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We show that the spontaneous decay of a phonon by anharmonic processes of any order into
a set of phonons of higher phase velocity is impossible for both N and U processes. The result is

valid for crystals of arbitrary symmetry and anisotropy and in the presence of frequency and an-

gular dispersion, The implications for the propagation of large-wave vector phonons is dis-

cussed.

The role of anharmonic phonon processes in deter-
mining the lattice thermal conductivity was first
enunciated by Peierls. ' He showed that N processes
in which the "momentum" of the interacting pho-
nons is conserved do not exhaust all possible
processes and that umklapp processes involving a
"flip over" into approximately the opposite direction
by the addition of a vector of the reciprocal lattice
can take place. Such U processes become important
in thermal-conductivity-type experiments when the
temperature is sufficiently high so that the dominant
phonons which carry the heat correspond to a region
roughly halfway into the Brillouin zone. Several re-.

cent high-frequency-phonon experiments have, how-

ever, revealed anomalously long phonon lifetimes at
low temperatures. " In the case of phonons generat-
ed during e-h recombination in semiconductors ma-

croscopic mean free paths (-mm) have been ob-
served. In this case the wave vector of the propagat-
ing phonons is believed to be close to the Brillouin-
zone edge of the crystal. The selection rules for
spontaneous U-process decay, not normally discussed
in the thermal-conductivity or high-frequency-
phonon-transport literature, could play a fundamental
role in limiting the phonon lifetime of large-wave-
vector phonons.

The theoretical work of Herpin, ' of Klemens, and
of Orbach' established that for an isotropic solid
transverse phonons cannot decay into two other pho-
nons because of energy-momentum considerations.
The purpose of this note is to point out that the
selection rule against anharmonic transverse-phonon
decay can be generalized to the theorem: A phonon

cannot decay by anharmonic processes of any order
into a set of phonons of higher phase velocity. This
result is applicable in the presence of frequency and
angular dispersion in an anisotropic crystal of arbitrary
symmetry. It is applicable to U processes as well as N
processes.

Proof: Conservation of crystal momentum requires
that

k ~ ki+k2+ +k„

For N processes G=0 and the result is trivial.
When G AO, k is outside the first Brillouin zone.
But a Brillouin zone is a proximity cell in reciprocal
space, that is, it contains all points closer to its center
than to any other (reciprocal) lattice point. Since k is
in a cell with center at 0' (see Fig. 1) the vector k
from 0' to P obeys

k" (k' (4)

since k' is the distance from P' to another lattice
point at O. But O'P' is parallel to OP and identical in

k +G = ki + k2+ + k„

where G =0 for N processes and G is a reciprocal-
lattice vector for U processes. (Here k is the initial
phonon; kt, k2. . . . , k„are the resulting phonons. )

By a generalization of the triangle inequality, a side
of any polygon must be less than the sum of the
remaining sides. Thus if k = k+6

k'~ k, +k, + +k„

(see Fig. l). We will now establish lemma I
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FIG. 1. Possible umklapp process for a phonon of wave
vector k with the origin of the first zone being 0 and of the
other zone O'. G is the reciprocal-lattice vector and k~ and

k2 are the decay products {see text).

length:

k =k; k"=k (5)
Equations (2), (4), and (5) yield the desired lemma,
Eq. (3).

Energy conservation yields

«)(k+6) =—ro(k) =co(k)) +a)(k2) + . +c»(k„)
(6)

or with o;=co(k;)/k, ,

ek = v) k ) + v2kg + - - . + v„k„

By hypothesis

v ( v; for alii

so that

k ~ kt+k2+ +k„

which contradicts Eq. (3). Thus energy and
"momentum" conservation will not allow a low-
velocity phonon to decay into a set of phonons of
higher phase velocity.

In most materials the lowest velocity branch is a
transverse branch with normal dispersion. Thus bar-
ring. extreme anisotropy, this theorem will mean that
the lowest transverse-acoustic branch will be unable
to decay by anharmonic processes of any order, even
with the help of U processes. Although the higher
transverse-acoustic mode can, in principle, decay with
the help of the lower acoustic branch the phase space
will be so restricted by energy and momentum con-
servation that the decay rate will be small. Thus, in

general, the selection rule for anharmonic decay will

be of the type I t + t, or I t + I, where I stands
for a longitudinal phonon and I for a transverse pho-
non. Even in highly anharmonic materials the lowest
branch will be fundamentally stable at low tempera-
tures and will not down-convert in frequency. Such
behavior would then be analogous to the extremely
short-wavelength-phonon-propagation predicted9 and
observed' in liquid helium where, of course, U
processes are irrelevant. The propagation of such
large-wave-vector phonons in crystalline materials
will be limited only by the presence of scattering due
to impurities or naturally occurring isotopes. We
shall show elsewhere that in diatomic crystals some
zone-boundary modes have zero motion for one of
the two particles. If the nonvibrating atom has iso-
topes, but the other does not, isotope scattering will

be forbidden. More generally, the motion will be
shared between the two particles and isotope scatter-
ing will be reduced from the formula appropriate to
the monatomic case. Such behavior may be expect-
ed, e.g., in Auorides, arsenides, and phosphides. In
such materials (besides isotopically pure materials
like solid He and Bi) a "window" for ballistic propa-
gation of near-zone-edge phonons may occur. Even
in other cases as long as the density of states for the
transverse phonons is much larger than that of the
longitudinal phonons, the elastic scattering by natur-
ally occurring isotopes may result in diffusive propa-
gation of these high-energy phonons but without fre-
quency down-conversion for times which may often
lie in the p,s range for materials with "soft" TA
branches. Such long-lived high-energy phonons and
their propagation properties will play an important
role in the understanding of nonradiative energy
transport in semiconductors and insulators. Further-
more, because of their zone-edge nature such pho-
nons will have a considerable spread in frequency and
velocity. Thus their propagation, focusing, and
scattering will be affected by a combination of angu-
lar and frequency dispersion. The correct numerically
obtained vibrational spectrum of the solid must be
used and care is needed in both the experiment and
comparison with the theory.

Orbach" many years ago proposed that optical
techniques may be used to generate high-frequency
phonons. Our generalization of the decay processes
to include U processes and crystals of arbitrary sym-
metry and anisotropy suggests that extremely short-
wavelength acoustic phonons of the lowest branch
can be extremely stable at low temperatures. The
propagation of such phonons is fundamentally inacces-
sible to thermal-conductivity-type measurements
which involve kT phonons but may be explored by
any narrow-band high-frequency excitation technique
at low temperatures.

Note added in proof. Maris [Phys. Lett. 17, 22$
(1965)] has pointed out the long lifetime of slow
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transverse phonons at low temperatures and has
sho~n by numerical calculation that the selection rule
of this paper is valid over a large portion of the
Brillouin zone for an fcc crystal with nearest-neighbor

central forces.
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