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Structures were observed in the angular distribution of helium itoms inel istic illy sc ittered by

the graphite (0001} surface; they were cle irly identified 'is bound-state reson ince processes
("selective idsorption"} assisted by phonons. To better understind the mech inism of the ine-

lastic process, detailed measurements tiken;it different incident ingles for the structure corre-

sponding to a well-defined resori ince are presented. Some unexpected beh;ivior, as the ch inge

of shape and intensity of an inelastic resonance observed 'it definite incident ingles, suggests the

occurrence of multiple resonant transitions between different energy levels of the g is-surf;ice

potential. The experimental data are 'inalyzed theoretically in terms of single-phonon inel;istic

processes, on the issumption of a model potenti il with i time-dependent short-r;inge repulsion

ind a stationary long-range;ittraction. Explicit formul'is for inel;istic selective idsorption are ob-

tained in the eikonal approximation, assuming i corrug ite h ird-w;ill repulsion. Different ways to

go reson'intly in i bound state are considered, with or without energy exch inge with the sur-

face. The c ilcul ited behavior of reson inces shows re ison ibly good igreement with the experi-

rnentil data on He-graphite. From the angul;ir position of phonon-issisted resonances prelimi-

nary information on the graphite (0001} surface dyn imics h is been obt;iined, in agreement with

calculated phonon spectra.

I. INTRODUCTION

The scattering of supersonic beams of light atoms
from crystalline surfaces has reached remarkable in-

terest as a tool for the study of gas-solid interactions
and for the investigation of dynamic properties of
surfaces. The study of elastic diffraction intensities
recently demonstrated the power of this technique
both to observe structural features of clean" or
adsorbate-covered surfaces' and to obtain detailed in-

formations on the gas-surface interaction potential
through the selective adsorption resonances. 4 6 In
addition, measurements of the inelastic scattering of
thermal atoms with a detailed energy analysis of the
scattered particles hold promise of providing a new

tool for studying the dispersion curves of surface
phonons. " Time-of-flight spectra can show (and re-

cently showed9) sharp structures in the inelastic
scattering, probably related to discrete surface
modes.

In addition„structures in the angular distribution of
inelastically scattered particles can be related to ine-
lastic selective adsorption resonances, a process that
was observed in the past. " ' The present paper will

report some new experimental results on this process,
obtained for the scattering of He from the basal plane
of graphite. A theoretical description will also be
presented, in which the effects of resonances on the
inelastic scattering are taken into account, in the

k2=k2 —2M~ /f

Ka = Ko+0 —Q

where 0 is a surface reciprocal-lattice vector and the
created phonon has a parallel momentum Q and an-
gular frequency co, [for annihilation processes the
sign of both Q and co~ in Eqs. (1.1) and (1.2) must
be reversed].

A selective adsorption resonance occurs whenever
a closed channel N exists, for which

kN =k' —It'g = 2M' /k' (1.3)

~& being an energy level of the gas-surface averaged
potential Vo. The resonance condition (1.3) can be
fulfilled in a purely elastic way, when

2Mew/f2 = ko2 (Ko+ N)2 = 2M'/h2

e/v being the energy of the perpendicular motion of
the atom. This "elastic resonance" occurs for select-
ed ko's and will affect the intensity of the elastic dif-

single-phonon approximation.
When an atom of mass I and incident momentum

ko= (Ko, ko ) collides with a periodic surface, the
Z

kinematic conditions for an inelastic process involv-
ing the creation of one phonon are
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fraction peaks as well as the inelastic transition proba-
bility.

The condition (1.3) can also be satisfied after crea-

tion of one phonon, when:

2Mag g/It = (kp 2Mtpp/k) (Kp+ N Q)

= 2Maj/t2 (1.5)

This "phonon-assisted" resonance occurs at any

kp, for a family of phonons ra~&(Q) given by Eq.
(1.5), and will affect the scattering processes involv-

ing these phonons. "
The effects of the elastic resonances on the intensi-

ty of diffraction peaks has been widely studied in the
past years both by theoreticiansi5-i8 and by experi-
mentalists. ' ' The primary aim was to under-
stand better the elastic scattering process. An elastic
theory appeared as adequate to describe the reso-
nance structures in the diffraction intensity; the com-
puted shapes, linewidths, positions, and splittings
were in overall agreement with detailed experimental
results is-i8, 2i More recently the role of inelastic ef-
fects on the elastic resonances has been explored
phenomenologically through a complex optical poten-
tial, and the agreement with the experimental data
has been improved. "

Effects of elastic and inelastic resonances on the
inelastic transition probability have been little studied
until now. Experimental evidence of resonant struc-
tures in the inelastic scattering has been found only
in a few cases, "where the angular distributions of
the inelastic tails of specular peaks were studied at
different incident angles H0 for He and Ne scattered
by the (001) face of LiF. Since the resonance condi-
tion (1.5) selects different phonons ra~~(Q) at dif-

ferent H0, the angular position of resonances allowed

an average phonon spectrum to be determined, in ap-
parent agreement with the theoretical knowledge on
the surface dynamics of LiF. However some uncer-
tainty remained on the possibility of using inelastic
resonances to determine univocally the phonon spec-
trum at the surface. " To understand better the pro-
posed mechanism, we present here further measure-
ments of resonances in the inelastic tails of He dif-
fracted by graphite. The experimental data are given
in Sec. II. The resonances of He-graphite show a

behavior in some way new with respect to the previ-
ous observations on LiF; the structures in the inelas-
tic tail, which at several incident angles show shapes
similar to the resonances in the elastic intensity, sud-
denly change shapes at some definite incident angles.
To explain this and other resonant effects we propose
in Sec. III the main lines of a theoretical treatment
for the single-phonon inelastic process which takes
into account the attractive well of the gas-solid poten-
tial. The analysis of the data is then given in Sec. IV.
Section V gives the conclusions.

II. EXPERIMENTAL RESULTS

The experimental setup was the same used in the
study of elastic resonances. ' Present data refer to
scattering of a He beam produced with a nozzle
source at 200 K; the atoms, with a wave vector
kp =. 9.07 A (and an energy Ep = 42.96 meV) were
scattered by the graphite basal plane at 80 K. In or-
der to study the angular dependence of a well-defined
inelastic structure we looked for a resonance associat-
ed with a closed channel strongly coupled to the spec-
ular, and appearing in a "free" region of the recipro-
cal space where no other resonances can interfere.
We chose the ( j —10)—(,j —01) crossing in the
Itrp = 30' azimuth; these resonances are coupled by
the nonzero Vio Fourier component of the potential
and two split energy levels eP = e, + ( j ~ Vtpi j)
should be found. In this direction however, as noted
by Chow, "only the symmetric combination of the
two free-particle states contributes to the resonant
transition. Hence only one resonance is seen at
Pe=30', at the position corresponding to the eigen-
value e&+ of the potential &0+ &ip. The intensity of
the specular peak, as a function of H0, is shown in

Fig. 1; four resonances are well identified, associated
to the 8 = (10) and N = (01) closed channels; their
angular positions correspond to the energy values
Ep = 12.24, 6~ = 6.55, E2 = —2.98, and ~& = —1.06
meV. These energy values agree with the previously
measured energy levels and matrix elements. ' A
fifth resonance, corresponding to the energy
&4+= —0.20 meV, appears in Fig. 1 as completely
smoothed at the experimental conditions. Following
Chow, ' the energy values e,

+ will be used hereafter
as levels of the potential V0+ ~io to describe the
( j —10)—( j —01) crossing in the $p = 30' azimuth
(and will be indicated as a, for simplicity).
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FIG. 1. Specular intensity at $0=30' vs incident angle.
Vertical bars indicate shifted resonance positions, assuming
the energy values aj+= e + V/p as levels of the potential

Vo+ Vi0. Resonances are labeled by reciprocal-lattice-vector
indices and by level index; T shows calculated location of
the threshold.
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FIG. 2. In-plane angular distributions of the inelastic tail of' the specular peak at different incident ~ngles Hp. The continuous
line represents the estimated nonresonant ineiasticafly scattered intensity.

As can be seen in Fig. 1, the minimum at
Hp = 57.2' is a very sharp structure, well suited to
study resonances in the inelastic scattering. For this
purpose the in-plane tail of the specular peak was

analyzed as a function of the final angle
54 & H& (61', for about fifty incident angles
40' & Hp & 55', many of the angular distributions are
reported in Figs. 2, 3, and 4. In Fig. 2 the more
relevant appearances of the resonance can be seen; a
structure appears near H~ = 57', whose position
changes very little with the incident angle and which

clearly corresponds to the minimum at Hp=57. 2' in

the specular intensity of Fig. 1. Because at these in-

cident angles the resonance condition can be fulfilled
only through Eq. (1.S), the structure can be identi-
fied as a phonon-assisted resonance and will be la-

beled (0 —10)—(0 —01). The shape of the structure
at several incident angles Hp is the same as the struc-
ture in the specular peak; it has a small shoulder fol-
lowed, at larger H&, by a minimum which becomes
deeper as Hp approaches 57.2 . Ho~ever at particular
incident angles the behavior is quite different, as at
Hp = 45.7, where the resonance appears as a large
maximum, or at Hp= 50.7 and Hp= 51.7', where
maxima and minima are present.

In Fig. 3 scans taken at many intermediate incident
angles are reported, in a region where the resonance
shape rapidly changes. At Hp = 51.03' a strong max-
imum takes the place of the minimum, then again it
decreases and disappears. A similar behavior is
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with 5&0, such that

Vt((z —f(Kt,)) =0 for z ) zo 8

&q(z) = D —forz ( zo

(3.2a)

(3.2b)

So the attractive well has a flat bottom of depth D,
and a width 5 arbitrarily small; we can solve separate-
ly for the wave functions of VR and V&, and then
match at z =zp.

The wave function in the intermediate region
zp 8 ( z Q zp is given by a combination of plane
waves of different energies F.:

(3.3)

with

w +
( r t ) pit R p +iPzp i ( E+D)(/—t(

Vk (3.4)

with

(]t(r, t ) =9t„,(r, t ) + Xa„t/tP(r, t )
k

(3.5)

9t+( r t ) p(F Rp z p (E(/t( (3,6)

where K'+ k,' = 2ME//t' The scatter. ing problem is

then to determine the coefficients ak.
If now we assume that both the inelastic scattering

problem at the repulsive wall V~ —D and the elastic

scattering problem for V& have been solved, then as
a formal extension of Eq. (2.13) of CGH to the ine-

lastic scattering we obtain the integral equation for bk+

coefficients

bg+= S(k;k(&) T() + X S(k, k')R„,b„+I

k

(3.7)

where S(k, k') are the known scattering coefficients
for elastic or inelastic interaction with VR —D, while

R and Tp are reflection and transmission coeffi-
k

cients for V~. hen the integral equation (3.7) is

solved for a given final state f= (K/, k/ ), the inelas-
2

tic scattering probability is obtained as

dP(f, O)
[ [2

PI (bg[2
dEd 0 kf,

(3.8)

As expected from the assumed model potential [Eq.
(3.1)], the inelastic scattering probability in the pres-

ence of an attractive well can be expressed in terms
of the scattering coefficients 8 at V~ —D.

where K'+p'=2M(E+D)//1 (we used k instead of
k as a subscript for simplicity). The sum over k in

Eq. (3.3) runs over all continuum states related to
the initial state kp by the usual conservation condi-
tions for multiphonon inelastic processes. The plane
waves (3.4) are also separately eigenstates of VR —D
and V~ for zp —5 (z & zp.

The wave function in the vacuum (z +~) is

Till now we considered a multiphonon process. We
are interested in considering only single-phonon
processes as they are the most probable. To do this
we suppose that the scattering coefficients at the po-
tential Vz —D are very small for multiphonon
processes; so we can substitute the coefficient
S(K,E+D); K', E'+D) in Eq. (3.7) with the elas-
tic S(K,E+D; K+G', E+D) and with the one-
phonon s (K,E+D;K+O' —Q', E +D /rc—o,') coeffi-
cients. Moreover Eq. (3.7) could give multiphonon
processes also as effect of multiple reflections inside
the well; this effect is surely important, especially in

the selective adsorption processes. However, being
interested in s'ingle-phonon processes —[where the
(Q, 0i~) of the phonon are completely identified
through the initial and final state of the scattered
atom] —we impose the kinematic conditions Eqs.
(1.1) and (1.2). Equation (3.7) then becomes

(we omitted for simplicity the energy F. and the initial

parallel momentum Kp in the notation of the scatter-
ing amplitude and in the subscript).

For any final state f= (F —Q, EO —t(cu, ) Eq. (3.9)
gives a matrix equation for b+ which can be solved

by the standard matrix'algebra in a way completely
similar to the elastic scattering problem. The general
advantage of the single-phonon approximation is th ~t

the set of integral equations (3.7) is reduced to a set
of linear equations; the same result was obtained by

Manson and Celli" for the one-phonon scattering
described in the t-matrix formalism. A full discus-
sion of the validity limits of Eq. (3.9) is out of the
aim of the present paper„here we want to show some
of the most relevant effects of selective adsorption on
inelastic scattering.

We recall' that for smoothly varying V& the coeffi-
cients RF for open channels F are very small; the
summation in Eq. (3.9) can therefore be extended
over N vectors only, namely, over the closed chan-
nels below the continuum threshold in the well, lead-

ing to possible resonances with bound states ( j —N).
Let us assume that there is only one N vector,
strongly coupled to the specular; through it the atom
can go in a bound state either with an elastic or with

an inelastic transition.
As a first example we consider the elastic reso-

nance followed by creation of one phonon; for this

process

bw'=S~p~p (l —SwwRw) '
~ (3.lO)

with S~~ =S(N, N). Following CGH a phase shift

by+ g =s(G —Q, O) To

+ X [s (G —Q, G') R,b+
GI

+ S(G —Q, O' —Q) R, b+i ] (3.9)
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8(»N ) can be defined for SNNRN'„ thus

ie 'SwoTob+

(»N —»;+iI' /2)
15

dKN

(3.11)

where»N is given by Eq. (1.4). The coefficient bN is

a typical resonance with a width

rN=2 (I-IS„I).d8
d 6/t/

Then for a final state f Eq. (3.9) gives

(3.12)

bi =s]pTp +
ie '

s&NRgSNpTp

(» —», +il /2) d5
de~

(3.13)

The inelastic scattering probability is obtained from
Eq. (3.8) as

dP(f, 0) io(7 0}I I + iB
dEd20 X +i

(3.14)

s =S Ip„(Q,~, )IN (Q)+I&)'", (3.15}

where 10(f,0) =pf kO lsfOI'/pO kf is the single-

phonon inelastic scattering probability, in the absence
of multiple reflection inside the well, with
s =s(G Q, G ); X=2(»Ni)»/r aNnd

gG

B= sfNRNSNO/sf 0(1 I SNN I ). In general we can ap-
proximate s&N/sfo with SfN/SfO, whereS,=S(G —Q, G') is the elastic scattering ampli-

gG

tude, except that of course G —Q is not restricted to
be a reciprocal-lattice vector. For instance this can be
done for a hard corrugated wall potential (HCW) for
which the inelastic scattering amplitude can be writ-

ten as"

b/t/
= SN p Tp +Sgg R/t/ b/t/ + s/t/„R„b„+

b„+= g„pTp + s„/t/ RN bN +S«R„b„+

(3.19a)

(3.19b)

The solution, neglecting second-order terms s~„s„o
and s&„s„Nwhich represent virtual phonon processes,
gives

dP(f, 0)
dFd20

2

=10(f, o)1+ iB + iC + i B
X+ i x'+i (X+i )(x'+i )

(1.5). The inelastic scattering probability becomes
2

=l(7, 0) =i (f, 0) 1+, , (3.18)
dEd'fI x + i

with x = 2(»„—», }/I'„while from Eq. (3.15) the
coefficient C = Sf„R„S„O/Sfo(1—IS,

„
I ) is a smoothly

varying function of (Q, ro»). Equation (3.18) clearly
shows that at any incident condition the inelastic
scattering can have a large resonant contribution for
the phonons 00~, (Q) selected by Eq. (1.5). This is

the phonon-assisted selective adsorption, which is

responsible for the strong structures observed in the
past for He-LiF and Ne-LiF. " In the limit of low-

energy phonons C = 8, then the shape of inelastic
resonances is similar in many cases to the corre-
sponding structures in the intensity of elastic peaks.
This behavior appears in Fig. 2 for He-graphite at
several incident angles.

As a further interesting example we consider the
case where both an elastic resonance in a level eJ and
an inelastic resonance in a different level e occur at

the same time. Equation (3.9) gives two coupled
equations for b~+ and b„+:

(3.16)

where p(Q, ro ) is a spectral density tensor for sur-

face phonons and n„(Q)is the occupation number,

Then 8 becomes

SfNRNSNO/Sf0(1 ISNN I }

with
(3.20)

Sf RnSnNRNSNO/SfO(1 —
I SNN I ) ( I —IS.

„ I )

is„pTpR„b„+= (3.17)
(»„—», +i I'„/2) d8

with in general n= N —Q; the»„ is given by Eq.

This last expression, which is exact for a HC%, gives
B as a smoothly varying function of (Q, ro»). Thus
the main result of this example is that, when an elas-
tic resonance occurs (»N ——»&), both the intensity of
the elastic peaks and the neighboring inelastic tails
are modified in the same way. This effect was clearly
observed in the scattering of Ne-LiF (Ref. 13};it ap-

pears also with He-graphite (see Fig. 5).
As a second example we consider the creation of

one phonon followed by a resonance transition into a
bound state; Eq. (3.9) gives for the closed channel

while x'=2(»„—», )/I'„. Thus the inelastic scatter-

ing probability contains a nonresonant term iO(7, 0)
modulated by three resonant contributions.
B/(X +i) corresponds to the elastic resonance transi-
tion in the level ~J„which select the incidence condi-
tion kp and affects the inelastic scattering for all the
phonons; C/(x'+i ) corresponds to the inelastic res-
onance transition in the level e, for the phononsJ
ro, (Q) selected by Eq. (1.5). For these phonons

the last term B'/(X +i ) (x'+i ) gives a further
resonant contribution, large when both the elastic
and the phonon-assisted resonance are present; this
corresponds to an elastic resonant transition 0 N in
the level e& followed by an inelastic resonant transi-
tion N n to a different bound level eJ' and is
responsible for the large maxima observed with He-
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periments with theory, we can write Eq. (4.3) as 0.1—
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where

D =C [1—i [8 —(8'/C)]/(X+i +iB) ]

is a large quantity at incident angles where X =0.
This explains in a qualitative way the large maxima
observed with He-graphite.

The functional dependence described by Eq. (4.4)
should be adequate in order to study the inelastic
structures in the experimental data. Let us define
the ratio of resonant to direct inelastic scattering in-

tensity

~
I I ~ I ~

I a I~~ I
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f (e~ e, )= [I(ef, 8,) —8'(ef, 8,) ]/8'(ef, e, ) (4.5) -01

Then Eq. (4.4), with x'=a(ef —8,.') and

0 =8)+I'Dp, gives

D( +D22 +2Di +2Dia(ei 8;)—(4.6)

This function, which. contains four parameters Dt,
D2, n, and 8&', has been used to describe the experi-
mental shape of inelastic resonances near~Sf = 57.2'.
Some examples of the best-fit f (ef, ep) curves to the
experimental points are shown in Fig. 7; the best-fit
parameters were obtained by fixing the position and

intensity of maxima, minima, and zeros of the exper-
imental curves. - Using this procedure, values for the
four parameters of f(ef, ep) were obtained at each

Hp.

The parameter 8&', which defines the position of
the resonance, was used to obtain the pi, and Q' of
the phonon created at each Hp. The results are shown

in Fig. 8, and compared with the lo~er branches of
dispersion relation for phonons in the hexagonal
plane of graphite. ' ' The points show a large

spread, as one may expect because of the uncertainty
in the position of the resonance (an error of +4' in

8&' gives the error bar reported in the figure). In any

case the (Q', pi~") relation for phonons at the surface
seems to be similar to the transverse-acoustical (TA)
mode of the bulk. A quite surprising result however
is that mainly backward phonons are created in the
interaction of He-graphite, at least in the phonon-
assisted resonant process. This rnornentum exchange
of the atom with the surface is some~hat unexpect-
ed; further measurements are necessary to verify
whether this kind of inelastic process depends on the
kinematic condition of the experiment or it is a pecu-
liarity of the He-graphite interaction.

FIG. 7. The ratio f(Hf, Hp) of resonant to direct inelastic

scattering intensity vs the scattering angle Hf for some in-

cident angles: (a) Hp=43. 7; (b) Sp=47.7; (c) Hp=48. 7',
(d) Hp= S1.03; and (e) Hp= 51.7 . Dots are experimental

points; curves are estimated best-fit functions, with the reso-

nance positions HJ indicated by vertical arrows.

he)q [meY]

so--

I [ [ I

-04 -03 -Q2 -0.1 0 01 GP G3 G4

(Q/Gyp)

FIG. 8. Mean frequency co~ and parallel momentum Q
of phonons which give phonon-assisted resonances for He-

graphite in the Qp=30 direction, compared with the lower

branches of the phonon dispersion relation in the (0001)
direction of the bulk (see Refs. 28 and 29). The error bar

represents an error ot +4' in the position of the resonance.
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The values of the second parameter o/ do not show
a clear dependence on 80, from the definition of x'
the n = 2(de„/dHf)/I"„ is related to the inverse of the
resonance width I„.In the experimental conditions,
however, both the energy spread of phonons which
contribute to resonance, and the multiphonon
processes mask the natural width; thus the experi-
mental value a =3.2+0.4 (degree xmeV ') has very
little meaning.

The last two parameters, namely, the real (D~) and
imaginary (D2) coefficient of the inelastic resonance
amplitude obtained from the experimental data are
reported in Fig. 9. Their resonant trend can be used
to test the validity of the simple theory of Sec. III.
To explain the experimental result, D] and D2 were

computed in the Kirchhoff approximation. To be
specific, at any incident angle the most probable pho-
non was selected assuming a dispersion relation
co~" = uQ', with an average velocity of sound
v = 1.5 x 10 m sec '. Then the scattering amplitudes
S(G —Q', G') which appear in 8, 8', and C were

computed using a hard corrugated wall as:

—0.1—

D)

I I s I

Dp

I a

40o

/' "(
~ ~ ~ ~

'45'k '&

~ /

T4 3

l

45O.~. Is. t
M~ '

I

Iso' Q 'ss' H,

~

'so'j '

j
'

'ss~

I
/

S(G-Q', G') =, JI dR

x exp[ —i (G —Q' —G') R

—i(p .+p, )[(R)],

FIG. 9. Best-fit experimental values for the real D] Ind

imaginary D2 coefficient of the inelastic reson &nce ampli-

tudes vs the incident t'ngle 00. Vertic &I lines indic [te el istic
resonance positions.

the surface profile being given by

(4.7)

g(xy) =2(tp[cos(2nx/a ) +cos(2ny/a )

+ cos[2n (x —y )/a ] I (4.8)

404
0 I I

4s'
s i i I

so' ss4

with (~p= —0.023 A." Both the Debye-Wailer coeffi-
cient W and the perpendicular momentum transfer

p were calculated by assuming a well depthG-Q
D = 15.7 meV. ' The values of 1 N and I „were
roughly taken from the elastic resonances. ' "

The result of these calculations is shown in Fig. 10;
both D, (Hp) and D, (Hp) show a superposition of a
nonresonant negative term, plus resonant structures
with a maximum followed by a narrow minimum for
each energy level e& of the attractive well. These ap-
pearances of the theoretical amplitudes are in qualita-
tive agreement with the experimental behavior shown
in Fig. 9, where the oscillations are obviously
quenched. Also the relative height of experimental
maxima seems correctly predicted by the theory. The
most relevant discrepancy between the calculation
and the experimental data amounts to a positive
background which should be added to the theoretical
D, (Hp) value. This defect can probably be attributed
to a partial failure of the factorization assumption of
Eq. (3.15) which indeed holds only in the simplest
case, where the impinging atom transfers momentum
to one surface atom only.

-0.5—

-'t.o—
T4 3 2

40 45 ~ 50
0 l i » s I i i% i I

I

-0.5—
Dp

-1.0—

FIG, 10. Inelastic resonance amplitude D =D] +iD2 cal-

culated in the Kirchhoff approximation using a hard corru-
gated wall potential.



23 SELECTIVE-ADSORPTION STRUCTURES IN THE INELASTIC. . . 3039

The qualitative agreement obtained in the Kir-
chhoff approximation is a strong indication that the
proposed theory, even in the simplified model of Eq.
(3.20), can correctly expla'in the resonance structures
in the inelastic scattering, although a more refined
model would be required to reproduce the experi-
mental results in details.

V. SUMMARY AND DISCUSSION

We have tried to explain the resonance structures
observed in the inelastically scattered angular distri-
butions; the theory presented in Sec. III can be con-
sidered as the first attempt of "true" inelastic calcu-
lations regarding selective adsorption processes.
Although the role of inelastic effects at resonances
was previously believed to be theoretically a very dif-
ficult problem, we have sho~n that the occurrence of
maxima or minima in the inelastic scattering can be
explained in simple terms. Much guidance in

developing a theory for the single-phonon resonant
scattering was provided by the basic work of Celli,
Garcia, and Hutchison' on the elastic resonant dif-
fraction. Explicit formulas for the inelastic scattering
were obtained in the semiclassical or eikonal approxi-
mation, "with a corrugated time-'dependent hard
wall. All the selective adsorption effects observed in

the inelastic scattering of He-LiF and Ne-LiF (Refs.
12 and 13) are in qualitative agreement with such a
model. We computed the inelastic resonance ampli-
tude for different incident conditions for He-graphite;
a direct comparison with the experimental data shows
a nearly quantitative agreement. All these features
seem to confirm the outlines of the proposed inelastic
scattering calculation. The explanations obtained
from a semiclassical theory are especially appealing
because of their simplicity.

Although the more relevant effort of the present
study was devoted to a better understanding of reso-
nance structures in the inelastic scattering, we ob-
tained also some information on the graphite surface
dynamics. We used kinematic conditions Eqs. (1.5)

and (4.2) to identify phonons without energy
analysis. The result shows, still with a large uncer-
tainty, a dispersion relation for the most probable
created phonons which is in agreement with the
knowledge on the dynamics of the bulk. A

surprising result was that the. inelastic scattering of
He-graphite mainly created backward phonons, at
least in the phonon-assisted resonances. This result
must be considered as preliminary; it awaits confir-
mation from measurements in different experimental
conditions. Detailed measurements of in-plane and
out-of-plane angular distributions of inelastic scatter-
ing at selective adsorption probably must be coupled
with energy analysis of the scattered particles.

Finally we would like to present a few comments
on the double-resonance transition process we have
seen to be responsible for large maxima in the inelas-
tic tails of He-graphite scattering peaks. The effect,
not yet observed till now, seems to reply to the com-
rnon question on where the intensity subtracted to
the elastic peaks goes in a selective adsorption pro-

The need of an optical potential2i-23 showe
that, as originally suggested by Lennard-Jones and
Devonshire, " inelastic processes are enhanced during
the resonant motion of He atoms near the surface of
a solid. We have confirmed this, showing also that,
among other things, inelastic transition between dif-
ferent energy levels of the potential well plays a very
important role. Going beyond the limits of single
phonon theory, we can suppose that a cascade of
resonant inelastic transitions between energy levels
correspond to the enhancement of inelastic scattering,
that was thought originally" to be the sole cause of
selective adsorption.
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