24 of a single exponential decay is therefore
explained.

Figure 6 shows the dependence of the optical de-

phasing time 1/ye on the mean time T between
fluorine flips. Based on the previous discussion, y&

is the average of the I, = —,—,, and —, decay rates.1 3 5

The quantity T is the only parameter in our theory
that is not directly measurable. We shall first treat it

as a free parameter and then use an argument of
Bloembergen that predicts T from experimental
studies of the fluorine NMR linewidth. "

First note that for T between 10 and 1000 p,sec,
the linewidth is within a factor of 2 of the experimen-
tal value. To this level of accuracy, then, our results
are independent of T. Conventional NMR measure-
ments of the fluorine dephasing time in LaF3 give a
value of T2 17 p,sec which results from both static
and dynamic broadening and does not directly mea-

sure the fluorine flip rate. Bloembergen, "followed

by Lowe and Gade' have derived the relationship
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making use of the method of moments to estimate
the flip-flop term in Hp p[Eq. (2.4)I and de.riving a
transition probability from it. This approach predicts

FIG. 5. The Prs+ optical Iinewidth (y&/rr FWHM) vs the
' 'Pr magnetic moment p,, ' = yil, h in units of kHz/G show-

ing the linewidth reduction due to a frozen core where

T =50 p,sec.

FIG. 6. The Prs+ optical dephasing time f/y& vs the
fluorine mean flip time T. The optical FID result is

1/y& =15.8 @sec and the theoretical fluorine spin-flip time

T =170 p.sec.
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T =170 p,scc, and %ith thc aid of Flg. 6, %c scc that
the Monte Carlo calculation predicts a dephasing-timc

1/y& =19 p, sec compared to the experimental vaiue
of 15,8 p,sec. The agreement to an uncertainty of
15'/0 is unusually good by the standards of pl'cvlous
theories.

C. Hole burning preparation
and line shape studies

To include the effect of inhomogeneous broaden-
ing, we combine Eqs. (2.15), (3.1), and (3.7) and ob-
tain for the optical FID signal

F(r) =Re —X [u, (0) +I'1P, (0)]e ' -—X u(0) COS@;(r) ——X v, (0) Sing;(r)
i@.(,f& 1

N, ,
(4.4)

given in terms of the preparation u;(0) and v;(0) at

time r =0 and the phase @;(r) where the sum ex-
tends over all inhomogeneous environments ex-
pressed by the frequency shifts n,-*.

Before evaluating Eq. (4.4), consider its reduction
to the single packet case. In this circumstance, all

ions of the packet are in phase at the beginning of
the decay. t =-0 and have identical preparative factors
so that Eq. (4.4) becomes

F(r) = Xcosp;(t) —— X»np, (r)u (0) " (0)
N

I

ponential decay (1/ya =16 @sec).
The line shape of the hole burned into the inhorgo-

geneously broadened line of LaF3'.Pr'+ is seen in. Fig,
7, the linewidth being 10 kHz H%HM. This is a
Monte Carlo calculation of the preparation at time
t =0 where the line shapes correspond to the in-

phase (I/Ã) X, , u;(0) and out-of-phase

(1/H) X, , v;(0) contributions. which are approxi-

mately Lorentzian. Thus, this case differs significant-
ly from the non-Lorentzian behavior of a single pack-
et.

The sum over the sine terms tends to vanish since

@;(t) has equal probability of being positive or nega-

tive, and Eq. (4.3) results,

/tI

F(r) = —Xcos@,(r)
N) l

where, we have set u (0) = 1. For LaF1'.Pr'+, since

the maximum frequency jump due to a fluorine spin

flip is 10 kHz, the FID sum (4.3) will have Fourier
components limited by 10 kHz as mell. Furthermore,
since the cosine term has zero slope near t =0, the
first 10 p,sec of the decay will be highly nonexponen-

Iial.
%C vrill now see, how&ever, that the effect of inho-

mogeneous broadening leads to near exponential
behavior, in contrast to the single packet case. Thus,
in Eq. (4.4) the term X, tp, (0) sin@;(r) no ionger

vanishes but is comparable in magnitude to

X,. u, ( )0cosg, (r) .This follow. s since v, (0) and

$, (r) are correlated and both are odd under frequen-

cy lnvcrsloA so that their product, ls cvcn. IA addl-

tlo11, thc frcquc11clcs cotltfibuting to fj(r) afc no

longer limited by the nearest-neighbor spin-flip value
of 10 kHz, but are determined instead by the optical

and magnetic inhomogeneous broadening. Even
though the amplitude of the high-frequency corn-

ponents is reduced by their off-resonance response,
high-frequency Fourier components can now appear
in Eq. (4.4) producing a fast Gaussian response
(T&' —100 psec) near r =0 followed by a slower ex-
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FIG. 7. The optical line shape function of Pr3+ during hole
burning showing near Lorentzian behavior for the prepara-
tive step in terms of (a) the in-phase, u(0}, and (b} the
out-of-phase, v(0), components of the Bloch vector.
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Similarly, Fig. 8 compares the observed' optical
FID of the H4~'D2 transition of LaF3'.Pr3+,

which is an exponential, with a Monte Carlo
calculation that includes both the preparative and
post-preparative periods. The calculated quantities
(1/N) X, u, (0) cos$, (t) and (1/N)
x X.o, (0) sin@, (t), which assume a preparation timej J '=3of 200 p,sec and I, = —,, are plotted separately to show

their exponential character. Alternatively, their
difference as written in Eq. (4.4) leads to a partial
cancellation and a numerical result which is far
noisier and more difficult to interpret. Note that the
two terms of Eq. (4.4) as plotted in Fig. 8 agree with
the experimental data both in slope and shape, con-
firming once again the 10-kHz linewidth and the
nearly Lorentzian line shape. Considering there are
no free parameters in the theory, except for the verti-
cal scale, the agreement is excellent.

We have so far compared both theory and experi-
ment to an exponential decay law (Fig. 8), but in the
Introduction we noted that Pr +:LaF3 was an inter-
mediate case, neither Lorentzian nor Gaussian in

principle. In fact, both theory and experiment show
partially Gaussian decay at short and long times,
bracketing the intermediate exponential region. In
Fig. 8, for example, for long times (t ) 16 psec)
both theory and experiment decay faster than an ex-
ponential. For short times (r ( 2 p,sec) Gaussian-
like behavior can be inferred from Fig. 7(b) which

10
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I 1.0
~~
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E
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LL

0.1
0 4 8 12 16 20

Time {psec)

drops off faster than a Lorentzian for a detuning
larger than 20 kHz. Future experiments with in-

creased laser frequency and 'amplitude stability should
clarify this complex decay behavior at short and long
times.

The rapid initial response near the time origin aris-
ing from the first order FID is not reproduced in

these calculations because of the excessive computer
time needed to integrate Eq. (3.1) over the full
strain-broadened inhomogeneous linewidth of 5 GHz.
Since this feature is well understood by previous ana-
lytic arguments, ' the integration was restricted to
LLj «100 kHz and consequently the calculated rise
time (not shown in Fig. 8 because of the scale) is
5 x 104 times slower than the expected value
T2" —100 psec.

U. CONCLUSION

The Monte Carlo theory presented has demonstrat-
ed in a precise way that the 10-kHz optical homo-
geneous linewidth recently observed in Pr +:LaF3 ar-
ises from the magnetic dipolar coupling of the Pr nu-
cleus with the fluorine nuclei which undergo resonant
spin flip-flops. The theory accurately predicts, via the
variable frozen core argument, the single exponential
decay function and gives the decay rate with no free
parameters. Not only are the optical'2 linewidths
predicted but those of nuclear quadrupole reso-
nance" ""as we11.

The Monte Carlo theory possesses several advan-

tages over previous analytic theories. It bypasses an

ambiguity present in applying the Klauder-Anderson
model. While the Klauder-Anderson pararrieter R is
clearly defined when the spin flips are caused by
spin-lattice relaxation, R has no clear meaning for the
T2 or resonant fluorine flip-flop process considered
here.

Also, the Hu-Hartmann theory contains implicitly a
spatial integral which cannot be evaluated for our sys-
tem (Appendix A), so that this theory does not apply
to Pr +:LaF3 either.

Lastly, we have studied numerically nonlinear solu-
tions of the Bloch equations, in the presence of sto-
chastic phase and frequency fluctuations. Few, if
any, analytic solutions to this general problem have
been given and we suggest that the Monte Carlo
method may have similar applications in gas collision
theory as well as other line broadening problems in
the solid state.

FIG. 8. Semilog plot of the FID signal versus time show-

ing the experimental data: 0 and the Monte Carlo calcula-

tion in terms of the out-of-phaae 5:(vain@i and the in-

phase ~:(u costS) components of the Bloch vector where
X=3 kHz. The solid line corresponds to a dephasing time
1/y&=15.8 psec (linewidth: 10.1 kHz).
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tegral ever r we find

F(r) = exp n2rr8 sin8d8
dp

APPENDIX: COMPARISON WITH
HU-HARTMANN THEORY

1

pc/r 3.
C C' ~ dux —„I —(1 —costI )
3 &p u'

(A4)

An examination of the sudden jump theory of Hu
and Hartmann9 reveals the assumption of a lattice
which is continuous rather than discrete. The impli-
cation of this assumption and its limits of validity are
discussed in this section.

In the Monte Carlo calculation, the linewidth is
dominated by the nearest neighbors while in the Hu-

Hartmann theory there are no nearest neighbors
since the 8 spins can be infinitesimally close to the A

spins. We show that the Hu-Hartmann derivation
may be valid for the case of large magnetic moments
encountered in electron spin resonance, but fails for
the nuclear spin case of Pr +:LaF3. Their approxima-
tion lies in the spatial integral, their Eq. (2.10),

'r

F(r) =exp tt8 1 —exp i~ & J h(t)Ct
p

(A1)

The brackets ( ) represent a spatial average defined
in their Eq. (2.8), and

2p~p, s (1 3cos 8&&)
Cd~p = '

f 3
(A2)

We make their approximation explicit by defining the
variable

The upper limit of integration has a physical rnean-
lng:

tag

= 2m v,„h(t) dt
~min

where

1 2PA pB
2n gI

(AS)

is just the frequency jurnp due to the flipping of the
nearest (or most strongly coupled) neighbor. The di-

mensionless integral

AX du(1 —cosu) u'

approaches n/2 for x ) 2n, but at small x is linear in

x. Note that the integral in Eq. (AS) has dimensions
of time and is always less than the duration of the
experiment, 4t. The Hu-Hartmann theory assumes
that r;„=0, and that the radial integral reduces to
mC/6, whereupon the remaining integration can be
easily performed. We have shown, however, that
this is true only when

v,„ht &1 (A6)
C = (1 —3 cos'8) h (t) dt

so that the above expression becomes

F(r) =exp n82n sin8d8 r'dr(1 —e'et" )Jp min
i

(A3)

Klauder and Anderson' have examined a similar in-

tegral and point out that although it is always valid to
replace r,„by ~, r;„may be replaced by zero only
in certain circumstances. Retaining r;„ in the in-

When v,„b,t &1, the radial integral is a linear func-
tion of v,„ht and therefore depends on the crystal
structure via the nearest-neighbor interaction so that
F(r) in Eq. (A4) can no longer be integrated analyti-
cally. For electron spin resonance, where v,„&&1

MHz and v & 1 p,sec, this condition is easily satisfied.
For the optical dephasing of Pr'+:LaF3, where v,„ is
limited by the frozen core effect to 10 kHz and
At —10 p,sec, it is always violated. "

For systems that satisfy this condition more closely
than Pr +:LaF3 we find the power series technique
described in their Eq. (2.15) will fail after a certain
number terms, depending on the size of v,„ht.
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In Ref. 18, Shelby et al. observe an optically detected echo
of a Pr3+ quadrupole transition in LaF3 and attempt to fit
their echo envelope function to Eq. (5.7) of the Hu-
Hartmann (HH} theory (Ref. 9), In view of our discus-
sion, the HH theory does not apply to this case and the
apparent fit achieved is invalid. Furthermore, the numeri-
cal values of the parameters chosen, '
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p,sec ', are inappropriate.


