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Validity of nearest-neighbor interaction and leading-term approximation in lattice-
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The validity of the nearest-neighbor central-force interaction (NNCF) and the leading-term approximation (LTA)
in lattice anharmonicity calculations of monatomic bcc structures is investigated. Calculations are made of the
lowest-order cubic (F,) and quartic (F4) anharmonic contributions to the Helmholtz free energy and the specific heat
at constant volume (C~~) for Na from a number of central-force two-body potentials obtained by Cochran, Price et
al. , and the Morse potential of Lloyd. Excellent results for C"„are obtained with exact calculations for the nearest-

neighbor anharmonic interaction. However, the good agreement is destroyed when more neighbors are included in

the anharmonic interaction in the exact calculation. For example, the two-neighbor anharmonic interaction

produces an almost exact cancellation of F, and F4 for the Cochran and Ashcroft-Singwi potentials and

C~(calc) = —C~(expt)/4 for the Morse potential of Lloyd. The inclusion of the third neighbor in the anharmonic

interaction in the exact calculation gives C~~(calc) = C~~(expt)/8 for the Cochran potential and

C~(calc) = —Cv(expt)/8 for the Ashcroft-Singwi potential, This behavior in C~ is due to a very low value of F4 for
the exact NNCF calculation and in this case it is even negative for the Ashcroft-Singwi potential. The second

neighbors make a large positive contribution to F4 but do not change the value of F, dramatically from its nearest-

neighbor value. The results indicate that the NNCF and LTA approximations are totally unreliable in the
calculations ofF„F4,and C~.

Recently, a paper has been published on the
calculation of the lattice anharmonicity of alkali
metals. ' In this paper, the authors have cal-
culated the cubic (I', ) and quartic (I', ) terms of
the Helmholtz free energy (I''), and their con-
tributions to the specific heat at constant volume
(C„), in the high-temperature limit. Representing
the latter contribution by (C„/3N ks) = 1+AT,
where N is the Avogadro number, k~ is the Boltz-
mann constant, and T is temperature, the co-
efficient A. was calculated by including the effect
of thermal expansion. The authors claim to find
good agreement with the experimental values'
of A for all the alkali metals.

These anharmonic calculations of F„F4, and
the coefficient 4 have been carried out in the
high-temperature limit employing two approxi-
mations: (a) nearest-neighbor central-force
(NNCF) interaction, and (b) leading-term ap-
proximation. The meaning of approximation (a)
is obvious, where a two-body potential V(r) is
assumed and only nearest neighbors are con-
sidered in the calculation of F„F„and the co-
efficient A. The approximation (b) involves re-
taining only the highest-ordered radial derivative
of V(x) in evaluating each of'the Fourier trans-
forms of the third- and fourth-rank Cartesian
tensors, required in the calculation of F, and F4.
Hence the name leading-term approximation. The
authors have concluded that "a potential which
may be adequate in estimating the effects of an-
harmonicity may not be essentially suitable to
describe the harmonic properties. "

'The errors introduced in the F, and F, cal-
culation, for an NNCF model of an fcc crystal
in approximation (b), have been estimated pre-
viously' for a Lennard-Jones potential V(r). They
are of the order of less than 1% in F, and about
40/p in F,. The purpose of this paper is to ex-
amine the usefulness and validity of the two
aforementioned approximations in the calculation
of the lattice anharmonicity of alkali metals and

body-centered-cubic structure in general, and
also to clarify once again the meaning of "the
coefficient A was calculated by including the ef-
fect of thermal expansion. " Although it has been
shown before4 that it is erroneous to include
thermal-expansion effects in the calculation of
C„and still call it C„, obviously the point needs
further clarification.

A general method of the calculation of F, and

F4, with anharmonic interactions extending to any
number of neighbors and without making the
leading-term approximation, has been given by
Shukla and Taylor. ' In their work, calculations
of F, and F4 for Na and K were carried out for a
large number of volumes, in each case con-
sidering anharmonic interactions up to 23 neigh-
bors. They also pointed out the difficulties as-
sociated with the convergence of F, and F4 es-
pecially if one chooses to calculate them from
V(r) generated in real space which for large dis-
tances has Friedel oscillations of the type
cos(2k' x+ 8)/r', where kr is the Fermi radius
and 8 is the phase factor. The potential used, in
Ref. 1, from Shyu and Gaspari, ' shows oscillations
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of the above type. These oscillations occur due
to the singularity in the slope of the dielectric
function of the electron gas at twice the Fermi
radius (k~). Hence in the present work we will
not repeat the derivations of E, and E4 as they
can be obtained from Shukl. a and Taylor. ' Here,
it is sufficient to note that in the high-temperature
limit E, and F4 can be written from Ref. 5, in the
following form:

F, = —N(k T) (f,,S,,+f„S,+f„S„),

I'4=&(ks 7')'(f~, S~+f~aS~~+f4. ~~.) (2)

where in Eq. (1) the functions f„, f», and f„
depend on the various combination of derivatives
of V(r) evaluated at different positions of the
neighbors to be included in the calculation. The
functions S„, S», and S„represent the double-
Brillouin-zone and triple-branch-index sum-
mations. The symbols appearing in Eq. (2) have
similar meanings except that S4„S,„, S4, represent
the single Brillouin-zone and branch-index sum-
mations. The mathematical expressions for the
symbols appearing in ~s. (1) and (2) can be ob-
tained from the results derived in Sec. III of Ref.
5.

To investigate the validity of the use of the
nearest-neighbor model and the leading-term
approximation we have chosen to calculate F, and

F4 for Na from the Morse potential derived by
Lloyd, ' the Cochran potential, ' and the now widely
used Ashcroft potential employed in the calcula-
tions of Price, Singwi and Tosi. We include in
this paper the results for F» F4, and C„ for Na

calculated from the Morse and Cochran poten-
tials, because both these potentials were used
previously' in the calculation of Fl, F4, and C„
for Na in approximations (a) and (b).

We present in Table I the results of our full
calculations without any approximations such as
(a) or (b) mentioned before for all three poten-
tial. s. The number of neighbors included in the
harmonic and anharmonic interactions are also
given in this table.

For example, with the Cochran potential, inter-
actions up to five neighbors are included in the
harmonic dynamical matrix in obtaining the
eigenvalues ~(qj) and eigenvectors e(q j) for a
mode q j. These &v(q j) and e(q j) are then used
in the F, and F4 calculations by the method of
Shukla and Taylor' where we include up to three
shells in the anharmonic interaction. The cor-
responding E, and F, results are presented in
Table I, columns 4 and 5, respectively. The
l.ast two columns contain the total F =F, +E4 and
the coefficient 4 in C~. The results for the other
potentials are also presented.

In a similar fashion we present in Table I the
results for E„E„andC"„ for all three poten-
tials in approximations (a) and (b). To avoid
any confusion, we wish to reiterate +gain that
the approximations (a) and (b) are only used in
the anharmonic calculation and not in setting up
the dynamical matrix in obtaining &o(q j) and
e(qj).

From the results presented in Table I we can
draw the following conclusions for all the three
potentials. The nearest-neighbor central-force

TABLE I. Cubic (E3), quartic (E4), the total free energy (E), and the coefficient A in C„
=3Nk&AT for three potentials of Na. E3, E4, and E are in units of 10 N(k&T) erg and A is
in units of 10 4/K.

Type of potential

Number of terms in
harmonic anharmonic

interaction interaction E=F3+E4

Morse potential of
Lloyd

Cochran

Ashcr oft-type
Singwi potential

2
5
5
5

10

10
10

Results of full calculation
1 -1.5298

-1.6803
-1.9669
-2.4594
-2.4912
-2.2548

-3.0243
-3.0768

0.7811

2.1953
0.0604
2.3814
2.2741

-0.0863

3.0059
3.3824

-0.7487

0.5150
-1.9065
-0.0780
-0.2171
-2.3411

-0.0184
0.3056

0.689

-0.474
1.755
0.072
0.200
2.155

0.017
-0.281

Lloyd
Cochran
Singwi

Results of calculations in approximations (a) and (b)
2 1 -1.3407 2.7604
5 1 -1.5309 2.4522

10 1 -1.6884 2.5325

1.4197
0.9213
0.8441

-1.307
-0.848
-0.777
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F(V, T) =4„(V)+Eqg(V, T)+A'F, (V)T').(3)

where @„is the energy of the static crystal,
F,„ is the quasi harmonic Helmholtz free en-
ergy, ~ is the Van Hove expansion parameter,
and the last term in Eq. (3) is the sum of F, and

F4 with F, as the volume-dependent term. We
note that the first two terms in Eq. (3) also
depend on crystal volume e. By replacing v or
the nearest-neighbor distance r with ro(1+ &),
where & is the thermal strain parameter and ro

model coupled with the leading-term approxi-
mation, i.e., approximations (a) and (b), give a
negative sign for the coefficient A in C„". The
experimental value of A by Martin' is of course
positive. When anharmonic interactions are
restricted to the nearest neighbors only, the full
calculation for the Cochran and Singwi poten-
tials yields the positive values of A which is in
surprisingly good agreement with the experi-
mental value' of 1.69 && 10 / K, whereas the Morse
potential of Lloyd gives a positive lower value,
i.e. , approximately A(expt)/2. 4. However, for
both Cochran and Singwi potentials, when an-
harmonic interactions are extended to two shells,
A becomes very small but remains positive,
whereas the Morse potential of Lloyd gives neg-
ative A. When three shells are included in the
anharmonic interaction, the Cochran potential
gives A -A(expt)/8 but the Singwi potential gives
a negative A. We can understand this behavior
in the magnitude and sign of the coefficient A. for
the three potentials because for all of them there
are wide variations in the value of E4. For ex-
ample, E, is a factor of 30 smaller in absolute
terms than E, for the Singwi and Cochran poten-
tials, and for the former it is even negative.

The inclusion of second neighbors in the an-
harmonic interaction does not change E, sub-
stantially but E, increases by a factor of 40 from
its nearest-neighbor value and changes sign for
the Singwi potential. In both cases E, and F4 al-
most cancel each other, thus giving a low value
for the coefficient A in C„".

It is clear from the above discussion that the
nearest-neighbor central-force model in the
anharmonic calculations of bcc alkali metals
gives misleading results. The NNCF results of
the full calculation have no relationship to the
results obtained in approximations (a) and (b).

Now we turn our attention to the other point
mentioned before, i.e., in Ref. 1 the coefficient
A was calculated by including the effect of thermal
expansion. The arguments first presented in
Ref. 10 and again used in Bef. 1 are as follows.

The total Helmholtz free energy can be written
as"

is the value of r with a = 0, Ecl. (3) can be expanded
to O(a') as

F(&i T) @St(0)+ 4'g +F~z(0 & T) +F(Tp

+X F (0)T (4)

where @, and F, are the first derivatives of 4„
and E,„with respect to & evaluated at a =0. Since
e is of O(X), Eci. (4) is correct to O(X').

From Eq. (4) we can evaluate both the equil-
ibrium value of E and C„by the following two
equations:

where I' is the pressure, and the subscripts v

and z imply the constancy of e and hence that of
Using these differentiations we find from Eq.

(4),

F,T
(5)

C„=C,„—2%'F, (0)T, (6)

where C,„ is the quasiharmonic contribution to

C„, the second term is the anharmonic contri-
bution from the E, and E, terms, and there are
no contributions at all to the lowest order.

The procedure followed in Befs. 10 and 1 is to
first substitute for e from Eq. (5) into Eq. (4)
and then perform the temperature differentiations
to get C„. When this procedure is followed one
finds

E2 Z
2

F(E, T)=4,~(0)+F „(0,T)+ X'F (0)T
1

and the extra contribution to the heat capacity from
the last term in Eq. (7) is F', T/2y, .

Obviously then substituting for e in F(e, T) before
taking temperature derivatives means that the
derivatives are not obtained at constant volume
(i.e., at constant a) but at constant zero pres-
sure. In other words, one obtains C~ rather than
C„. Since Martin has derived the coefficient A

in C„" from the analysis of C„(expt), there is no
justification of the comparison of the coefficient
A calculated in Ref. 1 with that of Martin.

Finally, we note the following. Since there are
two ingredients of any anharmonic calculation at
least to O(X'), (1) the first four derivatives of
V(r) evaluated at various neighbors positions and

(2) the knowledge of u~(q j) and &(jj) which are the
zero-order solutions of the harmonic Hamil-
tonian (P,), it is difficult to see the usefulness
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of the anharmonic calculation if the zero-order
solutions are not adequate as in Ref. 1. Of course,
the accurate calculation of the anharmonic results,
for a given potential, may still be poor in spite
of good agreement of ~(q j) with the measured
experimental values. This then indicates the
inadequate representation of the third and fourth
derivatives by that potential or the inadequacy

of the O(z') perturbation theory. pt may he then
necessary to go to 0(X') perturhation theory. '"
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