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The temperature distribution in solid crystalline hydrogen has been shown to be governed by the essentially

nonlinear difFusion equation aO/at =DO'~'6 in which there appears the dimensionless thermal variable

B:—[1+(T/T, )'] ' with the constants D and T, dependent on the ortho-H, yercentile. In the present

communication, generic upper bounds are obtained on the cooling and warming relaxation times for a volume of

solid H, subject to a constant-temperature-surface condition. Ualid for 8, solids of unrestricted size and shape, these

generic upper bounds on the relaxation times apply for arbitrary initial-temperature distributions.

In solid crystalline molecular hydrogen, . the
temperature distribution T =T(x, t) is governed by
the equation'

in which the dimensionless thermal variable 9
=8(x, t}—= [1+(T/T, )'] ' is patently positive but
less than unity, and the diffusion constant appears
as

D = (415 c m/-s )e/AT, 3(1.69 cm'/sec)/y(1+ 1.043')3,

with the ortho-H, fraction X in the range 0.05& y
S O.V5 and g, =—6.26+ 6.53X. Suppose that a volume

V =j d'x of solid H, occupies the spatial region
R with the smooth bounding surface BR maintained
at a constant temperature, so that 8 = 8, (=- const)
for all x G sR. Then the non-negative quantity

r=r(f)-=~I (e-'-e.-')'dr

is a Liapunov functional, 2 since

(e-' -e.-')8-'~ —
(
d'x

= —2D (e-' —e.-')v'ed'x
R

as 9 approaches 9, through the region. To obtain
an upper bound on the relaxation time associated
with the thermal adjustment 9-9„ first observe
that
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)
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where use is made of a Sobolev inequality for the
third member and a Hdlder inequality for the final
member. ' By combining (5}with (4), one obtains

dl' (n )4!', & (8 &

The two cases of practical importance are treated
separately:

Cooling: 8 &8,. Define 8 =- min„„e(x, O), cor
responding to the maximum initial temperature
in the solid; then with 9=9-9, it follows that

ln]
)

(e-'-8-')-'in~ =*
~

(8-'-8-~)„I'8 '- re
(e &

from the convexity (i.e., negative second deriva-
tive) of the logarithm. By applying (7) to (6), one
obtains

= —2o 8-'(ve [2d'x
R

(4) dr
t c (6)

by virtue of (1), Gauss's theorem, and 8 =8, over
sR. Since the final member in (4) is patently neg-
ative definite, the Liapunov functional (3}de-.

creases monotonically to zero with increasing t

where

T, = (o.o»3)i'"D-'(' -8-')2 kn~ ~
~

. (9)
(9)- -2
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The solution to the differential inequality (8),

I'(&) I'(0)e ' ",
shows that the Liapunov functional (3) approaches
zero with a characteristic relaxation time less
than or equal to the quantity (9). Hence, (9) is a
rigorous upper bound on the relaxation time for
cooling.

%arming: 8&8,. In this case the lower bound

on the logarithm

ln(e/e, ) & i —e,e-'
in combination with (6) yields

(12)

In view of (12), the Liapunov functional (3) ap-
proaches zero with a characteristic relaxation
time less than or equal to (13), and thus the latter
quantity is a rigorous upper bound on the relaxa-
tion time tor warming.

It is of interest to evaluate (9) and (13) for pa-
rameter values pertinent to current experiments'
on solid hydrogen in the sample chamber of a
dilution refrigerator: V = 0.10 cm', X

= 0.125,
D= 9.36 cm'/sec [according to (2)], T, = 7.08,
8,=1.000 for cooling with, for example, 8=0.890
(corresponding to a maximum temperature in the
solid of 4.20 K) and e, = 0.890 for warming; these
parameter values yield 7, = 2.36 msec and v = 2.65
msec.

where
= (0.0913)V'~'D ~e, a. (i3)
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&
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