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The dominant Raman line in AX, tetrahedral glasses is demonstrated to be caused by corre-
lated symmetric stretch motions of the bridging X atoms. Using a bond-polarizability model and
the central-force model of Sen and Thorpe, we derive simple analytic forms for Raman spectra.
We show that correlations may cause qualitative changes in the polarized spectrum leading to a
peak at the edge of a band of vibrational states, whereas the depolarized spectrum is less affect-
ed and mimics the density of states. Both features are clearly observed in GeO, and explain
features in many other glasses. The same reasoning leads to a prediction of unusual spectral
features in electronic spectra of disordered solids which may be observable in angular-dependent

photoemission.

1. INTRODUCTION

Vibrational properties of glasses have been studied
extensively by Raman and infrared spectroscopy. A
survey of the data for a large number of covalent
network glasses,!™!? such as SiO,, "2 GeO,,%3 and
P,0s,? reveals several ubiquitous features. One is
that the Raman spectra of each glass are dominated
by a single peak which is highly polarized, i.e., it is
strong when the incident- and scattered-light polariza-
tion vectors are parallel (HH) but weak when they
are perpendicular (HV). This peak is usually an or-
der of magnitude more intense than any other and
comprises more than 50% of the HH spectrum. The
depolarized HV spectrum has very different structure
with several peaks having a close correspondence? to
the TO and LO modes determined from infrared
spectroscopy. Striking sharp features also appear in
the HH Raman spectra of other disordered materials
such as amorphous As,'"'2 and P."* These ‘‘selec-
tion rules,”” which cause different vibrational modes
to be weighted very differently in the various experi-
mental probes, are the subject of the present work.

In this paper we analyze the nature of Raman
scattering in network glasses. Our primary result is
that polarized HH spectra are greatly affected by
correlations in the motion of nearby atoms. It fol-
lows that analysis of the Raman peaks is meaningful
only if the correlations in the extended network are
taken into account and, conversely, the polarized
spectra provide information on the correlations. On
the other hand, the depolarized HV spectra are
shown to resemble the density of states weighted by
smoothly varying factors, as has been observed ex-
perimentally.! ™' !4 We give explicit calculations and
comparison with experiment for vitreous GeO,, for
which there is an unambiguous indentification of the
salient features of the Raman spectra' and density of
states as measured by neutron scattering.'* Finally
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we show that the ideas can be applied to other net-
work glasses and to other properties of amorphous
systems and we make a prediction of unusual struc-
ture in angular-dependent photoemission in amor-
phous tetrahedral semiconductors such as a-Si.

The primitive state of the current understanding of
the vibrational and electronic properties of glasses
compared to that for crystals can be attributed to the
difficulty of deriving unique theoretical predictions
for excitations in disordered systems.'>!® In network
glasses the situation is particularly complex because
there is much evidence!’ that local structural order is
preserved, nevertheless, the local units are strongly
coupled into a topologically disordered network.
Theoretical approaches toward this problem have di-
vided into various categories. (i) The simplest is the
molecular approximation'®!? in which the coupling
between the local units is ignored. This may be ade-
quate in special cases where the coupling is small, but
here we are interested in the cases where coupling in
the network is nontrivial and cannot be ignored. (ii)
Coupling can be accounted for in quasicrystalline cal-
culations,'® but there the disorder is included in an
unsatisfactory heuristic manner. (iii) The states of a
disordered network may be addressed directly by nu-
merical calculations on large clusters.!®20-22 Such
methods are very powerful, but they involve large
computations and are sensitive to the assumptions
concerning the structure and the boundary condi-
tions. (iv) Numerical calculations?*?* on small clus-
ters with self-consistent Bethe lattice-boundary condi-
tions reduce the computational problems but have
the same difficulty as the larger cluster calculations so
that the form of the solution is not transparent. (v)
Finally, the study of approximate Hamiltonians in to-
pologically disordered systems?*~?’ has provided sim-
ple analytic results for bounds on the excitation
bands and the nature of the eigenstates. This
method takes into account both local order and
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strong coupling through the disordered network,
which are the two essential ingredients to under-
standing the Raman spectra.

Galeener'® has shown that the central force Bethe-
lattice calculations of Sen and Thorpe?’ (ST) are in
quantitative agreement with large cluster calculations
for 4-2 connected AX; glasses, and has used the
results to provide a new interpretation of the fre-
quency and atomic motions of the dominant Raman
line in Si0;, GeO;, and BeF,. We shall utilize these
methods and results here, and will extend the treat-
ment of Raman scattering to include broadening due
to quantitative disorder and the inclusion of noncen-
tral bond-bending forces.

In Sec. II we briefly describe the structure and vi-
brational spectra of network glasses with emphasis
upon GeO,. In Sec. III we analyze the Raman pro-
cess and give expressions for the correlation func-
tions required in polarized and depolarized Raman
spectra. Application of the central force model to 4X;
glasses is discussed and extended in Sec. IV, with a
specific treatment of GeO,. Comments on applica-
tion to other systems and excitations and conclusions
are given in Sec. V.

II. STRUCTURE AND VIBRATIONAL MODES
OF GLASSES: GeO,

Experimental studies'”?® have shown that glasses
such as SiO,, GeO,, etc., are formed with strong co-
valent bonds which preserve the local coordination
and bond angles in a topologically disordered net-
work. The network is continuous and extended so
that there are no isolated molecular units. A widely
accepted model for such a structure is the continuous
random network (CRN).!”2 CRN models have
been constructed for many systems satisfying the
above conditions. The uncertainty in these models is
the degree to which there is medium-range order,
such as angular correlations manifested in preferred
dihedral angles—an aspect which has not been suc-
cessfully determined experimentally.?? We will
proceed with the CRN model for a glass, bearing in
mind the uncertainties in the medium-range order.

The structure of an 4AX, 4-2 coordinated glass is il-
lustrated in Fig. 1. There is shown a part of an ex-
tended network in which every atom of a given type
has similar coordination. An example is GeO,, for
which x-ray studies?® indicate that every Ge is sur-
rounded by four O atoms at the corners of a nearly
regular tetrahedron, and every O atom bridges
between two Ge atoms. There is only a small spread
in the Ge—O distance d ~1.74 A and in the Ge-O-
Ge angle # whose mean value is ~ 133°. From the
radial densities given in Ref. 28, we estimate the an-
gular spread to be 133° + 3°, but this is very uncer-
tain as pointed out by the authors of Ref. 28. The

FIG. 1. Schematic illustration of the 4X, local atomic or-
der, for example SiO, or GeO,. This is the building block
from which either a crystal or a random-network glass is
constructed. The symmetric stretch (SS) and asymmetric
stretch (AS) X motions are shown, as well as a general ca-
tion (C) motion.

“‘ring statistics’’ of this continuous random network
are not known but may be similar to those of Si0,.3
The reduced HH and HV Raman spectra® ! of v-
GeQ, are shown in Fig. 2(a). It can be seen that the

dominant line in the HH spectrum is highly polar-
ized, exhibiting little strength in the HV spectrum,
while the HV spectral features are nearly unpolarized,
appearing with about the same strength in both spec-
tra. Galeener and Lucovsky? compared the Raman
and infrared (ir) spectra and concluded that the
features marked TO-LO are to be interpreted as

‘transverse ‘optical-longitudinal optical pairs. Each

TO-LO pair is viewed as arising from a single ‘‘bare”’
mode, calculated using a theory that does not include
the long-range dipolar forces which lead to TO-LO
splitting.

The frequencies of the observed Raman and ir
peaks were analyzed by Galeener!® in terms of the
idealized central force model of Sen and Thorpe.?’
The density of bare-mode vibrational states which
was deduced from that model is shown schematically
in Fig. 2(b). There are two bands of vibrational
states, bounded by the frequencies w;, w;, 3, and
w4 for which simple formulas are available.!%?’
There is a & function at the upper frequency edge of
each of these bands, and each & function was as-
sumed to correspond to a TO-LO pair. On this as-
sumption it was found that the computed position of
the lowest band edge (w;) corresponded rather well
with the observed position of the dominant Raman
line in several tetrahedral glasses. This correspon-
dence is illustrated for v-GeO, by the dashed vertical
line drawn downward from the dominant Raman
peak in Fig. 2. The single state at the band edge o,
in the ST theory corresponds to the symmetric
stretch (SS in Fig. 1) motion of all X atoms precisely
along the bisector of the bridging angle 6, the 4
atoms remaining at rest. Thus Galeener!® argued
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FIG. 2. Spectra of vitreous GeO,. (a) Reduced Raman
spectra from Ref. 2. (b) Schematic density of states from
the Sen-Thorpe central-force model as applied in Ref. 10.
(c) Neutron measurements of the vibrational density of
states from Ref. 14. The dotted line shows the relation of
the dominant Raman peak to the band edge in (b) and the
minimum in the experimental density of states (c).

that the SS motion at the band edge accounts for the
dominant Raman line. In Secs. III and IV we shall
give a detailed analysis of a glass with topological and
quantitative disorder and we shall derive this assign-
ment of the Raman scattering to the SS mode at the
band edge.

The inference that the dominant Raman line in v-
GeO, lies near a band edge is corroborated by new
experimental results!* shown in Fig. 2(c). Here, we
present the results of inelastic neutron scattering
studies of v-GeO,, where G!(Q, w) is the first-order
single-phonon contribution to the reduced neutron
scattering spectrum and can be shown to be a good
measure of the total vibrational density of states
(VDOS). The small peaks at ~ 115 and ~ 460 cm™!
should be ignored in the present discussion; they may
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arise from experimental noise (not shown).'* The
position of the dashed line in Fig. 2(c) shows clearly
that the dominant Raman line does not occur at a
peak in the density of states. The Raman line at 420
cm™! is very near a minimum in the VDOS, and in
view of the central force analysis it is reasonable to
associate the Raman line with the low-frequency edge
of the band of states which peaks at = 560 cm™!.

An additional observation comes from comparison
of Figs. 2(a) and 2(c). There are four maxima in the
HV Raman spectra, at approximately 260, 570, 860,
and 970 cm™'. These peaks correspond quite closely
to the four major peaks in the neutron-determined
VDOS in Fig. 2(c). The HV Raman peaks appear to
be somewhat narrower than the corresponding ones
in the VDOS, and their relative strengths are dif-
ferent than in the VDOS. Nevertheless one can see
that a linear combination of four subbands taken
from the VDOS can be made to provide a convincing
representation of the HV Raman spectrum. With
this meaning, we say that the HV Raman spectrum
““mimics’’ the density of states, while the dominant
part of the HH spectrum is qualitatively different
from the density of states.

Vibrational modes of corresponding crystals may be
used to test the above interpretations. The displace-
ment patterns for a- and B-quartz crystals have been
derived by Bates.’! In B8 quartz there is only one A4
mode and an analysis of Bates’s results shows that this
mode consists precisely of SS oxygen motion, as de-
fined in Fig. 1. Experimentally this mode gives
strong polarized Raman scatttering at 462 cm™' in 8
quartz,* which lends strong support to our conten-
tion that essentially the same modes are responsible
for the strong polarized Raman feature in vitreous
Si0, (Refs. 1 and 2) which peaks at ~430 cm~'. In
a quartz the symmetry is lower so that there are oth-
er A modes but the one which is strongest in the Ra-
man spectrum?®’ is present at almost exactly the same
frequency (464 cm™') as the 4 mode in the 8 form.
In GeO, there are available** Raman spectra of cry-
stals with the a-quartz structure which show that
there is one strong Raman mode at 440 cm™! very
near the position of the single strong polarized Ra-
man mode found at ~420 cm™! in the glass. In ad-
dition, the Raman data of Ref. 34 show that the
bond-bending modes in GeO, shift to lower energies
relative to SiO,, as expected from the heavier Ge
mass, so that all except the very highest frequency
LO bond-bending modes are lower in frequency than
the strong 4; SS Raman mode. This fortunate oc-
currence gives rise to a separation of bond-bending
and SS modes in GeO,. This is the origin of the.pro-
nounced dip in the density of states observed by neu-
tron scattering on polycrystalline a-GeO, (the poly-
crystalline data!* are very similar to the glass data'*
shown in Fig. 2). It is this feature that allows the
atomic motions corresponding to the 4, mode in the
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crystal to persist in vitreous GeO, with less broaden-
ing than in vitreous SiO,.

The Raman spectra of other glasses show very
similar features. These include the tetrahedral 4AX,
glasses SiO;, "2 BeF,,* GeS,,’ and ZnCl,.6 The spec-
tra of SiO, appear to resemble GeO; in every way ex-
cept that the low-frequency bond-bending modes are
more mixed with the SS modes so that the features
are not as cleanly separated as in GeO,. Pyramidal
glasses such as As;03,” As,Ses,” and P,0s,% and B,0;
(Ref. 9) also have a strong polarized feature with
similar characteristics. A recent work by Thorpe and
Galeener?® extends the central force model to pyrami-
dal glasses, and it can be shown that a correlated SS
motion is found at a lower band edge, just as in the
tetrahedral glasses. Therefore all our conclusions can
be carried over immediately to these glasses as well.

III. POLARIZATION SELECTION RULES AND
CORRELATIONS IN GLASSES

In this section we consider Raman scattering from
the vibrational excitations of a network glass. The
crux of the problem is taking into account correla-
tions among different atoms in the disordered net-
work. We show that the correlations dramatically af-
fect polarized Raman scattering, giving structure in
the spectrum very different from that in the density
of states. The depolarized Raman spectrum is much
less affected and in general closely resembles the
density of states. Our mathematical analysis uses the
tools developed for disordered crystals'® but with
rather different physical results. The importance of
correlations for Raman scattering has been recog-
nized by many workers,'*~%" but to our knowledge
has been explored only by numerical simulations for
specific model clusters.?!» 2> 24

Raman scattering is a long-wavelength experimental
probe which measures the fluctuations in the dielectric
function. The spectral intensity is given by the imagi-
nary part of the dynamic correlation function’®?’

Sy(q, ) =—1Im fd, dr'edtr=r")
X fdt e (de;(r,1)8e;(r',0)), (1)

where / and j are the incident and scattered light po-
larization directions. The actual Raman intensities
are proportional to the Sy and in an isotropic system
the two independent spectra are often denoted
Iyn(o) « §;(w) and Ipy() « Sy(w), i #j. We will
ignore the wave vector of light so that ¢ =0 in which
case the dependence of 8¢, on r may be suppressed.
To linear order the dielectric fluctuations are propor-
tional to the atomic displacements u/, where /
denotes the atom and k the vector direction

By (1) =2 4l (1) = eyl (1) . @
auk

Then § is given by
$y(0) == 3 eyue, pp Im f dr e Cuf (ul’(0))
u ’

k' 3)

which involves the thermal average correlation func-
tion for displacements of atoms at sites / and /" which
may in principle be any sites in the extended network.

It will be convenient to use the relation of the
correlation function to the causal Green’s function to
cast the scattering spectrum in the form?3¢ 3840

2w ’ .
Sylw)=—T""700 ”Ele,],/ke”’[;k; ImG, (LI, 0 +i0%) .

’

kk

4

Here the first factor contains the thermal Bose fac-
tors, the Green’s function contains all information on
correlations, and 0% denotes a positive infinitesimal
which defines the position of poles in the complex
plane. The reduced Raman spectrum?*®*! is defined
by dividing out the Bose factors so that it involves
only the polarizability derivatives and Green’s func-
tion in Eq. (4). The vibrational density of states is
given by!5 3839

p(w)=—%lm 3 Gu (1L w+i0*) . (%)
Ik

Comparison of Egs. (4) and (5) shows that the re-
duced Raman spectrum differs from the density of
states for two reasons: (i) the derivatives of the
dielectric function weight differently the various types
of atomic motions. This factor alone gives a weight-
ed density of states, i.e., a smoothly*®*! varying func-
tion multiplying p(w) in the spectral intensity, dis-
cussed extensively in the literature. (ii) The Raman
spectrum involves a sum over all pairs of atoms and
is modified by correlations in displacements of dif-
ferent atoms.

It is useful to divide the fluctuations in the dielec-
tric function into isotropic and anisotropic parts®” 42
de, = 5€’ + 3¢, where 8¢ is a scalar and is one-third
the trace of the fluctuation in the dielectric tensor
and 8¢ is traceless. In molecular systems these two
parts give, respectively, polarized and depolarized Ra-
man scattering.’”*? We shall see that in a network
glass the same polarization rules hold and that the ef-
fect of correlations is very different in polarized
versus depolarized scattering.

In order to derive explicit results we use a bond
polarizability model as has been defined by Bell and
Hibbins-Butler?! for the 4X, glasses. This model has
been used in cluster calculations?2* of Raman cross
sections so that our results can be compared. The
dielectric function is given by

€U=1+-?11— S lams, + 8" (ntnr—L5,)1 . (6)
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Here n™ is a unit vector along bond m, a™ is the isotropic polarizability, and 8™ the magnitude of the anisotropic
part. This form has also been used to analyze Raman spectra of « quartz.*® If we assume o™ and 8™ depend
only upon the length r™ of bond m, then the derivatives may be written

an _
uj

m
% 3™ nps, + '™ (nfinr — %8,-,) + %(n:"a,k +n"8u — 2001, (7
m

where the sum is restricted to the bonds m attached to atom 1, a'™=98a™/3r™ B'™=93B8™/dr™, and A" is defined

as the bond vector directed toward atom /.

We first discuss the polarized scattering which results from the isotropic §; first term in Eq. (7). The polarized

spectrum given by Egs. (3) and (7) is

$(w)==3 3 ama™'Im [ dre (@ 1'(1) x 7" (0) @)

' mm’

where m denotes all bonds attached to atom /, etc. The scalar dot product in Eq. (8) projects out the bond-
stretching components of the displacements and the polarized scattering is a sum over all correlated bond-
stretching motions weighted by the scalar polarizability derivatives a’™. The important point is that a'™ has a
nonzero mean value for each type of bond in the system. Let us specialize with one type of bond and write

am=a +8a™ , 9)
where o’ is the mean derivative and 8a’™ is the fluctuating part. Then the expression for polarized scattering
becomes

$?(w) == (a)Im [ dre™ 3 3 (nmul(r) x nmul (0)) + - -, (10)

i mm'

where the ellipsis represents terms involving 8a'™.

The portion of the scattering given in Eq. (10) is
simply a sum over all correlated bond-stretching dis-
placements. Sen and Thorpe?’ (ST) have shown that
these displacements may be highly correlated on dif-
ferent sites, in which case Eq. (10) is qualitatively
different from the density of states. On the other
hand, the fluctuations 8a’™ are not expected to be
correlated on different bonds; therefore, the remain-
ing polarized scattering involving the 8a’™ is expected
to closely resemble the weighted bond-stretching den-
sity of states. We will give explicit results for a 4-2
coordinated 4X, network glass in the next section us-
ing an extension of the ST model.

Depolarized scattering gives qualitatively different
results. To see the overall effects, consider a typical
term

SP(w)==3 3 B"B™(nl'n]'—58,)
II',mm'
X (n,’"’nj'",—%ﬁ,-j)
x Im fdre"w'm’"-ﬁ’(z)xﬁ'"'~ﬁ"(0)> .

aan

The important aspect of Eq. (11) is that it involves
the correlation of displacements with the static bond
directions n™ and n™'. The expectation values in Eq.
(11) depend only upon the relative orientations of
the bond and displacement vectors whereas the first

[

terms in brackets depend upon the orientation of the
vectors n™ and n™ relative to the laboratory Carte-
sian coordinate system. In an extended isotropic net-
work the sums over all bonds in Eq. (11) will average
over all possible orientations, in particular, we may
say that vector n™ may adopt any orientation with
equal probability and the plane defined by the two
vectors n™ and n™ may have any orientation. How-
ever, if there is angular correlation in the glass there
may be a preferred distribution of angles ¢mm,

between the two vectors. For example, it is generally
found that angles between neighboring bonds have
only a small distribution around some energetically
favored bond angle.

The average over all orientations for the bracketed
terms in Eq. (11) for a fixed dz'nm, can be shown to

obey the simple relation
(Cnfrnr=58)) (n" nr" = +8,))
2 1
=7(cosz¢m, = 3){(n/"n — %8,,-)2) . (12)

That is, all averages over different bonds in Eq. (11)
can be related by the proportionality factor on the
right-hand side of Eq. (12) to a self-correlation func-
tion which is well known.*> The same can be shown
straightforwardly to hold for all depolarized terms
arising from the bond polarizability equations (7).
One important result of our derivation is that the
two independent depolarized spectra are always relat-
ed by S#(w) = (%)S,"/’(m) for i # j. This follows
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from the well-known result for a single bond** and
the fact that angular averages for every term in the
expression for depolarized scattering can be related to
the single-bond averages via Eq. (12). The actual
Raman intensities /yy and Iyy can therefore be com-
bined to define an isotropic scalar scattering

L(0) =I(w) = (o) « P (w) | (13)

which involves only the isotropic components of the
local bond polarizabilities. The depolarized part
Inv(@) « SP(w), i # j, is the anisotropic counterpart
involving only the anisotropic components of the
bond polarizabilities.

The second important result is the very different
effect of correlations upon the polarized and depolar-
ized spectra. The polarized spectra may be greatly
modified by correlations because of the sum in Eq.
(10), which runs over all pairs of atoms in the net-
work. Any correlations of stretching motions of
nearby atoms will affect the spectrum increasing the
scattering strength of modes with in-phase motion at
similar sites. On the other hand, the correlation
functions for depolarized scattering involve the factor
(cos’q&mm, —%) in Eq. (12). This factor is always less

than %, can have either sign, and averages to zero
for uncorrelated distribution of all possible values of
$,.,- In a glass one expects, at most, short-range
correlations in the angles. Then the weighting factor
in Eq. (11) is nonzero only for near neighbors and is
in general considerably reduced from unity. In the
absence of more detailed information, the most rea-
sonable starting point is to assume no correlations
whatsoever. Then the depolarized spectrum of Eq.
(11) involves only self-correlations and is proportion-
al to the density of states multiplied by smoothly
varying functions which account for the change in the
various types of atomic displacements with frequency.
In this sense we expect depolarized scattering to
“mimic”’ the density of states.*’

A corrollary of this section is that short- and
medium-range angular correlations, such as preferred
dihedral angles, can lead to pronounced differences
in the depolarized spectrum from the density of
states. (Indeed, a crystal has long-range order in the
angular orientations so that depolarized scattering in-
volves long-range correlations to the same degree as
does the polarized scattering.) Therefore one should
look for anomalies in the depolarized scattering to
find evidence for medium-range order in a glass.
This area needs further experimental and theoretical
study.

IV. RAMAN SCATTERING IN AX, GLASSES

In this section we consider in detail the correlation
functions needed to evaluate the expression for Ra-

man cross section derived in the previous section in
the special case of the 4-2 coordinated 4X, glasses.
The starting point for our analytical approach is the
characterization of systems having ‘‘topological disor-
der”’ by Weaire and Thorpe?*> 2% and Sen and
Thorpe?’ (ST). These authors showed that for model
Hamiltonians the vibrational (as well as electronic)
bands could be described exactly. Specific results for
the bands have been given for four coordinated ma-
terials?>?® such as Si and Ge and 4-2 coordinated
cases,?’ such as SiO, and GeO,. The key to the ana-
lytic calculations of ST is the neglect of ‘‘quantitative
disorder,” i.e., the calculations are carried out with the
assumption that each 4 atom has perfect tetrahedral
coordination, each X atom has the same 4-X-A4 angle,
and the Hamiltonian contains only nearest-neighbor
A-X central forces with the same force constant at
each bond.

The density of states for the ST model applied to
GeO, is shown schematically in Fig. 2(b). The spec-
tral features are three 8-function peaks in the density
of states and two bands with the band edges fixed by
simple formulas in terms of the masses, central force
constant, and bond angle ¢. Two 8-function peaks
are shown in Fig. 2(b) and the third is at zero fre-
quency and is comprised of bond-bending modes
which are unstable in this central force model.
Despite this failure for bending modes, the ST model
is quite accurate for the high-frequency modes in
which we are interested. Galeener has compared the
frequencies predicted by the simple expressions of
the ST model with the results of the large numerical
cluster calculations for SiO,, GeO,, and BeF,, and he
finds that the agreement is within a few percent.!®

The lower band edge denoted by w, is of particular
interest here. In the ST model this band edge is pre-
cisely defined even in the disordered system. It is the
lack of sensitivity of the band edge at w, to disorder
that leads to the correlations discussed below for
Raman scattering and to the simple form of the
results.

In the ST model with no quantitative disorder the
spectrum can be found exactly. First, we take
a'”=a' independent of bond m, which is an exten-
sion of the ST model to require that there is no
quantitative disorder in the coefficient for coupling to
light. The correlation function needed is then given
by Eq. (10) with 8a’"=0. Now from Galeener we
have the result that at the band edge w;, the atomic
motion is purely SS displacement of the X atoms with
every bond in the network compressed in phase, i.e.,

iw,t
Snmul(1) =uge' !
m

independent of the site / Secondly, the displacement
pattern at every other frequency is orthogonal to that
at w;. From these two facts it follows immediately
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from Eq. (10) that S?(w) is a & function at + w,.
The polarized Raman strength for this one mode is
proportional to the number of atoms N in the scatter-
ing volume and for every other mode it is zero. The
§-function coupling to one mode of the system is a
property found also for perfect crystals, but long-
range periodicity has not been used in the present
derivation.

The results can be cast in terms of Green’s func-
tions in a form useful later. Let us define the scalar
Green’s function for the SS motion

Gss(Ll' w)="3, nfG (Ll w)nn . (14)

kk'mm’

and denote Ggs in the ST model as G&. The proper-
ties defined above lead to the result that

EGé’s(l,l',w)=-MN7/(w2—wf) as)
o

and we also arrive at the conclusion that the polar-
ized scattering spectrum

S (w)=— (a)zl—z"’q Im3Y G (LLw+i0*) (16)
—e [

consists of 8 functions at w =+ ;. This is to be con-
trasted with the weighted density of states

pss(w)=%lm 3G% (Ll w+i0) an
1

which is the weighted broad spectrum given in Fig. 5
of ST.?’ The difference between the two expressions
results from the correlations between unlike atoms
1=,

Let us now consider a system with quantitative dis-
order. One type of disorder is fluctuations in the
coupling to light, termed electrical disorder by Martin
and Brenig.** In the bond polarizability model the
electrical disorder can be represented by a probability
distribution Q (8a’) of the variation in polarizability
8o’ in Eq. (9). We assume no correlations on dif-
ferent bonds. Quantitative disorder in the force con-
stants and in the structure, termed mechanical disor-
der by Martin and Brenig, affect atomic displace-
ments and frequencies, broadening the density of
states and all correlation functions. We take into ac-
count a part of this disorder by the single-site
coherent potential approximation (CPA), which has
been applied extensively to disordered crystals.!* In
the present case a ‘‘single site’’ is an 4-X-4 unit and
random fluctuations are considered in the “‘site-
diagonal’’ force constants K, for the SS motion of an
X atom relative to its two A4 neighbors. Coupling of
neighboring units via the connecting 4 atoms is taken
to be constant and its fluctuations are ignored. This

greatly simplifies the mathematics and leads to the
equations given below. In the ST central force
model, fluctuations in the site-diagonal forces on an
X atom can result from fluctuations in the central
force constant and in the 4-X-4 angle 8 which deter-
mines the total restoring forces in the SS and AS mo-
tion respectively. Bond-bending forces K4 about the
A atom not included in the ST model also give rise to
random self-forces. If all dihedral angles are random
it is easy to show that there is a distribution of effec-
tive restoring forces on the X atom which range from
0 to a maximum of 6 sin?K 4= 3.2K 4, for §=133°.
A zero contribution to the restoring force is for the
case where the four X atoms rotate rigidly around an
A atom, and the maximum contribution occurs when
the angles at the 4 atom are distorted to a maximum
degree. The important point is that with noncentral
forces a distribution of dihedral angles causes a distri-
bution in restoring forces.

In this paper we include all mechanical disorder by
a distribution of self-force constants P(Kj,) with no
correlation of the fluctuations in K, on different
sites. The CPA solution gives correlation functions
of the disordered system in terms of a site-diagonal
self-energy 3,(w) =3A(w) chosen to represent
the fluctuating K, forces. The CPA Green’s function
is the zeroth order Green’s function G° with 2
corrected by the self-energy 3, i.e.,

GPAULI, w) =G U1, (0= 3(w) 1Y) . (18)

The CPA solution for the optimal self-energy is given
by [see, e.g., Ref. 15, Eq. (3.65)]

[K —3CPA(w)] -0
[1-[K —3®2()IGPA (1], w) }

(19)

J ax pk)

Equation (19) is in principle a very complex matrix
equation because in the general case K, 3, and G are
all nondiagonal matrices in the various types of atom-
ic displacements. The equations simplify enormously
if we make the approximation that only SS motions
are included in Eq. (19). Then Eq. (19) reduces to a
scalar equation where all quantities involve only SS
motion. The solution for 2(w) is given completely
in terms of the single distribution P(K) and the
scalar site diagonal GJ which is the Hilbert transform
of the weighted SS density of states pJs in the ST
model. This approximation is justified by the work
of ST which shows (see their Fig. 5) that for large
bond angles ~— 135°, the lowest band is essentially
completely comprised of SS motion. At frequencies
near the lowest band edge w, the mixture of other
degrees of freedom by the random forces will lead to
only small corrections. It is important to note, how-
ever, that in some glasses (e.g., SiO,) bond-bending
modes are found experimentally to occur in this fre-
quency range. That situation leads to extra broaden-
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ing due to coupling with these modes not included
here. Nevertheless the major conclusions remain un-
changed.

The polarized Raman spectrum involves the sum
over atoms and bonds given in Eq. (8). The sum is
in general complicated if there is correlation of da'™

SP(w) =— - ,

"

2:)—;% ()23 ImG AL, ) + ((3a’)?)

on different sites or with the fluctuations in the force
constants K,;. We will give explicit results in the ab-
sence of any such correlations and will merely men-
tion the effects of these correlations. With the above
approximations, fluctuations in 8a’™ cancel in the
sums except for single-site contributions and

3 ImGPA (L1, w)
1

= Qu/1=eP*)(N/My) (') Im{ - o/[0? — ol — ZP*(w) ]} + ((8a')?) mp*H) . (20

Here GP* is the SS Green’s function and pCF* the
SS-weighted CPA density of states defined in terms
of the self-energy. The final line in Eq. (20) follows
from Egs. (15) and (17) and shows that the spectrum
is a sum of a broadened & function associated with
the band edge plus the contribution from the electri-
cal disorder 8a’ which is proportional to the total SS
density of states. Because the spectral functions in
the last line of Eq. (20) are normalized, the integrat-
ed weight for the two contributions is in the ratio
((3a')?)/a’.

If there are additional correlations among the 8a'”
on different bonds, the second term is modified and
is not simply the density of states, and if there are
correlations of 8a’” and K, then there are cross
terms giving interference between the two types of
contributions in Eq. (20). The interference could
take the form of a broadened Fano effect and could
lead to either constructive or destructive interference
between the two parts.

Evaluation of Eq. (20) requires the weighted densi-
ty of pds(w). The simple shape for pds(w) given by
ST suggests that it is adequately represented by a
smooth featureless shape, and we will choose the par-
abolic density of states*® for which the solutions for
3(w) can be found analytically. The site-diagonal
Green’s function for this spectrum is

G (Ll ) = (4/ W {(0? - ) + [(0? - wd)?— W*]'2)
(1)

for a band extending from (w3— W2)!/2 to

(w3 + W22 This form has often been applied as an
approximation to crystalline densities of states.'#*
The second quantity which must be fixed is the dis-
tribution P(K). We have chosen a form which is
convenient and allows analytic solutions

P(K)=(2d%m)/(K*+o?)? . 22)

This distribution has the virtue that it decreases fas-
ter than a Lorentzian at large K, giving a distribution
appropriate for a continuously disordered system such
as a glass.

The solution of Egs. (19), (21), and (22) can be

[
cast in the form of a complex third-order polynomial

in G’?A, The steps involved are carrying out the in-
tegrals over K by contour integration and noting that
3CPA obeys the relation

SCPA — 2 — 3 — (%;4/2)(;CPA--2/GC"A . (23)

The density of states for the physical root of the po-
lynomial is shown in Fig. 3 for several values of
o/W?. There is also shown the first term in Eq. (20)
for the polarized Raman scattering. The results for
o =0 give the sharp band edge and §-function Ra-
man response if there is no quantitative disorder.
The most important result is that the polarized Ra-
man scattering spectrum is qualitatively modified
from the density of states; even for very large quanti-
tative broadening, the peak in the Raman spectrum is
clearly shifted from that of the density of states and
is associated with the edge of the density of states.

In Fig. 4 we show the isotropic Raman intensity
I, (w) for GeO, derived from the data of Fig. 2 and
using Eq. (13). We see that /,(w) is essentially zero

RAMAN INTENSITY — SOLID LINES

DENSITY OF STATES — DASHED LINES

NORMALIZED FREQUENCY SQUARED (c? — w_2)/W?

FIG. 3. Calculated densities of states (— ——) and polar-
ized Raman spectra (——) from Eq. (19) and the first term
in Eq. (20). The spectrum is given as a function of w? for
various values of the broadening o. We see that even for
large o, on the order of the bandwidth, the Raman peak is
still clearly distinct from the peak in the density of states.
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Polarized Raman
Experiment

~ = — Theory

Density of States
o E xperiment
=+ = Theory

Intensity (arbitrary units)

500 1000
Frequency (cm™1)

FIG. 4. Polarized Raman spectrum of GeO, from the
data given in Fig. 2 compared with the shape predicted by
the present theoretical calculations with parameters
described after Eq. (23). We also show the theoretical den-
sity of states compared to a portion of the experimental den-
sity of states given in Fig. 2.

everywhere except in the band of modes identified as
SS and we see that it has a peaked, asymmetrically
broadened form. We also give a portion of the densi-
ty of states from Fig. 2(c) to show clearly the differ-
ence between the polarized scattering and the density
of states. The dotted line in Fig. 4 is the result of
our calculations with a band centered at wo= 540
cm™!, with W =313 cm™! so that the lower edge is at
440-cm™', and with a broadening o =0.5W?, chosen
to fit the observed Raman peak. Here we have set
da™=0. We see that the theoretical results describe
the observed spectrum very well while also giving a
reasonable facsimile of the observed density of states.
The experimental Raman spectrum exceeds the
predicted spectrum in the region of the band, and is
in qualitative agreement with the second term of Eq.
(20) which gives the scattering due to random electri-
cal disorder 8a™. The present results can also be
compared with a-SiO,,? where there is also a strong
polarized Raman peak. In that case, however, other
bond-bending modes occur in the same frequency
range broadening the Raman peak and obscuring the
relation to the band edge.

The magnitude of the random forces may be com-
pared with that from accountable sources. Since the
effective self-force constant K; ~ K, (1 +cos8), a
variation in the 4-X-A4 angle 0 causes a fluctuation
dK”/dB -~ 2.3K”. Thus

(dK})YV2 /Ky = o/w}~0.5(313/440)2~ 0.25

would be given by a variation in 8 with (d6?)'?
=0.25/2.3 ~0.1 rad ~ 6 deg, which is a reason-
able variation. Alternatively, such fluctuations

could be caused by angular forces as described above,
where we showed qualitatively that random dihedral
angles would give a spread of effective force con-
stants of ~3.2K4/3. Using Galeener’s estimate'® of
K4/K, (B/a in his notation) of ~ 0.1, one finds

(dK})V} Ky~ K 4/K, (1 +cosp) ~0.3 .

These estimates show that the value of o chosen in
our model calculations is physically reasonable.

We have shown in Sec. III that differences in the
depolarized spectrum from the density of states
would be evidence for angular correlations in the
glass. However, the depolarized spectrum for GeO,
shown in Fig. 2(a) mimics the total density of states
as was discussed in Sec. II. This indicates that in
GeO, the assumption of a random network is in qual-
itative agreement with the Raman data.

V. OTHER SYSTEMS: PHONONS AND ELECTRONS

Our general results apply also to networks with
different local order. Of particular note is P,Os
which consists of a pyramidal P with one strongly
bound isolated O neighbor and three O neighbors
which bridge to other P atoms.! Experiment shows
two strong polarized Raman peaks.? Galeener and
Mikkelsen® show that the lower peak is the sym-
metric in-phase motion of all the bridging atoms with
the corresponding opposite symmetric displacement
of the P=0 units. This is a band edge for symmetric
stretching vibrations, as shown in the recent work of
Thorpe and Galeener,? analogous to that in the AX,
glasses. Exactly the same analysis applies also to
As,0;-type glasses where a P=0 unit is replaced by
an As. This suggests that the strong highly peaked
polarized Raman mode in As,0j is also caused by
correlated symmetric motions and is associated with a
band edge, essentially as described in Ref. 7.

Another case in which the experimental results
show clearly a striking difference between palarized
Raman and the density of states is amorphous
As.'"12 The HV Raman spectrum is essentially
identical to the density of states!' and the HH spec-
trum looks like a sum of a term proportional to the
density of states and a very sharp additional peak at
the band edge. The additional peak is more intense
and sharper in annealed bulk glasses than in sput-
tered films.!""!?2 This is the behavior predicted by Eq.
(20) if the quantitative disorder is smaller in the bulk
glass. Numerical calculations*® have been carried out
for amorphous As, however, the nature of the modes
is not given. It is plausible, but not proved, that the
lower band edge corresponds to the in-phase As sym-
metric stretching mode just as is the case in tétra-
hedral 4X, and pyramidal 4,X; glasses. Amorphous
P also has an apparently analogous polarized peak,'
and in addition has a richer structure in polarized and
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depolarized spectra, suggesting greater intermediate-
range order than in a-As.

An interesting prediction for electronic states in
glasses can be made following the arguments above.
The counterpart of the symmetric vibrational modes
are the symmetric s electronic states. Indeed, Sen
and Thorpe derived their results for 4X, vibrational
modes by the equivalence to s and p electron
states? % in a tetrahedral amorphous semiconductor
such as a-Si. The bottom of the SS vibrational band
corresponds exactly to the bottom of the s electronic
band in a-Si. The experiment which can probe corre-
lated electronic states in a way similar to the manner
in which polarized Raman probes the vibrational
states is angular-resolved photoemission with the en-
ergy analyzers set to accept only k = 0 electrons.
Then the observed spectrum is the imaginary part of
the one-electron Green’s function'> %3 summed
over all atoms
-

ik(R,~R ,) +
Gk(w)=ze ! ((b’ ;b,’>)a) , (24)

un

where b,T is an electron creation operator at site /.

All the arguments used in Sec. IV apply here also and
the spectrum will be weighted toward the band edge
exactly as in Fig. 3. Since the bandwidth?’ for the s-
like states is of order 5 eV in a-Si, the shift in the
spectrum should be clearly visible. For large k, how-
ever, the photoemission spectrum should be close to
the density of states. The counterpart of Raman
selection rules is that the electron velocity should be
parallel to the photon electric polarization to see this

spectral signature. In the perpendicular geometry our
results predict a spectrum close to the density of
states. To our knowledge no theoretical suggestions
or experimental tests of interesting angular-dependent
photoemission spectra have been given previously.

In conclusion, we have shown that polarized Ra-
man scattering plays a special role in glasses and is
sensitive to correlations in the motion of nearby
atoms. The central force model of Sen and Thorpe?’
for AX, glasses lends itself to an analytic form for the
correlated motion taking into account the topological
disorder. It predicts that the polarized Raman peak is
associated with an edge of a band of vibrational
states, in full agreement with experimental results on
Ge0,. The depolarized scattering on the other hand
is shown to mimic the density of states unless there
is strong angular correlation between nearby bonds,
i.e., well-defined intermediate-range order. Much
evidence indicates that the same features hold in
many other glasses. By using the mapping of the
model to electronic states,”’~2’ we use the same
results to predict structure in angular-resolved pho-
toemission from a-Si and similar disordered materials.
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