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Structures were observed in the angular distribution of helium atoms inelastically scattered by
the graphite (0001) surface; they were clearly identified as bound-state resonance processes
(“*selective adsorption’’) assisted by phonons. To better understand the mechanism of the ine-
lastic process, detailed measurements taken at different incident angles for the structure corre-
sponding to a well-defined resonance are presented. Some unexpected behavior, as the change
of shape and intensity of an inelastic resonance observed at definite incident angles, suggests the
occurrence of multiple resonant transitions between different energy levels of the gas-surface
potential. The experimental data are analyzed theoretically in terms of single-phonon inelastic
processes, on the assumption of a model potential with a time-dependent short-range repulsion
and a stationary long-range attraction. Explicit formulas for inelastic selective adsorption are ob-
tained in the eikonal approximation, assuming a corrugate hard-wall repulsion. Different ways to
go resonantly in a bound state are considered, with or without energy exchange with the sur-
face. The calculated behavior of resonances shows reasonably good agreement with the experi-
mental data on He-graphite. From the angular position of phonon-assisted resonances prelimi-
nary information on the graphite (0001) surface dynamics has been obtained, in agreement with

calculated phonon spectra.

I. INTRODUCTION

The scattering of supersonic beams of light atoms
from crystalline surfaces has reached remarkable in-
terest as a tool for the study of gas-solid interactions
and for the investigation of dynamic properties of
surfaces. The study of elastic diffraction intensities
recently demonstrated the power of this technique
both to observe structural features of clean' 2 or
adsorbate-covered surfaces® and to obtain detailed in-
formations on the gas-surface interaction potential
through the selective adsorption resonances.*™® In
addition, measurements of the inelastic scattering of
thermal atoms with a detailed energy analysis of the
scattered particles hold promise of providing a new
tool for studying the dispersion curves of surface
phonons.”® Time-of-flight spectra can show (and re-
cently showed’) sharp structures in the inelastic
scattering, probably related to discrete surface
modes.'%!!

In addition, structures in the angular distribution of
inelastically scattered particles can be related to ine-
lastic selective adsorption resonances, a process that
was observed in the past.'>”!* The present paper will
report some new experimental results on this process,
obtained for the scattering of He from the basal plane
of graphite. A theoretical description will also be
presented, in which the effects of resonances on the
inelastic scattering are taken into account, in the

single-phonon approximation.

When an atom of mass M and incident momentum
Ko= (Ko,koz) collides with a periodic surface, the
kinematic conditions for an inelastic process involv-
ing the creation of one phonon are

kK =k —2M o,k (1.1)
Ke=Ky+G-Q , (1.2)

where G is a surface reciprocal-lattice vector and the
created phonon has a parallel momentum (3 and an-
gular frequency w, [for annihilation processes the
sign of both Q and w, in Egs. (1.1) and (1.2) must
be reversed].

A selective adsorption resonance occurs whenever

—

a closed channel N exists, for which
szz =k2—-K,\%’:2Mej/ﬁ2 , (1.3)

€; being an energy level of the gas-surface averaged
potential V. The resonance condition (1.3) can be
fulfilled in a purely elastic way, when

IMen/i*=k¢ — (Ko +N)?=2Me;/k? ,  (1.4)
ey being the energy of the perpendicular motion of
the atom. This ‘‘elastic resonance’” occurs for select-

ed 'Eo’s and will affect the intensity of the elastic dif-
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fraction peaks as well as the inelastic transition proba-
bility.

The condition (1.3) can also be satisfied after crea-
tion of one phonon, when:

IMey_o/it=(k§ —2M w,/k) — (Ko + N -Q)?
=M ¢,/R? (1.5

This ‘‘phonon-assisted’’ resonance occurs at any
Ko, for a family of phonons wy,(Q) given by Eq.
(1.5), and will affect the scattering processes involv-
ing these phonons.'3

The effects of the elastic resonances on the intensi-
ty of diffraction peaks has been widely studied in the
past years both by theoreticians'*~'® and by experi-
mentalists.*~%1%2° The primary aim was to under-
stand better the elastic scattering process. An elastic
theory appeared as adequate to describe the reso-
nance structures in the diffraction intensity; the com-
puted shapes, linewidths, positions, and splittings
were in overall agreement with detailed experimental
results.>'%2! More recently the role of inelastic ef-
fects on the elastic resonances has been explored
phenomenologically through a complex optical poten-
tial, and the agreement with the experimental data
has been improved.??~%*

Effects of elastic and inelastic resonances on the
inelastic transition probability have been little studied
until now. -Experimental evidence of resonant struc-
tures in the inelastic scattering has been found only
in a few cases,!® where the angular distributions of
the inelastic tails of specular peaks were studied at
different incident angles 6, for He and Ne scattered
by the (001) face of LiF. Since the resonance condi-
tion (1.5) selects different phonons wN,(G) at dif-
ferent 6, the angular position of resonances allowed
an average phonon spectrum to be determined, in ap-
parent agreement with the theoretical knowledge on
the surface dynamics of LiF. However some uncer-
tainty remained on the possibility of using inelastic
resonances to determine univocally the phonon spec-
trum at the surface.”” To understand better the pro-
posed mechanism, we present here further measure-
ments of resonances in the inelastic tails of He dif-
fracted by graphite. The experimental data are given
in Sec. II. The resonances of He-graphite show a
behavior in some way new with respect to the previ-
ous observations on LiF; the structures in the inelas-
tic tail, which at several incident angles show shapes
similar to the resonances in the elastic intensity, sud-
denly change shapes at some definite incident angles.
To explain this and other resonant effects we propose
in Sec. III the main lines of a theoretical treatment
for the single-phonon inelastic process which takes
into account the attractive well of the gas-solid poten-
tial. The analysis of the data is then given in Sec. IV,
Section V gives the conclusions.

II. EXPERIMENTAL RESULTS

The experimental setup was the same used in the
study of elastic resonances.’ Present data refer to
scattering of a He beam produced with a nozzle
source at 200 K; the atoms, with a wave vector
ko=9.07 A-! (and an energy Ey=42.96 meV) were
scattered by the graphite basal plane at 80 K. In or-
der to study the angular dependence of a well-defined
inelastic structure we looked for a resonance associat-
ed with a closed channel strongly coupled to the spec-
ular, and appearing in a ‘‘free’’ region of the recipro-
cal space where no other resonances can interfere.
We chose the (j —10)—(j —01) crossing in the
¢o=30° azimuth; these resonances are coupled by
the nonzero V', Fourier component of the potential
and two split energy levels e,i =€+ (jlVili)
should be found. In this direction however, as noted
by Chow,? only the symmetric combination of the
two free-particle states contributes to the resonant
transition. Hence only one resonance is seen at
¢o=230°, at the position corresponding to the eigen-
value €} of the potential ¥+ V. The intensity of
the specular peak, as a function of 6y, is shown in
Fig. 1; four resonances are well identified, associated
to the N=(10) and N=(01) closed channels; their
angular positions correspond to the energy values
el =—12.24, e =—6.55, € =—2.98, and eI =—1.06
meV. These energy values agree with the previously
measured energy levels and matrix elements.” A
fifth resonance, corresponding to the energy
€5 =—0.20 meV, appears in Fig. 1 as completely
smoothed at the experimental conditions. Following
Chow,? the energy values €;" will be used hereafter
as levels of the potential Vy+ Vo to describe the
(j—10)—=(,j—01) crossing in the ¢y=30° azimuth
(and will be indicated as €; for simplicity).
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FIG. 1. Specular intensity at ¢o=30° vs incident angle.
Vertical bars indicate shifted resonance positions, assuming
the energy values ej+=ej + erlo as levels of the potential
Vo+ V. Resonances are labeled by reciprocal-lattice-vector
indices and by level index; T shows calculated location of
the threshold.
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FIG. 2. In-plane angular distributions of the inelastic tail of the specular peak at different incident angles 6. The continuous
line represents the estimated nonresonant inelastically scattered intcnsity.

As can be seen in Fig. 1, the minimum at
0y=757.2° is a very sharp structure, well suited to
study resonances in the inelastic scattering. For this
purpose the in-plane tail of the specular peak was
analyzed as a function of the final angle
54° < 6, < 61°, for about fifty incident angles
40° < 0y < 55°; many of the angular distributions are
reported in Figs. 2, 3, and 4. In Fig. 2 the more
relevant appearances of the resonance can be seen; a
structure appears near 8, == 57°, whose position
changes very little with the incident angle and which
clearly corresponds to the minimum at §,=57.2° in
the specular intensity of Fig. 1. Because at these in-
cident angles the resonance condition can be fulfilled
only through Eq. (1.5), the structure can be identi-
fied as a phonon-assisted resonance and will be la-
beled (0—10)—(0—01). The shape of the structure
at several incident angles 6, is the same as the struc-
ture in the specular peak; it has a small shoulder fol-
lowed, at larger 65, by a minimum which becomes
deeper as 0, approaches 57.2°. However at particular
incident angles the behavior is quite different, as at
0, =45.7°, where the resonance appears as a large
maximum, or at 8,==50.7° and 6,=151.7°, where
maxima and minima are present.

In Fig. 3 scans taken at many intermediate incident
angles are reported, in a region where the resonance
shape rapidly changes. At §;=151.03° a strong max-
imum takes the place of the minimum, then again it
decreases and disappears. A similar behavior is

SCATTERED INTENSITY (arb. units)

FIG. 3. Angular distributions similar to those of Fig. 2
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FIG. 4. Angular distributions similar to Fig. 3 at incident
angles 6, near the elastic resonance labeled
(2-01)—(2-10) in Fig. 1.

shown in Fig 4, with a maximum on the angular dis-
tribution taken at 9, =47.45°.

It is easily found that maxima in the inelastic
scattering occur at those incident angles where a new
resonance appears in the intensity of the elastic peak
(see Fig. 1). This effect is evident in Figs. 5(a) and
5(b) where the inelastic intensity / (8, 8,) is reported
as a function of both the incoming 8y and final angle
65 the elastic resonances [Eq. (1.4)] which affect the
inelastic scattering are indicated by dashed arrows at
0p=45°, 0,=45.9°, = 47.7°, and 6,=151.2°; the
phonon-assisted resonance (1.5) is indicated by a full
arrow at §,=57.2°. Both the elastic resonances at
fixed incident angles and the inelastic resonance at a
given final angle are minima; a similar behavior was
observed also for He-LiF and Ne-LiF.!3

When however the two conditions (1.4) and (1.5)
are satisfied simultaneously, a large interference ef-
fect appears as a maximum in the 7(6y, 8y). This ef-
fect is observed here for the first time. As will be
discussed below, it can be explained as a double-
resonance process, with an elastic transition to a
bound state ( j —N) followed by an inelastic transi-
tion to a different bound state (j' —1'), with
'=N—Q. The maxima in Fig. 5 suggeést a large
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FIG. 5. Plot of the inelastically scattered intensity vs both
the incident angle 8, and the final angle §,. Dashed arrows
indicate elastic resonances at given 6;’s. Full arrow indicates
phonon-assisted resonance.

probability for this inelastic transition between two
different energy levels.

III. THEORETICAL FORMALISM

Among the recent elastic theories devoted to ex-
plain the selective adsorption phenomena,'>~!3 the
formalism developed by Celli, Garcia, and Hutchin-
son'8 appeared to us as the best suited to be extended
to the inelastic scattering; we will follow as closely as
possible this work, denoted henceforth as CGH.

The gas-surface potential is assumed to be of the

type
V(T =VeGz = (R,1) = V,(z2) , 3.1

where Vjy is a short-range repulsion, C(ﬁ,t) is an ef-
fective surface corrugation profile, here time depen-
dent, and V,(2) is a long-range attraction. Notice
that we assume a stationary attraction: this implies
that the inelastic process takes place only when the
gas-atom interacts with the V. Like CGH we as-
sume that there are two planes, z =z, and z =z, — 8,
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with 8 > 0, such that
Vez =U(R,1)) =0 forz>z,—5 , (3.2a)
VA(Z)=*D forz <zp . (3.2b)

So the attractive well has a flat bottom of depth D,
and a width & arbitrarily small; we can solve separate-
ly for the wave functions of Vx and V,, and then
match at z = z,.

The wave function in the intermediate region
20— 8 < z < z¢ is given by a combination of plane
waves of different energies E:

p(Tr) = bt (T0) +ordr(T)] . (3.3)
k

with

¢kt(?'t ) — eiT(’-Tl‘eiipze-—i(E+D)r/ﬁ , (34)

where K2 +p2=2M (E + D)/k? (we used k instead of
X as a subscript for simplicity). The sum over Kin
Eq. (3.3) runs over all continuum states related to
the initial state Eg by the usual conservation condi-
tions for multiphonon inelastic processes. The plane
waves (3.4) are also separately eigenstates of Vy —D
and V, for zo—8 < z < zy.

The wave function in the vacuum (z — +o) is

W@ =95 (T + Jaeid (Tr) 3.5
k
with
b4 To1) = oK Ko pitilt (3.6)

where K2+ k2=2ME [k?. The scattering problem is
then to determine the coefficients a,.

If now we assume that both the inelastic scattering
problem at the repulsive wall ¥z — D and the elastic
scattering problem for V, have been solved, then as
a formal extension of Eq. (2.13) of CGH to the ine-
lastic scattering we obtain the integral equation for b
coefficients

bt =8(KK) Ts + 3, S(KKIR, b (3.7
o
where $(k,X') are the known scattering coefficients
for elastic or inelastic interaction with Vg — D, while
Rk, and Ty are reflection and transmission coeffi-
cients for ¥,. When the integral equation (3.7) is
solved for a given final state f= (Kf,kfz), the inelas-

tic scattering probability is obtained as

dp(?,ﬁ) 2 pf +12
Lo o ==L |p . (3.8)
AR

z

As expected from the assumed model potential [Eq.

(3.1)], the inelastic scattering probability in the pres-
ence of an attractive well can be expressed in terms

of the scattering coefficients 8§ at Vz — D.

Till now we considered a multiphonon process. We
are interested in considering only single-phonon
processes as they are the most probable. To do this
we suppose that the scattering coefficients at the po-
tential Vz — D are very small for multiphonon
processes; so we can substitute the coefficient
S(K,E+D);K,E'+D) in Eq. (3.7) with the elas-
tic S(K,E + D, K+G',E + D) and with the one-
phonon s (K,E +D.K+G' —Q,E +D —kw,) coeffi-
cients. Moreover Eq. (3.7) could give multiphonon
processes also as effect of multiple reflections inside
the well; this effect is surely important, especially in
the selective adsorption processes. However, being
interested in single-phonon processes— [where the
(6, wy) of the phonon are completely identified
through the initial and final state of the scattered
atom] —we impose the kinematic conditions Egs.
(1.1) and (1.2). Equation (3.7) then becomes

b¢-o=s(G—Q,0)T;
+3[s(G-QGHR_.b*
Gl

+S(G-Q,G —Q)RU,_Qb(;ﬁ_Q] (3.9
(we omitted for simplicity the energy E and the initial
parallel momentum KO in the notation of the scatter-
ing amplitude and in the subscript).

For any final state T= (F —Q,E,—#w,) Eq. (3.9)
gives a matrix equation for 6% which can be solved
by the standard matrix algebra in a way completely
similar to the elastic scattering problem. The general
advantage of the single-phonon approximation is that
the set of integral equations (3.7) is reduced to a set
of linear equations; the same result was obtained by
Manson and Celli?’ for the one-phonon scattering
described in the -matrix formalism. A full discus-
sion of the validity limits of Eq. (3.9) is out of the
aim of the present paper; here we want to show some
of the most relevant effects of selective adsorption on
inelastic scattering.

We recall'® that for smoothly varying V, the coeffi-
cients Ry for open channels F are very small; the
summation in Eq. (3.9) can therefore be extended
over N vectors only, namely, over the closed chan-
nels below the continuum threshold in the well, lead-
ing to possible resonances with bound states (j — N).
Let us assume that there is only one N vector,
strongly coupled to the specular; through it the atom
can go in a bound state either with an elastic or with
an inelastic transition.

As a first example we consider the elastic reso-
nance followed by creation of one phonon; for this
process

bt =SnoT4 (1= Sy Ry, (3.10)

with Syy =S (N, N). Following CGH a phase shift
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8(ey) can be defined for SyyRy: thus
Ié‘——[sSNoT()’

(3.11D)

b =
<eN—e,+er/2)l18—
X dEN

where ey is given by Eq. (1.4). The coefficient by is
a typical resonance with a width

dd

Cy=2|2 (1—|S~N|) . (3.12)
dEN

Then for a final state T Eq. (3.9) gives

ie”'"®s;yRnSnoTg
dd
dey

b/ =s,Tg +

: (3.13)
(en—¢; +IFN/2)[ l

The inelastic scattering probability is obtained from
Eq. (3.8) as

dP(f,0) _

PO +-B 3.14
dEd* Q) COl+57! (3.14)

where I°(T,0) =py ko, |sf0|2/pozkfz is the single-
phonon inelastic scattering probability, in the absence
of multiple reflection inside the well, with
SxG:=S(G—Q, G,)', X=2(€N —ej)/FN and
B=s,yRySno/s;0(1 —|Syn|). In general we can ap-
proximate s,N/sfo with Syv/Spo, where

S ,—S(G Q,G’) is the elastic scattering ampli-

tude except that of course G- Q is not restricted to
be a reciprocal-lattice vector. For instance this can be
done for a hard corrugated wall potential (HCW) for
which the inelastic scattering amplitude can be writ-
ten as®®

5,67 =Sy 1Pz (Q ) n (@ +11177 (.19
where p(Q wg) isa spectral density tensor for sur-
face phonons and n,(Q) is the occupation number.
Then B becomes

B = S;yRySno/Spo(1 = S l) . (3.16)

This last expression, which is exact for a HCW, gives
B as a smoothly varying function of (@, wg). Thus
the main result of this example is that, when an elas-
tic resonance occurs (ey =¢;), both the intensity of
the elastic peaks and the neighboring inelastic tails
are modified in the same way. This effect was clearly
observed in the scattering of Ne-LiF (Ref. 13); it ap-
pears also with He-graphite (see Fig. 5).

As a second example we consider the creation of
one phonon followed by a resonance transition into a
bound state; Eq. (3.9) gives for the closed channel

. ’
+ 1S40 TORn
b, =

’ (3.17)

(ey—¢; +iT,/2) ;5

n

with in general fi=N —(—j; the €, is given by Eq.

(1.5). The inelastic scattering probability becomes

2

T _ ;¢ 5) = 0)

TdEQ?Q
with x =2(e, —¢;)/T, while from Eq. (3.15) the
coefficient C = S5, R, Sn()/Sf()(l —18,a1) is a smoothly
varying function of (Q, w,). Equation (3.18) clearly
shows that at any incident condition the inelastic
scattering can have a large resonant contribution for
the phonons wN,(Q) selected by Eq. (1.5). This is
the phonon-assisted selective adsorption, which is
responsible for the strong structures observed in the
past for He-LiF and Ne-LiF."? In the limit of low-
energy phonons C = B, then the shape of inelastic
resonances is similar in many cases to the corre-
sponding structures in the intensity of elastic peaks.
This behavior appears in Fig. 2 for He-graphite at
several incident angles.

As a further interesting example we consider the
case where both an elastic resonance in a level ¢; and
an inelastic resonance in a different level €,/ occur at

iC

1+——| , (.l
Yy (3.18)

the same time. Equation (3.9) gives two coupled
equations for by and b,':

by =SnoTo +SyvRnba +syaRyb,"
b,,+=S,,0T(; +SnNRth’l++Snanbn+ .

(3.19a)
(3.19b)

The solution, neglecting second-order terms sy, Syo
and sy,s,y wWhich represent virtual phonon processes,
gives

dP(E.0)
dEd* Q)
B . iC B’ ’
=101+ ,
X+i x'+i (X+i)(x"+i)

(3.20)
with

BI=S_IanSnNRNSNO/S/0(l - |SNN|)(1 - ISnnl) ’

while x'=2(e, — € /)/T,. Thus the inelastic scatter-

ing probability comams a nonresonant term /°(T, 0)
modulated by three resonant contributions.

B/(X +i) corresponds to the elastic resonance transi-
tion in the level ¢;, which select the incidence condi-
tion Ko and affects the inelastic scattering for all the
phonons; C/(x’'+i) corresponds to the inelastic res-
onance transition in the level €, for the phonons

,(Q) selected by Eq. (1.5). For these phonons

the last term B'/(X +i)(x' +i) gives a further
resonant contribution, large when both the elastic
and the phonon-assisted resonance are present; this
corresponds to an elastic resonant transition 0—Nin
the Ievel ¢; followed by an inelastic resonant transi-
tion N— to a different bound level ¢/ and is
responsible for the large maxima observed with He-
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FIG. 6. Perpendicular energies for the most probab_le
(resonant) intermediate states between the incoming 0 and
final T state of the gas atom.- The sketched inelastic process
shows four different ways to create one phonon.

graphite and shown in Figs. 3 and 4. The four possi-
ble transitions of Eq. (3.20) are sketched in Fig. 6
where: (1) is the direct inelastic transition in the fi-
nal state T, (2) is the elastic resonance (j —N); (3) is
the inelastic resonance ( j'—1); while (4) contains
the inelastic transition between (j —N) and (j' —).

These few examples show how the proposed theory
can explain several relevant effects for selective ad-
sorption on inelastic scattering, where at least three
different resonant transitions are important. We will
use this theory in the next section to discuss the ex-
perimental data of He-graphite. Here it is important
to outline how, in a good approximation, all the con-
tributions of the surface dynamics are left in the cal-
culation of /°(F,0) which in general appears as a pre-
factor. Besides, the resonant contributions can be
easily expressed through elastic transition amplitudes
S(G—Q,G’). In this formulation the effects of
resonant transitions on inelastic scattering can be
identified in a simple way.

IV. DATA ANALYSIS
For a detailed comparison of calculated intensities
with experimental data, we recall that the intensity at

a given final direction Q,= (6, ¢,) is

I(o,,00)=Lf(6)l(_f',5)dE , 4.1

with the integral taken along a family of phonons
w,(Q) defined by Eqgs. (1.1) and (1.2); for in-plane
scattering (¢, = ¢o) the line w,(Q) is the parabola

Mo (Q)/E=k¢ — (Ko +F—Q)sin%, . (4.2)

The I (f,0) in Eq. (4.1) can be expressed by Eq.
(3.20) and the integral evaluated. This calculation is
very complicated, mainly because the nonresonant
contribution /°(f, ) has to be computed for a lot of
phonons. We have seen, however, that for given 6,
and 0, X is constant while the quantities B, B’, and
C are smoothly varying functions, which can be as-
sumed as constant in the region of integration. If we
also assume that x = const, the resonant contribution
of Eq. (3.20) can be taken out of the integral. This
last assumption (x = const) is in general not true
along the integral line w,(Q) of Eq. (4.2); however
in the experimental condition of He-graphite [with
F=0and N=(01) and (10)] the family of phonons
which gives a constant resonant contribution
[wNj(a)] lies on a curve of the dispersion plane rath-

er close to the kinematic curve w,(Q). Then we can
substitute x in the integral with the value x* calculat-
ed for the most probable phonon which resonantly
contributes at 8, while the resonant term of Eq.
(3.20) can be taken out of the integral, giving

B iC i’B’
1(6,,600) =1 +-2— 4+
S 70 X+i x*+i &+ (X+i)
xf _ I°(F.0)dE . 4.3)
a)f(Q)

Equation (4.3) is similar to Eq. (3.20) of Sec. III,
thus the considerations given for /(f,0) of Eq.

(3.20) now apply directly to the shape cf the angular
distribution / (8, §9), which contains a nonresonant
term modulated by three resonant contributions. In
fact Eq. (4.3) predicts elasti¢ resonance at selected in-
cident angles 6, where X =0, such resonance affects
both the elastic diffraction peaks and the neighboring
inelastic tails practically in the same way. It also
predicts that at any 8, a phonon-assisted resonance
gives relevant contribution when x* = 0; this inelastic
resonance appears as a structure in the angular distri-
bution at the scattering angle ()f at which the contri-
bution of phonons of wNj(a) is predominant. Thus

the position §; of the resonant structure in the ine-
lastic scattering identifies, through Egs. (4.2) and
(1.5) the most probable angular frequency w,;" and
parallel momentum Q* of phonons which give
phonon-assisted resonance at each 6;,. The general
trend of the experimental data agrees with this
description. For a more detailed comparison of ex-
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periments with theory, we can write Eq. (4.3) as

2 2
iB iD —
1(0,,00) =1+ 1+ _I'(T,
(67, 60) X +i x*+;,fw,<o> (£.0)dE
=9%0,, 01 + ——| , (4.4)
x +i
where

D=C{1-il[B—(B'/C)}/(X+i+iB)]}

is a large quantity at incident angles where X = 0.
This explains in a qualitative way the large maxima
observed with He-graphite.

The functional dependence described by Eq. (4.4)
should be adequate in order to study the inelastic
structures in the experimental data. Let us define
the ratio of resonant to direct inelastic scattering in-
tensity

£(0,00)=11(8y,80) —9°(8,,0,)1/9°(6, 60) 4.5)

Then Eq. (4.4), with x*=a(68;—6;) and
D =D, +iD,, gives

D} +D} +2D,+2D,a(6,—0])
1+a2(0,—6})?

rQeo,, 6) = (4.6)

This function, which contains four parameters D,
D;, a, and 0;‘, has been used to describe the experi-
mental shape of inelastic resonances near/8,==57.2°.
Some examples of the best-fit / (8, 6y) curves to the
experimental points are shown in Fig. 7; the best-fit
parameters were obtained by fixing the position and
intensity of maxima, minima, and zeros of the exper-
imental curves.. Using this procedure, values for the
four parameters of f(8,, 6,) were obtained at each
8;.

The parameter 6/, which defines the position of
the resonance, was used to obtain the w, and Q* of
the phonon created at each 8. The results are shown
in Fig. 8, and compared with the lower branches of
dispersion relation for phonons in the hexagonal
plane of graphite.??® The points show a large
spread, as one may expect because of the uncertainty
in the position of the resonance (an error of +4' in
9]' gives the error bar reported in the figure). In any
case the (Q*, ;) relation for phonons at the surface
seems to be similar to the transverse-acoustical (TA)
mode of the bulk. A quite surprising result however
is that mainly backward phonons are created in the
interaction of He-graphite, at least in the phonon-
assisted resonant process. This momentum exchange
of the atom with the surface is somewhat unexpect-
ed; further measurements are necessary to verify
whether this kind of inelastic process depends on the
kinematic condition of the experiment or it is a pecu-
liarity of the He-graphite interaction.

oir

INTENSITY

RELATIVE

FIG. 7. The ratio f (8, 8,) of resonant to direct inelastic
scattering intensity vs the scattering angle 6, for some in-
cident angles: (a) 8,=43.7°; (b) B,=47.7°; (c) 9, =48.7°.
(d) 6,=>51.03°; and (e) #,=>51.7°. Dots are experimental
points; curves are estimated best-fit functions, with the reso- .
nance positions 0}" indicated by vertical arrows.
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FIG. 8. Mean frequency w, and parallel momentum qQ*
of phonons which give phonon-assisted resonances for He-
graphite in the ¢y=30° direction, compared with the lower
branches of the phonon dispersion relation in the (0001)
direction of the bulk (see Refs. 28 and 29). The error bar
represents an error of +4’ in the position of the resonance.
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The values of the second parameter a« do not show
a clear dependence on 6y; from the definition of x*
the a =2(de,/d0;)/T, is related to the inverse of the
resonance width I',. In the experimental conditions,
however, both the energy spread of phonons which
contribute to resonance, and the multiphonon
processes mask the natural width; thus the experi-
mental value a=3.2 + 0.4 (degree xmeV~') has very
little meaning.

The last two parameters, namely, the real (D) and
imaginary (D,) coefficient of the inelastic resonance
amplitude obtained from the experimental data are
reported in Fig. 9. Their resonant trend can be used
to test the validity of the simple theory of Sec. III.
To explain the experimental result, D, and D, were
computed in the Kirchhoff approximation. To be
specific, at any incident angle the most probable pho-
non was selected assuming a dispersion relation
w, =vQ%, with an average velocity of sound
v=1.5%10* msec™'. Then the scattering amplitudes
S(G —Q* G’) which appear in B, B’, and C were
computed using a hard corrugated wall?® as:

-w

~ ]x =y _ € )
S(G_—Q’G)_ a2 unit cell 7R

xexp[—i(G—Q*-G')-R
~i(p0_Q*+pG,)C(§)] ,

4.7)
the surface profile being given by
L(x,y) =2¢0lcos(2mx/a) +cos(2my/a)
+cos[2m(x—y)/al} , (4.8)

with £;p=—0.023 A.3' Both the Debye-Waller coeffi-
cient W and the perpendicular momentum transfer
Pg_g* Were calculated by assuming a well depth
D =157 meV.> The values of T'y and T, were
roughly taken from the elastic resonances.> '8

The result of these calculations is shown in Fig. 10;
both D,(8y) and D,(8,) show a superposition of a
nonresonant negative term, plus resonant structures
with a maximum followed by a narrow minimum for
each energy level ¢; of the attractive well. These ap-
pearances of the theoretical amplitudes are in qualita-
tive agreement with the experimental behavior shown
in Fig. 9, where the oscillations are obviously
quenched. Also the relative height of experimental
maxima seems correctly predicted by the theory. The
most relevant discrepancy between the calculation
and the experimental data amounts to a positive
background which should be added to the theoretical
D, (8,) value. This defect can probably be attributed
to a partial failure of the factorization assumption of
Eq. (3.15) which indeed holds only in the simplest
case, where the impinging atom transfers momentum
to one surface atom only.
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i
A b
T Tt ey o
o /45°\,‘./ y80% e 6,
.\.\:/0 -/ “ . .
\/
T4 3 2 1
o (A
D2 * .:'.:
. { \
! ; 1 ' 1;/\1 :}: by
a0° '45°.«,\ / \'5o° NG
] | /’ \ |

|

FIG. 9. Best-fit experimental values for the real D and
imaginary D, coefficient of the inclastic resonance ampli-
tudes vs the incident angle 6. Vertical lines indicate clastic
resonance positions.
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FIG. 10. Inelastic resonance amplitude D =D, +iD, cal-
culated in the Kirchhoff approximation using a hard corru-
gated wall potential.
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The qualitative agreement obtained in the Kir-
chhoff approximation is a strong indication that the
proposed theory, even in the simplified model of Eq.
(3.20), can correctly explain the resonance structures
in the inelastic scattering, although a more refined
model would be required to reproduce the experi-
mental results in details.

V. SUMMARY AND DISCUSSION

We have tried to explain the resonance structures
observed in the inelastically scattered angular distri-
butions; the theory presented in Sec. III can be con-
sidered as the first attempt of ‘‘true’’ inelastic calcu-
lations regarding selective adsorption processes.
Although the role of inelastic effects at resonances
was previously believed to be theoretically a very dif-
ficult problem, we have shown that the occurrence of
maxima or minima in the inelastic scattering can be
explained in simple terms. Much guidance in
developing a theory for the single-phonon resonant
scattering was provided by the basic work of Celli,
Garcia, and Hutchison'® on the elastic resonant dif-
fraction. Explicit formulas for the inelastic scattering
were obtained in the semiclassical or eikonal approxi-
mation,?® with a corrugated time-dependent hard
wall. All the selective adsorption effects observed in
the inelastic scattering of He-LiF and Ne-LiF (Refs.
12 and 13) are in qualitative agreement with such a
model. We computed the inelastic resonance ampli-
tude for different incident conditions for He-graphite;
a direct comparison with the experimental data shows
a nearly quantitative agreement. All these features
seem to confirm the outlines of the proposed inelastic
scattering calculation. The explanations obtained
from a semiclassical theory are especially appealing
because of their simplicity.

Although the more relevant effort of the present
study was devoted to a better understanding of reso-
nance structures in the inelastic scattering, we ob-
tained also some information on the graphite surface
dynamics. We used kinematic conditions Egs. (1.5)

and (4.2) to identify phonons without energy
analysis. The result shows, still with a large uncer-
tainty, a dispersion relation for the most probable
created phonons which is in agreement with the
knowledge on the dynamics of the bulk.2%30 A
surprising result was that the inelastic scattering of
He-graphite mainly created backward phonons, at
least in the phonon-assisted resonances. This result
must be considered as preliminary; it awaits confir-
mation from measurements in different experimental
conditions. Detailed measurements of in-plane and
out-of-plane angular distributions of inelastic scatter-
ing at selective adsorption probably must be coupled
with energy analysis of the scattered particles.

Finally we would like to present a few comments
on the double-resonance transition process we have
seen to be responsible for large maxima in the inelas-
tic tails of He-graphite scattering peaks. The effect,
not yet observed till now, seems to reply to the com-
mon question on where the intensity subtracted to
the elastic peaks goes in a selective adsorption pro-
cess. The need of an optical potential?!~* showed
that, as originally suggested by Lennard-Jones and
Devonshire,3? inelastic processes are enhanced during
the resonant motion of He atoms near the surface of
a solid. We have confirmed this, showing also that,
among other things, inelastic transition between dif-
ferent energy levels of the potential well plays a very
important role. Going beyond the limits of single
phonon theory, we can suppose that a cascade of
resonant inelastic transitions between energy levels
correspond to the enhancement of inelastic scattering,
that was thought originally*? to be the sole cause of
selective adsorption.
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