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Rigorous bounds are derived for the bulk effective complex dielectric constant K, of a two-component composite
medium in two cases: (a) when only the complex dielectric constants of the two components are known and (b) when,
in addition to that, also the volume fractions are known. The bounds have a very simple geometric representation in
the complex K, plane. From these bounds, some useful conclusions are drawn with respect to measured values of

these constants in various types of composites.

I. INTRODUCTION

The existence of rigorous bounds on the possible
values of the effective bulk dielectric constant ¢,
of a composite material (i.e., a macroscopically
inhomogeneous material) was recognized long
ago.! Over the years various types of bounds
have been found, based on different types of infor-
mation that is available about the microscopic
geometry of the composite. While much of this
material is summarized in Beran’s book,* I
would also draw special attention to the work of
Hashin and Shtrikman,® Prager,* and Bergman.*’
All of these treatments derived bounds for the case
when all of the dielectric constants in the problem
were real and positive. Because the problem of
calculating the effective bulk electrical conductivi-
ty, thermal conductivity, diffusivity, or magnetic
permeability is identical mathematically to the
problem of finding ¢,, these treatments lead of

course to similar bounds for all of these quantities.

All of these bounds are again confined to the case
where all the material constants in the problem
are real and positive.

Bounds on the dielectric constant for the case
when the components are lossy, i.e., when the di-
electric constants are complex, have been de-
rived by Shulgasser and Hashin® who considered
a two-component composite of low-loss dielec-
trics. A more general discussion of bounds of
lossy composite dielectrics has been given by
Shulgasser in his thesis.® That discussion is
based on a variational principle, and the results
are in the form of separate bounds on the real and
imaginary parts of the complex bulk effective di-
electric constant K,. In this context I should also
mention some bounds on the complex material con-
stants of viscoelastic composites, which were de-
rived by Christensen'® and by Roscoe.!!

In this article I derive two sets of exact bounds
on K, for a two-component composite where both
components have complex dielectric constants K,
K,. These bounds which, to the best of my know -
ledge, have not been known previously, have the
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form of a restricted region in the complex plane
in which K, must lie. This means that for each
value of Im K,, one usually obtains a different pair
of bounds on Re K,, and vice versa. Because
these bounds are exact, they involve no assump-
tions about the composite other than that the di-
electric properties of each component are fully
described by its dielectric constant, and that sur-
face or interface effects (such as tunneling or sur-
face conductivity) are unimportant.

I obtain one set of bounds for the case where K,
and K, are known, but no other information is
available about the composite. Another improved
set of bounds is obtained for the case when the vol-
ume fractions p,, p, of the two components are also
known. I derive explicit expressions for these
bounds, and I also show that they have a very sim-
ple and beautiful geometrical representation in the
complex plane, which enables them to be con-
structed on graph paper simply by the use of a
ruler and compass!

The outline of the rest of this article is as fol -
lows: In Sec. II I derive the first set of bounds
by using a method similar to Roscoe’s method.™
In Sec. III.I employ a more advanced method for
finding bounds that is due to Bergman.” In this
way I rederive the first bounds and also get the
improved bounds. Both sets of bounds are ob-
tained in a modified representation of K, which is
especially convenient both for the derivation pro-
cess and for the representation of the final results.
In Sec. IV I discuss possible applications of these
bounds as well as extensions and improvements.
Consequences that follow from the bounds for
some measured properties of composite materials
are also discussed.

II. SIMPLE BOUND BY ELEMENTARY METHOD

In this section, I derive rigorous bounds on the
bulk complex dielectric constant of a two-compo-
nent composite material, both components having
isotropic electrical properties, when all that is
known are the corresponding constants of each

3058 © 1981 The American Physical Society



23 BOUNDS FOR THE COMPLEX DIELECTRIC CONSTANT OF A... 3059

component. The method used is due to Roscoe,
and it has the advantage of yielding not only the
bounds themselves, but also the special micro-
scopic geometries for which these bounds are at-
tained.

The dielectric constant of each component can
have an imaginary part at nonzero frequencies
either due to dielectric losses, or due to the
presence of a nonzero dc conductivity 0. In the
latter case, assuming that all electromagnetic
fields have a time dependence e™*“*, we can write
the complex dielectric constant in the form

K=€¢—-—. (2. 1)
iw
Whatever the cause of the complex nature of K,
its precise value will vary from point to point,
fluctuating between the two allowed values K, K,.
We can make this spatial dependence explicit with
the help of the step functions 6,(F), 6,(F):

K(¥)= 2, K0,(%), (2.2)
j=1,2
where 6,(T) is 1 if T is in the volume of component
7, and O otherwise.
Using a bracket notation to denote volume aver-
ages

<A>51VfA(?)d“r, 2.3)

we can define the bulk effective complex dielectric
constant of the composite K, by

K(E)=(KE), 2.4)

where E(¥) is the electric field. Using the fact
that E = —-V¢ is the gradient of a scalar potential
(this means that the frequency w must be small
enough so that we may use the static limit of Max-
well’s equations), we can show that K, also satis-
fies the following equation:

K, (BEx) «(E)=(KE*-E). (2.5)

This is shown by successive volume-to-surface
and surface-to-volume transformations of the
right-hand side of this equation, which change it
to the right-hand side of Eq. (2.4) multiplied by
(E*).
Writing K; in the form
n;=K;+iK/, j=1,2,e (2.6)

where Kj, K are both real, we now separate Eq.
(2.5) into two real equations as

K E*) (B)=(k' B* - E),
KP(E*) () =(K"Bx-B).

2.7

We then choose # and v to be solutions of the two

equations

uK)+vKr=1, j=1,2 (2.8)
so that

@K, + oKy E*) (B) =(E*-E). (2.9)
Since we must always have

(Ex) «(E) <(E*E), 2.10)
we now obtain our first bound

uK!+vK!>1. (2.11)

In order to determine for what kind of microgeom-
etry the equality sign holds, we note that equality
in Eq. (2.10) will only hold if E(¥) is everywhere
independent of ¥. From the basic equation VK E
=0 we now obtain E + VK=0 for this case. From
Eq. (2.2) we see that VK is nonzero only at the
K,, K, boundary, and that it is always directed
perpendicular to that boundary. Thus, for equality
to hold in Eq. (2.11) the boundary between the K,
and K, components must everywhere be parallel
to the constant direction of E’., The two components
are then arranged in cylinders which are parallel
to the field direction.

In order to find the other bound, we consider

the complex displacement field
D(F)=KE, (2.12)

which for a conductor is proportional to the sum
of conduction and displacement currents:

K‘E’=_fll<a-i—‘"ﬁ)§. (2.13)

iw 47

In terms of D, Egs. (2.4) and (2.5) become
(D) _<§
K, \K/’

) -5

*\K K[/~ \ K* )

Combining these equations, and taking the complex
conjugate, we finally obtain

1 - e D*+D
—_— *) o =(=—=).
7 @3 =(52)
As before, this equation can be separated into real

and imaginary parts. Choosing #’ and v’ to be
solutions of the equations

(2.14)

(2.15)

1 1
’ — ! —_—— j =
uReKj v ImK! 1, j=1,2 (2.16)
we now get
(u'Re—l-—v’Im——-1 (D (D)= (D* D)
K, K, - (2.
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FIG. 1. (a) Graphic representation of bounds in the o,
we/4mplane. The straight line is the bound of equations
(2.8) and (2.11). The circle is the bound of equations
(2.16) and (2.19). The hatched area is the region where
the bulk effective constants must lie. (b) Same as (a)
but for the special case when oy =0 and 0y >> wey/47 and
03> we /4T It is clear that in this case €, can be much
greater than both € and e,.

Noting that
(B*) «(B) < (D* D), (2.18)

we now find our second inequality
1 w'K,+v'K}

1
’ —_— ! e ¢
u ReK v ImK‘ &)+ (&)

=1, (2.19)

In order to find the microgeometry that corre-
sponds to the equality sign, we note that D(F)
must be independent of position. From the fact
that V x E =0 (static limit) we now find

vxI-E:—Dx§?=O. (2.20)

By Eq. (2.2) the vector quantity V(1/K) is again
nonzero only at the K, K, boundary, and is always

perpendicular to that boundary. Therefore, equal-
ity will hold in Eq. (2.19) only if that boundary is
everywhere perpendicular to the constant direction
of D. Thisisa microgeometry where the two
components are in the form of flat, parallel slabs
perpendicular to the field direction.

The bounds described by Eqs. (2.11) and (2.19)
have a very simple geometrical interpretation in
the complex K plane. This is shown graphically
in Fig. 1(a), where we have assumed a purely real
€ and a purely real o, and the axes correspond to
the real and imaginary parts of the complex con-
ductivity

-%%K:o-%. (2.21)
In such a plot, each component is represented by
a point, as is the mixture. The first bound [Eq.
(2.11)] means that the mixture point and the origin
must lie on opposite sides of the straight line de-
fined by the two component points. The second
bound [Eq. (2.19)] requires that the mixture point
lie inside the circle passing through the two-com-
ponent points and the origin. The straight line is

reached in the parallel cylinders microgeometry,

while the circle is reached in the parallel slab
microgeometry.

I1II. ADVANCED METHOD AND IMPROVED
BOUNDS
In this section we will use several different
spectral representations for the function K, (K, K,)
as follows:

SEK:?KI ’ tEKIIiIKZ =1-s,

Fos =T

G(t)El—g—z: ] t‘%;—, (3.1)
w0=1-2= Ty

E(s)al—g—:= 3 s?(:"

The poles S,, Sy, ta=1-S4, [,=1-5,, and the
residues A,, B,, C,, D, in these equations are all
real, and are between 0 and 1. Moreover, the
sum of the residues is equal to one of the volume
fractions

Z Bazz Ca:pl’
EAa:z:'Da =p,=1-p;.

(3.2)
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The representations of Eq. (3.1) were derived
and discussed in Ref. 7. The function F(s) is de-
fined in Eq. (4.2) of Ref. 7, while H(t) is named
&(t) and defined in Eq. (4.29) of that reference.
Alternatively the properties of H(¢) may be found
from the properties of F(s) by the following con-
siderations: For Ims# 0 we always have Im F+0.
Therefore F(s)=1 only on the real axis. Further-
more, this can occur only for 0 <s <1, since for
other real values of s (which correspond to the
“physical case” K, >0, K,>0) F(s) <1 (because
then also K, >0). The zeros of F(s) -1, one of
which is found between every two neighboring poles
of F(s), are denoted by §_, and they lead to the
poles of H(t) at {,=1 —§,. The values of f, are
thus all real, and also lie between 0 and 1. The
zeros of F(s) are all simple, and the derivative
satisfies F'(5,) <0. Hence the residues of H(f)
are all real and positive. Expanding the spectral
representations of F(s) and H(¢) for large s and ¢
we find the following asymptotic expressions for
K,/K,:

K, o, 1

..:.:1_;2:36, 6.9
o 3.

= 1

KK:‘HtEG:C“'

Babs,[(0~5,)* —p?]
[(0 = s5)2+p?]?

0B,(0 - s4)
Re6F=2a ((q S

Im6F 6 Ba
= +
-p Z((W—S.u)“fp2

2B,0s4(0 -5s,)
[(o = s)?+p*] ) ’

From the fact that £ = —s, we finally get 7 C,
=)3aB,, SO that the sum rule for F(s) engenders
a similar sum rule for H(f), and we also get that
0<C,<1.

The remaining functions, G(t) and E(s), are ob-
tained from F(s) and H(¢), respectively, by switch-
ing the roles of the two components K, and K,, and
the same is true for their spectral representations
and sum rules. We note that the poles and the
residues in all of these expansions are determined
entirely by the microscopic geometry of the com-
posite. The physical or material properties of the
components, i.e., the values of K, and K,, enter
only through the variable s or #. It was shown in
Ref. 7 that by treating the positions and residues
of the poles as adjustable parameters, rigorous
bounds of various types could very easily be de-
rived. We will adopt this method here.

In order to implement it, we need to calculate
the first variation of Re F and of Im F when s, and
B, are changed by small amounts &s,,, 6B,. Rep-
resenting the complex variable s by its real and
imaginary parts

s=0+ip, (3.4)

we thus get
(3.5)
(3.6)

We will now treat ImF(s) as if it were given, thus constituting a constraint on the possible variations
8s,, 6B,, when we attempt to maximize or minimize Re F(s). The constraint is taken into account by us-
ing it to express one of the variations, i.e., 6B,, in terms of the others. This is done by considering an
appropriate combination of Eqs. (3.5) and (3.6), namely,

o-5o — ___Bgds, 0Ba(so —Sa) |, Ba0Sa[(0-5a)(250 -0 -54) - p]
RedF + S ImdF = (© = s P+p? ;((O—Si)z+p2 + [(o—sa)2+p2]2 ) . (3.7)

Because the coefficient of 0s, is negative, we
can increase Re F by taking 6s, <0 until s,=0.
Since we could have chosen s, to be the largest
pole, this leads to a single-pole function as an up-
per bound on Re F, namely,

Re F(s) < Re(—'ig) _9Bo

Toiipt

(3.8)
s

It still remains to determine B,, and this must be
done by solving the constraint equation

B
ImF(s):—af—+°p2. (3.9)

Using B, as determined by this equation, Eq. (3.8)

T
becomes

ReF+%ImFSO. (3.10)

Another inequality can be found by repeating the
entire discussion beginning with Eq. (3.4) for the
function H(¢), and noting that

t=1-s=1-0-ip. (3.11)

In this way we obtain an inequality analogous to
Eq. (3.10), namely

1-0

ReH+—‘—)—ImH$0. (3.12)
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Re F

a

FIG. 2. (a) Drawing of the various bounds derived in this article in the complex F plane. The hatched area between
the circle a and the straight line b denotes the bounds obtained only from knowledge of s. The cross-hatched area en-
closed by both the circles ¢ and d denotes the bounds obtained when py is also known. Note the special points O, A, B,
and C that are marked on the graph which enable all the lines to be constructed geometrically (by a ruler and compass,
if desired). (b) Analogous drawing of the same bound in the o, we/47 plane. Again, the marked special points allow the
bounds to be constructed geometrically. In these coordinates, the expressions for the points are more complicated; so

we give them here as follows:

we
0= (0'2’ T&g) )

we
A= (01, -4—_”1) ,

w
B=(P101+1’2<Tz. s (P1€1+Pz€z)) )
L w 2 w 2 w w 2

C= 0102-<Er> €1€; |(p10a+ pooy)+ E) (01€2+ €409)(p1€&+ pr€1), 7 (O1€2% €102)(P101+ po0y) —| 0102 =\ | €162 | (p1a+ poey)

-1
2

2
X [(m(fz*‘ﬁztft)z* (Z%r) (P1€2+P251)]

points which are sufficient to determine them:

Noting also that
The straight line passes through the origin and

H(t) = F(s) (3.13) also through the point F=1/s. The circle passes
“F(s)-1" through the origin, and through the points F=1/s
and F=1,

These bounds are identical to the ones found in
equality for F(s): the preceding section. To see this we must trans-
form back to the coordinates used in Fig. 1. This
is done by substituting

we immediately obtain from this the following in-

]Flz-ReF+1;°ImFso, (3.14a)
P TWEy LWe
K, %" 4n ‘("" 'F)
which can also be written in the form F(s)=1 —1‘{:‘ = Tk, (3.15)
%" 4g
1 i(o-1)]2%2_1 o-1\?
F(s)_é'-T $Z+(W) : (3. 14b) in Egs. (3.10) and (3. 14).
The method used above to rederive the results
The inequality of Eq. (3.10) restricts F(s) to lie of Sec. II will now be extended to include more in-

on one side of a straight line through the origin, formation about the composite, namely, the vol-
while Eq. (3.14b) restricts F(s) to lie inside a ume fraction p,. Because of Eq. (3.2), this means
circle that also passes through the origin. In Fig. that another constraint is now present on the ele-

2(a) we show these two lines, as well as some mentary variations ds,, 6B,, etc. We use this
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constraint to eliminate one more of these elemen-
tary variations. We can start from equation
(4.10) of Ref. 7, where the constraint Y, B, =p,

has been used to eliminate 8B, from the expres-
J

ReoF + L0 =50 -

sion for 6F, and proceed to eliminate 6s, by taking
an appropriate combination of Re 6F and Im F.

In this way we get, after some algebraic manipula-
tions, the following result:

6B, (s —s4)p*+ (0 -5,)%] 1

a#0

ZB w054[p° + (0 -5 )0 =5)](s,—54) 1

-0
2p(0 - s;) ImF—_Z[(a-—sm)(a—so)—

PP+ p%(20 —s, —5,)° 2(0 - s,)

a#0 [(0=5,)%+p?]? 0-S, "

Taking s, to be the largest pole, and assuming
o>s,, we can increase Re F by taking 6B, <0 for
all a#0. In this way an upper bound on Re F is
found in the form of a singlé -pole function as

RerRe(

B, )_ Bo(o —s,) 3.17)
s =S,

_(O—sa)2+pz *

The values of B, and s, are determined by the two
constraints

p» =5,

(3.18)
Bop
ImF=- G sy
This leads to a quadratic equation for s, whose
solution, recalling the assumption ¢>s,, is

1/2
o-soz(_i%ll%-f) ) (3.19)

From the assumption 0>s,, it also follows that
Re F>0. We can now rewrite Eq. (3.17) as fol-
lows:

_ 2
(ReF)zs(ops° ImF) :—(ImF)z—%ImF,

(3.20a)
or, alternatively
Zpl 1
lF( % (2p>' (3.20p)

(p*+0?)|F|*+(p, —20)Re F +(1/p)[(2 - p,)p°

Again, this inequality is obtained under a certain
assumption about o, namely, 1-o0>t¢, where ¢,
is the largest pole of G(¢). By considering the
function E(s), the same inequality can be derived
for the case when that assumption cannot be satis-
fied, so that Eq. (3.24) is always valid.

Equations (3.20) and (3.24) restrict F(s) to lie
inside two circles. These circles are best char-
acterized by noting some points that they pass
through. The circle of Eq. (3.20) passes through

(3.16)

Sometimes it may be impossible to satisfy the
assumption 0>s,, e.g., when o< 0. In that case,
we repeat the procedure that began with Eq. (3.16)
for the function H(¢). We will now have to assume
1-0>t,=1-sjor o0<sg, where s] is the smallest
value of s for which F(s)=1. In this way we will
get the following inequality

(2;> . 3.21)

Using Eq. (3.13), we immediately regain Eq.
(3.20), which is thus shown to be valid without any
restriction on o.

Another inequality is obtained by applying the
above procedure to the function G(¢). In that case

we obtain
(2:’) , (3.22)

where p, now appears in place of p, that appeared
in previous inequalities. This is due to the fact
that the two components have now switched roles.
If we substitute the following relation

by

|H(t)—2p

l G(t) - 74’2
2p

1 -sF(s)

- (3.23)

G(t) =

into Eq. (3.22) we find, after some manipulations,
the following inequality for F(s):

—p,0%+p,0]ImF+p,<0. (3.24)

'the origin, through the point F=p,/s, which also
lies on the straight line of Eq. (3.10), and through
the point F=p,/(s —p,), which also lies on the cir-
cle of Eq. (3.14). These two points correspond
to the case of a composite in the form of parallel
cylinders and parallel plates, respectively, for
which the boundary values of F are realized as we
pointed out in Sec. II. The circle of Eq. (3.20)
can also be characterized by noting that its center
is at —4p,/2p, and that it passes through the
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origin. The circle of Eq. (3.24) also passes
through the two points F=p,/s, F=p,/(s - p,), and
through the point 1/s as well. All three circles,
as well as the straight line, are drawn in Fig. 2(a)
which shows clearly the region where F(s) is re-
stricted to lie both when p, is known and when it is
not known.

In order to describe the new bounds in the coor-
dinates o,, we,/4m of Sec. II, we must again use
Eq. (3.15). That transformation is a uniform di-
lation plus a shift of origin, so that circles and
straight lines are transformed into similar ob-
jects. This leads to a very simple geometric
method of constructing the new bounds with the
help of a ruler and compass which is explained in
Fig. 2(b). Note also that the four points OABC
that determine the bounds have a much simpler
form in Fig. 2(a) than they do in Fig. 2(b). This
simplification is one of the benefits of working with
the representation of Eq. (3.1) instead of with the
usual complex dielectric constants.

IV. DISCUSSION, CONCLUSIONS,
AND APPLICATIONS

We have obtained bounds on the values of the
complex bulk dielectric constant of a two-compo-
nent composite material in the form of rigorously
defined regions of the complex plane where these
values must lie. The bounds depend on the infor-
mation that is available. Bounds are obtained even
when only the complex dielectric constants of the
two components are known, but nothing is known
about the microscopic geometry or structure. A
knowledge of the volume fraction already results
in much better bounds.

To obtain these bounds I used a new approach to
the problem of dielectric properties of composites
that is based on a recently achieved detailed under-
standing of the general analytical properties of
K,/K, as a function of K,/K,.” Although the bounds
of Sec. II were first derived by using a simple var-
iational principle, the more powerful methods of
Ref. 7 were essential in leading to the improved
bounds of Sec. II. Hopefully these methods will

also enable us to derive yet better bounds when
more information is available about the composite.

Some important practical or experimental con-
clusions can immediately be obtained from the
bounds I have found:

(a) From the simple bounds of Sec. II (see Fig.
1) it is clear that, when all the component con-
stants are positive, any effective bulk constant
(i.e., either 0, or €,) is always greater than the
smaller of the two individual component constants

0, > min (0;),
fxh 4.1)
€2 min(g,) .
f§=1,2
(b) The upper bound on g, or ¢, is however not so
simple. Clearly either one or both of these con-
stants can be greater than max(c,) or max(e), re-
spectively. For example, in Fig. 1(b) we have
taken the special case

0,=0, we/4m1«<0, fori=1,2 (4.2)

which appropriately describes the situation in
sedimentary rocks saturated with brine. The rock
component is then a good insulator, while the brine
component is a rather good conductor. At frequen-
cies below about 1 MHz the assumptions of Eq.
(4.2) are satisfied. It is evident from the graph-
ical representation of the bounds that we can some-
times expect to observe values of ¢, that are far
greater than either ¢, or €,. Such observations
have in fact been reported. 2

(c) When the volume fractions are known, the
bounds which are obtained can sometimes be a
considerable improvement over the previous
bounds [see Fig. 2(b)]. These bounds may be
turned around so that when ¢, and o, are known,
they yield a bound for the volume fraction p,.
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