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Mass-ratio dependence and critical binding of exciton-ionized donor complex in polar crystals

Piotr Petelenz
Department of Theoretical Chemistry, Jagiellonian University, 30-060 Cracou, Karasia 3, Poland

Vedene H. Smith, Jr.
Department ofChemistry, gtteen s University, Kingston, Ontario K7L 3N6, Canada

(Received 15 October 1979j

The dependence of the binding energy of an exciton-ionized donor complex on the electron-to-hole mass ratio is

investigated. Recently published forms of the electron-hole interaction potential including the interaction via the

phonon field are used. The calculations are performed for a few typical sets of parameters characterizing the

coupling of the charges with the phonon field. The results indicate that the highly accurate estimates of the critical
mass ratio obtained for the Coulomb form of the electron-hole interaction potential are inapplicable for most typical
crystals, suffering from an inherent error due to the neglect of the exponential screening due to polarization. For
crystals where the electron-phonon interaction is strong, the mass-ratio dependence of the binding energy is found to
differ from the Coulomb-like behavior even in the most general qualitative features.

1NTRODUCTION

It is well known that the binding energy of the
Wannier exciton-ionized donor complex strongly
depends on the ratio 0 of the electron mass to
the hole mass. ' The binding energy is supposed
to decrease monotonicly with increasing mass
ratio, such that at some cirtical value 0, the
complex becomes unbound. Such an expectation
is based on the use of the Hellmann-Feymman
theorem

d a(o) dH 1
do' do 2

=--&P'„) -0

where A=E&- E, E is the complex ground-state
energy, E& is the neutral-donor ground-state
energy, H is the Hamiltonian of the complex, PI,
is the hole momentum operator, and the average
is taken with respect to the true ground-state
wave function. However, Eq. (1) is valid as long
as the only 0'-dependent term in the Hamiltonian
is the hole kinetic energy, i.e., when the poten-
tial energy does not depend on particle masses.
This holds true for the Coulomb interaction
potentials, where the best calculated value of
o, is &, =0.454 (Refs. 1 and 2) (obtained by extra-
polation). Actually, the interaction potentials in
polar crystals differ from the Coulomb potential.
This is due to the indirect interaction via the
phonon field. The charges are accompanied by
clouds of virtual phonons (lattice distortion) and

can interact via the clouds.
There are a few alternative approximate ex-

pressions for the effective interaction potentials.
In test calculations of the exciton-ionized donor
complex in a few crystals none of them appeared
to be generally superior to the others, ' ' but all
of them are similar in containing some exponen-

tial terms which depend on particle masses, in-
validating the argument based on Eq. (1). The
deviations from the Coulomb-like behavior may
be particularly important for crystals where the
electron-phonon coupling is strong. ' In such
cases the analysis based on the results obtained
for the Coulomb potential may be seriously in
error.

The objective of this paper is to present the
results of calculations of the binding energy of
exciton-ionized donor complex, depending on
the mass ratio 0'. We use the best available
electron-hole interaction potentials derived
recently with inclusion of the screening by the
phonon field. These are the Pollmann-Buttner'
(PB) and Aldrich-Bajaj' (AB) potentials. Both
of these potentials are very successful in re-
producing the complex binding energies, and it
depends on the specific crystal under considera-
tion, as to which potential is better. This sug-
gests, in principle, that the calculations should
be performed for both forms of the potential.
However, we will focus our attention on the
Pollmann-Buttner potential. '

In the case of purely Coulomb interactions, the
eigenvalue problem is fully defined (in terms of
the dimensionless Hamiltonian denoted in atomic
units) by the mass ratio &. In other words, o is
the only relevant material constant. When the
interaction via the phonon field is included, some
additional (dimensionless) material constants
characterizing the coupling with phonons have to
be considered in order that the eigenvalue pro-
blem be properly defined. For the PB potential,
there are only two additional parameters neces-
sary, while the AB potential requires three
independent parameters (Sec. 2). Since the re-
sults depend on these additional parameters, the
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In the effective mass approximation, the Ham-
iltonian of the exciton-ionized donor complex
reads

H= ——,(b, , + g»», , ) ——+ —+ V(r),
1 1

1 2
(2)

where r„r2 and r denote the donor-electron,
donor-hole and electron-hole distances, res-
pectively. P =m,*/mf is the ratio of (observed)
polaron masses of the electron and the hole. The
Hamiltonian (2) is expressed in energy (m,*e'/
e', &') and length (e,k'/m, *e') atomic units, where
e, is the static dielectric constant and m, is the
electron effective mass (polaron snass).

Of the forms proposed for the effective electron-
hole interaction, we found in our previous works
the following two potentials to be particularly
successful in reproducing the complex binding
energy.

1. The Pollmann and Buttner potential6

K 1+0' f»:r ](r
V», »»

= V„+— (e» —e "2 )2r 1-0' t (3)

where

V„=-———(e +e 2 )
1 K
r 2r

m
0 8
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K= e, (l/e „—1/e, ),

(5)

increased number of parameters would require
more cases to be investigated, resulting in
excessive computational effort as well as ex-
ceedingly voluminous results of, as will be
argued in the discussion, questionable usefulness.
This makes the PB potential more suitable for a
detailed study than the AB potential.

%'e have also performed some sample calcula-
tions for the AB potential. Fortunately, it turned
out that the general conclusions are similar for
both potentials, and that the quantitative differ-
ences between the corresponding results are of
only secondary physical interest. This statement
will be substantiated in the discussion (Sec. 5).
Consequently, we confined the results explicitly
presented in this paper to those obtained for the
PB potential, which is more transparent and, at
the same time, does not deprive the reader of
any physically significant material.

The paper is organized as follows. In Sec. 2

we present the Hamiltonian and, in particular,
the interaction potentials to be considered. In

Sec. 3 a brief outline of our computational method
is given, while in Secs. 4 and 5, the results-are
presented and discussed.

THE HAMILTONIAN

where

1 2

r» = {1+a» /[4 (1+ a» /12)') }(1+ a» /12),

(10)

2Q

EpA (d

m*e48
(12)

0 is the LO phonon vibrational frequency ex-
pressed in atomic units. For the AB potential
the polaron masses are calculated from the Haga
formula'

m»*=m» (1+ a» /12) /(1 —a» /12) . (13)

Therefore, for the AB potential, g & and f has
to be calculated from the polaron masses of
Eq. (13).

The Hamiltonian (2) was derived by Mahler and
Schroder" for the Haken potential V„(r). They
started from the Frohlich-type Hamiltonian in-
volving explicitly the phonon-field operators.
The phonon-donor coupling was removed in the
exact way by means of the transformation pro-
posed by Platzmann. " Next, the phonon-field
operators were approximately eliminated by
means of the intermediate coupling variational
treatment, as originally developed by Haken. "

A derivation entirely analogous to that presented
by Mahler and Schroder is possible also for the
AB potential. For the PB potential where the
variational ansatz is not based on free-polaron
wave functions, Eq. (2) may be derived by means
of the treatment used for the biexciton. " The
Hamiltonian (2) is recovered from the biexciton
Hamiltonian by setting the appropriate coupling
constants equal to zero, and performing the

8

K =Ko 'i'

»d is the frequency of longitudinal optical (LO)
phonons, E„ is the optical dielectric constant,
and m, and m„are the band (in distinction to
polaron) masses of the electron and the hole.
For the PB potential the polaron masses are set
equaI to the band masses' and identified with those
observed experimentally, so that in Eq. (2), g =o'.

1/K» is the electron-polaron radius and 1/»», is
the hole-polaron radius, expressed in atomic
units.

2. The Aldrich-Bajaj potential
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4(r„r», r) = C»4» (a», P», y» r r» r),
=1

(14)

p» =(4~) 'exp( —~»r, —P»r» —y»r),
for the complex, and

P» =(4w) 'exp( —y»r)

(15)

(16)

for the free-exciton. (The calculations for the
exciton are performed in the exciton center-of-
mass reference frame. ) We choose I. =20 for
the complex and L =6 for the exciton. The linear
parameters C~ are found by solving the secular
equation while u&, P», and y~ are nonlinear
parameters chosen to be the lattice points of a
three- (one-) dimensional quadrature formula.
They are subject to some constraints so that the
theory be physically acceptable and all necessary
integrals exist." The actual values of the non-
linear parameters are pseudorandom numbers
generated according to the formulas

Platzmann' transformation prior to the varia-
tional procedure.

The PB potential is fully characterized by
three dimensionless parameters: electron-pola, —

ron radius K y, effective dielectric constant E,
and mass ratio &. The AB potential is fully de-
fined by four parameters: electron-polaron
radius K„effective dielectric constant E, band
mass ratio o', and vibrational frequency Q. The
AB potential would therefore require a much
larger computationa, l effort to cover the same
range of physically possible cases. Since neither
potential is remarkably superior to the other, the
PB potentia, l is therefore much better suited for
our purposes. Hence, we will investigate in some
detail the PB potential and only occasionally refer
to our results for the AB potential. It should be
noted, however, that the general qualitative con-
clusions are for both potentials similar.

3. Computational method

As in our previous papers, ' ' we use the in-
tegral transform (generator coordinate) method
which in our particular formulation is equivalent
to a variational treatment with the ansatz

define the bounda. ries of a pa, rallelotope in the
space of the parameters a, P, y. Further details
of the method canbe found elsewhere(Refs. 3and 13).

4. Results

The dependence of the complex- and free-exciton
ground-state energies on the electron-to-hole
mass ratio 0' is shown in Figs. 1 a.nd 2. The ex-
citon energy (dash-dot lines) is included only in
the cases where it exceeds the neutral-donor
ground-state energy (0.5 a.u. ), i.e., when the
actual complex binding energy should be referred
to the exciton rather than to the donor.

The plot in Fig. 1, obtained for K=0.6546, g=
1.08, represents a, typical situation for a CdS-
type crystal (co=8.6V, e „=5.24'). The other
plots of Fig. 1 show the dependence on pola, ron
radius. For K = 3.24 the exponential part of the
potential has a very short range such that the
potential is practically Coulombic. The value of
&, is in agreement with the estimate of Skettrup
et al."for the Coulomb potential, i.e., c, =0.426.
(The value of Ref. 14 was obtained directly from
the calculation of the binding energy, and not by
extrapolation as was done in Ref. 2. As we do
not use any extrapolation either, the estimate of
Ref. 14 is the most natural reference point for
our calculations and it is not surprising that the
results agree. ) When the coupling with phonons
is stronger and the range of the exponentia. l term
in the potential is longer, the critical value in-
crea, ses, and for w =2.16, cr, is close to 0.46,
but the overall appearance of the plot remains
similar. For & =1.08, the critical value is &, =

0.618, which differs remarkably from the Cou-
lombic value. The shape of the curve changes
too. However, the most striking change is ob-
served in the exciton binding energy which, for

0.6-

n» =[(A, -A, )(»k(k+1) v 2 )+A,], 0,55--

p» =((&,-&,)(»k(k+ 1) v 3 ) +B,], (18)

y =[(G, —G,)(—,'k(k+1) ~5)+G,], (18}

where (x) denotes the fractional part of x.

The true variational nonlinear parameters of
the method of 4

y + 2 +
yp +2p G

y and G» which

0.5 I 1

0 0.2 0.4 0.6 0'

FIG. 1. Dependence of the complex and exciton (-E
& 0.5 a.u. ) ground-state energy on electron-to-hole mass
ratio 0 for K= 0.6546 and different values of v. A11 en-
ergies are expressed in a.u.
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FIG. 2. Dependence of the complex and exciton (-E
&0.5 a.u.) ground-state energy on electron-to-hole mass
ratio g for X=6.3725 and different values of z. All en-
ergies are expressed in a.u.

some range of e values, exceeds the donor ground-
state binding energy. The result is that in this
range the complex is more likely (in terms of
required energy) to decay into the free-exciton
and ionized donor than into the ionized donor and
free-hole. Consequently, the true complex binding
energy should be calculated with respect to the
exciton, not to the neutral donor. This behavior
is drastically different from the case of the
Coulomb potential.

We did not extend our calculations for the values
of & smaller than 1. In fact, the PB potential was
derived in the limit & -~.' Although in the CdS
crystal this condition is not fulfilled, the potential
had been found to be relatively successful also in
this case and turned out to be one of the best
potentials available. This has encouraged us to
proceed with the study of the mass-ratio depen-
dence for the corresponding value of' c, but
would not justify the application of the potential
for ~&1.

Theplotof Fig. 2, obtainedfor K=6.3725[a,=37.6,
c„=5.1 (Ref. 15)], ~ = 2.5672, represents atypical
situation for a TICl-type crystal where the elec-
tron-phonon coupling is particularly strong. The
e dependence is in this case very unusual. The
complex binding energy is an increasing, not a
decreasing function of o. Therefore, there is no
critical value of the mass ratio for binding with
respect to the neutral donor, which is the stan-
dard and most natural definition of the binding
energy for the Coulomb potential. Since, how-
ever, the exciton energy is increasing more
strongly with increasing o, there is a point where
the E(o) curve crosses the E'" (o) curve. Con-
sequently, there is some critical value above

which the complex is no longer stable against
decay into the free-exciton and ionized donor.
Interestingly, this critical value (o, =0.07) is
much smaller thm o', for the Coulomb potentials,
corresponding to the decay into the neutral donor
and free-hole.

We have investigated the dependence of the
shape of the E(o) curve on polaron radius. For
I(.'&2.5672 the plot is essentially similar, but much
steeper, and o, shifts to smaller values (for a =

1.75, a', &0.05). For z&2.5672, the slope of the
curve is smaller, and N, is larger; for x=3.56'V2,

0, = 0.13. The shape of the curve also changes.
For a still shorter range of the exponential

correction in the potential (tc =4.5672), the change
of the shape is even more striking. The behavior
for larger o' already resembles that for the Cou-
lomb potential, i.e., the function decreases with
increasing +. Although the critical value of the
mass ratio is large (o, = 0.7), the exciton binding

energy in the critical region is smaller than the
donor binding energy and the stability of the com-
plex should again be referred to the neutral donor.
However, the dependence for small v is still
erratic. It passes through a minimum and a
maximum, i.e., it is not even monotonic. The
Coulomb-like behavior is found for z =5.5672,
although o, = 0.5 still slightly exceeds the Coulomb
value.

We have performed a set of calculations for the
AB potential. The results differed from those
obtained for the PB potential in the actual values
of the binding energies, and consequently in the
values of o, which were generally smaller. The
overall appearance of the curves was, however,
very similar to that obtained for the PB potential.

5. Discussion

The results presented above indicate, for the
first thing, that the conclusions drawn for the
Coulomb potential are not directly transferable
to more realistic potentials, i.e., to the poten-
tials actually operative between charged particles
in polar solids. Interestingly, not only the values
of the binding energies and critical values of the
mass ratio are changed, but also the most general
features of the & dependence of the binding ener-
gies are affected. In particular, the argument
based on the Hellmann-Feynman theorem for the
Coulomb potential and (presumably) small de-
viations from the Coulombic behavior turns out
to be invalid, since the deviations may actually
be considerable, and for some (rather realistic)
parameter sets E(o) is not even a monotonic
function. Qualitatively, this was to be expected,
and a correct form of expression for d6(o)/d'o
for the PB and AB potentials might be derived
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via the Hellmann-Feynman theorem. The final
expression being, however, no longer positive
definite, its utility would be very limited, since
its application would necessitate the knowledge
of the actual ground-state wave function which
is different for each value of v.

For the Coulomb potential the E(o') dependence
was universal in the sense that no parameters
other than 0' were necessary to determine the
binding energy O.nce the E(o') function was
calculated, and granted the value of & for a given
crystal, the complex binding energy (for the
Coulomb potential) was unambiguously determined
from the plot. This was particularly useful in
interpreting new experimental data, as no new
computations were then necessary.

Unfortunately, this is no longer true for more
realistic interaction potentials where at least two
more (in the case of the PB potential) material
constants are necessary. In order to provide a
tool of comparable versatility, we would have to
produce a set of E(&) plots for an enormous
number of parameter sets to make the inter-
polation between different parameter sets mean-
ingful. The results would be extremely volumin-
ous and hardly accessible. Owing to the wide-
spread accessibility of computers, the same
objective can be achieved for much smaller effort
(also computational} by calculating the complex
binding energy just when the need arises for a
given crystal (i.e., for one parameter set) in-
stead of calculating it in advance for many (some
useful, some unnecessary) parameter sets. This
conclusion is valid for the PB as well as AB
potentials, since both yield qualitatively similar
erratic E(o') plots. This situation is currently
rather typical; the tabulation of the functions of

many variables becomes less popular, being re-
placed by routine computer programs.

The quantitative differences between the results
obtained for the AB and PB potentials suggest that
for each crystal of interest such calculations
should be repeated for both forms of the potential
which agrees with our previous conclusions. ' '
We hope that the future development in the theory
of electron-hole interaction potentials will pro-
duce some other, more generally successful,
form of the potential.

As was already pointed out, the critical value
&, is not universal but depends on the values of
a few parameters, and also on the detailed form
of the interaction potential. It is therefore rather
pointless to spend too much effort on estimating
the critical mass ratio for any set of parameters.
This motivated the fact that we did not attempt to
approach the accuracy of Refs. 2 and 14 in esti-
mating o„except for a sample case K=0.6546,
a = 1.08.

The critical mass ratio is (for not too large ~}
sensitive enough to the changes of parameters to
differ for reasonable parameter sets at least by
0.01 from the Coulomb-like estimate. This
should be reckoned the inherent error due to the
limitations of the Coulomb model in a polar
solid. The more elaborate attempts to surpass
the accuracy of this order for the Coulomb inter-
action potential are therefore of rather academic
interest and from the physical point of view seem
futile.
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