
PHYSICAL REVIEW B VOLUME 23, NUMBER 1 1 JANUARY 1981

Effects of a random symmetry-breaking field on topological order in two dimensions
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The effect of a random symmetry breaking field (& =fdx [ht~ cospi)( x ) + h2~ sinpt)( x )1,
h!z and h2& random) on topological order in two-dimensional systems is studied. Such 1 field

would simulate the interaction of the idealized two-dimension tl system with &n underlying sub-
strate if the substrate were to contain patches (islands) in which short-r ange order is retained
rather than being a single crystalline surface. These conditions might well pertain when charge-
density waves are studied in chemisorption tnd physisorption experiments. The transition is

studied using a sine-Gordon field theory modified to include the effects of disorder. It is shown
that the spin-wave behavior of the pl tnar model is st able tg !inst such perturb ttions provided

4 ( 2mK«& (
2 p . That is, planar-model critical beh havior should be observable for threefold-
1

symmetric' (p = 3) perturbations.

I. INTRODUCTION

In recent years the classical two-dimensional
Heisenberg model has attracted a great deal of atten-
tion. ' ' In the continuum limit it is represented by a

reduced Hamiltonian or "action" of the form

g [t)]= = 'E d'x[ 7()(x—)]',
0&0&2+ .

The properties of this system have been analyzed in

great detail. It was first pointed out by Kosterlitz and
Thouless' that the excitations of the planar model in-

clude, in addition to spin waves, vortices which in-

teract among themselves via a logarithmic two-
dimensional Coulomb interaction. These topological
excitations determine the nature of the phase transi-
tion in the system. Below the critical temperature
bound vortex-antivortex pairs populate an ordered
phase coexisting with the spin-wave excitations.
Above T„ these pairs dissociate. Kosterlitz subse-
quently analyzed the transition quantitatively. He
constructed a simple renormalization-group transfor-
mation which contains a 1!ne of fixed points, corre-
sponding physically to a line of critical points ter-
minating at a finite T, .

The importance of the planar model goes far
beyond the original magnetic system. Indeed the first
verification of the unique nature of the Kosterlitz-
Thouless transition was the experimental measure-
ment of the-universal jump in superfluid density' at
the transition in He films on a Mylar substrate. ' In
4He films t)( x ) is the phase angle of the superfluid
order parameter. Other examples may be found in

the charge-density waves observed in chemisorp-
tion '" and physisorption systems" '; again the or-
der parameter is characterized by a phase angle 0( x ).
More complicated systems include the two-dimen-
sional melting of floating solids as discussed recently
by Halperin and Nelson' ' and Young, '. To
describe this problem, however, a two-component
phase angle 9~( x ) is needed. These diverse physical
systems can be represented by the Hamiltonian of
Eq. (1,1) only in the idealized situation of a perfectly
inert smooth substrate whose only role is to confine
the system to strictly two-dimensional behavior. In
actual practice the substrate represents an additional
potential of symmetry lower than O(2). The sub-
strate will also contain impurities, imperfections, and
other types of disorder.

The effect of disorder on the Kosterlitz-Thouless-
type transition is of particular interest. It has been
found" that a small amount of bond disorder does
not affect the transition. On the other hand, a

number of authors' ' have concluded that a random
field (site disorder), such as that generated by a
quenched random distribution of impurities, would
couple linea'rly to the phase angle and destroy con-
ventional long-range order in space dimension d & 4.
However, it is not clear whether this argument ap-
plies to the special case of d =2 where the phase
transition is controlled by topological excitations.
One can also visualize types of disorder which
preserve much of the short-range order of the sys-
tem. For example, consider a charge-density wave in

which the displacement vector of the particles has
long-wavelength modulations of the form e'~' " '

around the commensurate value e'' ' " with

q =6/p, ""G being a reciprocal-lattice vector of the
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substrate and p is a positive integer. For example,
for rare gases absorbed on graphite, " '

p = 3. The
effect of the substrate potential is then represented
by a term of the form

V=J h,,(x)cosp8(x)+hq, (x)sinp8(x) dx

(i.2)

This term is just the type of symmetry-breaking field
discussed recently by Jose et al. 4 If the substrate
contains patches (islands) of different sizes rather
than being a single crystalline surface, then the effec-
tive interaction with the substrate can be described by
a potential of the form Eq. (1.2), but with random
coefficients h~~(x) and hq~(x). In the simplest
model one can describe this randomness by the dis-
tribution

II. PURE SINE-GORDON MODEL

where

(2.2)

is the well-known sine-Gordon action for which a

systematic field-theoretic renormalization-group treat-
ment has been developed recently by Amit et al. '

p(')
——(2n )'K (2.3)

and the vortex fugacity z is given by

Rather than work with the effective Hamiltonian
Eqs. (1.1) and (1.2) we prefer to use the equivalent
action"

(2.1)

z =~0/2pl . (2.4)

P[h] =exp — dx h~ (x)
2a g

(1.3) The original phase angle 6( x ) is proportional to the
dual of the scalar field $( x)

Here a is the lattice spacing. We might note that the
potential generated by a completely random array of
impurities can be represented by Eqs. (1.2) and (1.3)
with p =1.

For ordered symmetry-breaking fields Jose et al. 4

have shown that p =4 is the important dividing line.
They show that -the spin-wave behavior of the planar
model is stable against symmetry-breaking perturba-
tions provided

B„y(x)=e„„8„y(x), (2.&)

(2.6)

x = (x),xp)

Here e„„is the completely antisymmetric tensor in

two dimensions. The random symmetry breaking
field is given in terms of $( x ) as

4&2mK, ff( 4p' (1.4)

hip 2rrp P , h2p ~ 27rp Ptm- —i - sinh—

(2.7)
The effective coupling which is model dependent is

such that K,ff K as T 0; at the transition
2n K,ff 4. There is therefore no stability region for
uniaxial or threefold-symmetric perturbations p =2
and 3. A real planar system with sixfold-symmetric
perturbation, p = 6, however would be expected to
show typical planar-model behavior for

4 & 2mK, ff(9 (1.5)

4&2mKcff& qp (1.6)

That is, planar-model critical behavior should be ob-
servable for threefold-symmetric (p =3) perturba-
tions.

Below the lower critical point the system would

presumably select one of the six favored directions.
With our previous discussion in mind it is also im-

portant to know what is the corresponding behavior
for a random symmetry-breaking field. This question
will be addressed in the remainder of this article. We
find that the result corresponding to Eq. (1.4) is

Before we discuss the effects of disorder it is useful
to summarize the main points of the renormalization
scheme for the sine-Gordon theory Eq. (2.2). First
we note that the critical line of the spin-wave vortex
gas model starts at (ao, po) =(0, 8m). Therefore, in

order to develop a field-theoretic renormalization-
group treatment of the Kosterlitz-Thouless phase
transition it is necessary to understand how to renor-
malize (remove the singularities as a 0) the sine-
Gordon theory near Po= ger Colema. n" had shown
that normal ordering was sufficient to render the
sine-Gordon theory finite for Po ( 8m. However, as
po' approaches 8m the scale dimension of the operator
cos(P,$) approaches 2 (cosPO@ becomes a marginal
operator) and the sum of individually finite terms in

the perturbation series at a given order in o.o develop
a logarithmic divergence as the lattice spacing goes to
zero. In an important paper Aiv. it et a/. ' have shown
how these divergences may be removed by wave-
function renormalization, to third order in powers of
renormalized coupling constants n and 5= p'/8m —l.
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The result of this renormalization procedure, which
we will sketch belo~ was to rederive and extend
Kosterlitz's recursion relations.

The essence of the calculation is quite simple: an
expression for the bare, one-particle irreducible,
two-point function I' ' is derived by graphical
methods. The divergences of I"'" are located, ex-
panded in ap and Bp =Pp2/8n —I and then removed by

appropriate renormalization. The diagrammatic con-
vention is given in Fig. 1 while in Fig. 2 we give the
diagrams contributing to order no. In Fig. 1 the
dashed line represents the sum of an odd number of
propagators„[sinh/(x) —/(x)], while the wavy line

represents the sum of an even number,
[cosh/( x ) —1]:

FIG. 2. Diagrams contributing to the one-particle irreduc-
ible two-point function I' ' of the pure sine-Gordon theory
to order a2.

Explicitly

X =—exp[—/(x =0) ]
0,'0 ]

a' 2

2~o Po 2 2=—exp ln(cI»pa )a' 8m

/ ( x ) = Pp2G ( x )

The propagator which is defined by'

d2 ip ~ y

G(x,a) =q (2n') p +mp y x +a

1
IC p [m (x'+ a') ' ']

2m

(2.8)

(2.9)

It is convenient to define

2 2 ~0J = C)710 (Cf»OQ )

so that

= aoJao

(2.14)

(2. 15)

has Fourier transform

G(q) = I/(q'+mp2) (2.10)

exhibiting clearly /1p/87r = 1 as the criticai "dimen-
sionality" at this order. Summation of the O(up)
graphs gives

and asymptotic form

I "'(q ) = q'+ m' —X(q, m ) (2.12)

where X is the sum of a11 one-particle irreducible con-
tributions to the self-energy. The leading-order

O(ap) contributions to X given by the sum of all tad-

pole graphs are represented by the circle in Fig. 1.

G(x, a ) =— Incmp (x'+ a'),
~ x]mp (( 1, (2.11)

4m

where c = —e'~, y is Euler's constant and again use

has been made of a as an ultraviolet regulator. The
infrared behavior has been regulated by adding a

mass term —,mp $' to A p. This does not affect the

critical behavior and the mass term may be removed
at the end of the calculation.

The general form of I'" is

+ —,(apj )
1

x dx[ [cosh/( x ) —1]
el

—&' ' ' " [sinh/( x) —/( x ) ] ]

(2.16)

To locate the divergences in I' ' we examine the
value of I' ' and its derivatives with respect to q at
the point q'=0. Using Eq. (2.11) it is easily seen
that I'"(q'=0) and BI'2)/Bq'] 2 are divergent at

Po= 8', but all higher derivatives are ultraviolet con-
vergent, at least to this order. To second order in

(np, So) the divergences are

I"'"(q'=0) =mp' —apcmp'[I+goin(cmpa')+ . ]

and

1= 1 0!0 ln(ct»oa ) +
gq2 2 0 64

(2.18)

As noted by Amit et al. ' these infinities may be re-
moved by two independent renormalization con-
stants. Defining renormalized parameters, a, P, and

m and a renormalized field by

FIG. 1. Diagrammatic convention for the renormalized

uo vertex, and the two diagonal propagators [coshl (x) —1]
and [sinhl(x) —1] that enter the theory.

Ap=ZH, Pp=Zy P

mp =Zy m . f =Zygo
(2.19)
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Z and Z~ are chosen in such a way that the renor-
malized vertex function

r$" (q, a, g, m', K) =Z~I' '(q, np, gp, mp, a) (2.20)

is finite order by order in the double expansion in

powers of e and 5; K is a mass scale necessary to de-
fine the renormalized theory. To this order the renor-
malization constants are found to be

sine-Gordon function

((((x)((y))a),.=( InZIAJI), „

Z [h,J] is the generating functional of the sine-
Gordon theory

(3.1)

Za = 1+—„a'In(~'a')1 (2.21) Z [h,J] = „D[y 1

and

Z = I —8 ln()r2a2) (2.22)

)0

x exp — —(9@)~ + cosPo(t) +J(t)
2 P2a2

As the bare parameters cannot depend on the mass
scale, Kosterlitz's recursion relations are found by
differentiating Eqs. (2.21) and (2.22) with respect to
K

+
2

cosh
Po

80, 98 1
K = 2A'8, K = A

8K QK
(2.23)

r

—i, sinh = ' . (3.2)
. &2p . 2mpa

'
'

Po

III. SINE-GORDON MODEL WITH
RANDOM FIELDS

With this introduction we may now turn to a dis-
cussion of the effect of site disorder on topological
order. Technically, we investigate whether the sine-
Gordon theory with random symmetry-breaking field
can still be renormalized at Po~-ge;

We study the self-energy of the impurity averaged

Zn
lnZ = lim

n~0 n
(3.3)

hence

The & ),. „denotes impurity averaging and

))) is the thermal average for a specified ran-
dom field. It is convenient to rewrite lnZ in Eq. (3.1)
using the replica trick"

«g(x)(t (y)) p),„=lim — &Z"[h,J]),„)J () . (3.4)

Carrying out the average over the random fields

) (
n

&Z"[h, ]J),„„D[$]exp — X —,(11(t),)'+,
2 cosPpo)); +J X(t);

oQ

) ) ( )

go
" 2mp(t); 2n p (t)i, gp

" . 2n'p (t); . 2rrp Picosh cosh +, sinh sinhPo, Po, 2a' (~i ), Po, , Po

and

n n

«o)( )4(y)))..-1~m —XX&4 ( )4i(y))
n O n; av

(3.6)

where & ) t,
&

means thermal average for the
- av

replica field theory. In deriving Eq. (3.6) we have
used the fact that lim„p &Z") „='1. To derive an
expression for «(t)(x)(t)(y)) p)„we start from the

I

Dyson equation for the replica field theory

Ga(q) =G(i(q) +G(), (q)I'„'("G~&( q ) (3.7)

(3.g)

~here I qi" is the sum of all one-particle irreducible
(IPI) graphs; the propagators are matrices in ((t), (t))
space
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p 6
GjJ —SjJ =SJG

where average over (Z").,„ is understood,

(3.9)

where J is given in Eq. (2.14). In a similar way at
first order in gp2 we sum the tadpole graphs to normal

order the impurity vertex. We find

2
r

gp
h

2 7rp '@ h
2frp

@

The function G was defined in Eqs. (2,9)—(2.11) and

G(x a)=
~ dz,
x gG=-- 'a

X2 Xi

2n (x'+a')'' (x'+a')''tan

(x)mp « 1 . (3.10)

1 1 t

= —,gp Jz: cosh g;::cosh P
@, :, (3.17)

p p

where
t

Jg=a 'exp — G(0,a)2 vip

p

The matrix two-point function
(ep2/p )-1= cm,' (cm,'a') (3.18)

(2)
- (2)I,J I' J

IJ =-(» -(2)
&iJ & iJ

(3.11)
and

2
r

gp .
h 2&p@ „.

h 2rrp@

where I',jt2' has two amputated P legs, I;, one Q and

one P, and I",&t'l.two amputated $ legs. To all orders

in perturbation theory the general matrix structure of
the two-point function is

1 g ~ 27Fp -
~ 2%p-

, g p J, :—sinh $;::sinh
p p

(3.19)

I',)
' (n 8,~

—1)I'"
(ns,, I)r"' (—ng„l)r'—," (3.12)

X G,, =nGP+ QG'XI,)"X 0„
I i J

(3.13)

which as a result of the structure of I „' ' reduces to

G G G G I (') 0
QG,J —n — + -

0 0 $Q;.
jJ~1 iJ

(3.14)

The details of the derivation of this result are given

in the Appendix.
It then follows immediately that

The graphical notation for the cosh and sinh vertices
is given in Fig. 3. The terms of order gp only con-
tribute to I',)"and therefore do not affect ((PP)).

The first nontrivial contribution to I;,'" appears at

order npgp. There is only one graph at this order

which is shown in Fig. 4. In this diagram the slashed

wavy line connecting an impurity vertex with an 0,

vertex represents the sum of an even number of off-

diagonal propagators Eq. (3.10). Diagrams of this

type correlate the impurities with the vortices on the

dual lattice. To this order, when n 0,

I'"(q) =q'+m' —a J

+apgpJ Jp d'x [cospe(x) —1], (3.20)

where I'"= g,.",I',&", independent of j by replica

symmetry. In particular if we select the (1-1) ele-

ment

where

O(x) =2mG(xa) (3.21)

(($P)),„=G + G lim I'" ((y@)).,„. (3.1 5)
We have also obtained this result by direct calculation

The self-energy of ((@@))„is therefore lim„

In the remainder of this section we will determine
I'" to second order in up and lowest order in the im-

purity concentration gp. The leading-order contribu-

tion in o. is of course the sum of the tadpole graphs

in Fig. 1 which "normal order" the o. vertex. The
result is

27rp , ....oG,
leo

271 p

~0

0!p
cosPpf 0!pJ:cosi3p@:

a
(3.16) FIG. 3. Diagrammatic convention for the renormalized

random field vertices.
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FIG. 4. Contributions to I" at order ug . The slashed
lines indicate off-diagonal propagators.

without making use of the replica trick (see com-
ments in the Appendix).

As we noted in Scc. II, in thc pure sine-Gordon
theory additional divergences arise at order no when
po2~ Sw. These terms which were given in Eq.
(2.16) were made finite by wave funtion renormaliza-
tion. To investigate whether the wave-function re-
normalization must be modified in the present situa-
tion we must consider the nogo contribution to r' '.
The graphs contributing to I'2' 2 are given in Fig. 5.

OgO

Our result for I'" to order o.o and lowest order in go
1S

U
i
—Q-~--CI--~-Q —'

K

FIG. 5. Contributions to I at order Nogo.

1'2'(q) = q2+ mo2 —~oJ~+ ~ogo2J~Jg dx [cosp0( x ) —1]
2

——J' dx (e'" ' " [sinhl(x) —1(x)]—[coshl(x) —1] }

' 2 2

J2Jg
&

dx„dy (e'" ' " ([coshl(x) —1]sinpO( y ) sinpO( x —
y )

0

—sinhl (x) [cospO( y ) —1][cosp8( x —y ) —1]

—2[sinhl (x) —I (x) ] [cosO( y ) —1]}

+ 2[cospO( x ) —1][cospO'( y ) —1]+ 2[coshl (x) —1][cospO( y ) —1]

+ [coshl (x) —1][cosp0( y ) —1][cosp0( x —
y ) —1]

—sinhI(x) sinp8( y ) sinp8( x —y )) (3.22)

The renormalization of I "' and the conclusions that
can be dragon are given in Sec. IV.

that all the divergences of the pure sine-Gordon field
can be absorbed by two renorrnalization constants Z&
and Z, Eqs. (2.21) and (2.22), provided the theory
is also expanded as a power series in

IV. STABILITY OF TOPOLOGICAL ORDER
So = Po2/Sw —1 (4.1)

We have calculated 1""'(q) to second order in ao
and lowest order in go. Thc critical behavior is deter-
mined by those contributions which diverge as a 0.
As we discussed in Sec, II Amit et al, ' have shown

The divergences in the pure theory were analyzed in
Sec. II.

In the presence of a random symmetry-breaking
field additional divergences may appear. Therefore it
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may be necessary to introduce another renormaliza-
tion constant Zg, so that

gp = Zgg (4.2)

%e notice that due to the nature of the configura-
tional average (Appendix) any additional terms in-

volve at least one power of the vortex fugacity o.p.

Consequently, we are searching for critical behavior
in terms which couple the vortices to the impurities.

The lowest-order contribution is momentum in-

dependent

I'"
2
= aogo J,J~ „I d x [cosp 0( x ) —1]

0.
(4.3)

which can be integrated to give in polar coordinates
(r, e)

fPl I'

„2+a2 1/2
(4.5)

-mpr
Outside this region 0 ~ e and the integrand van-
ishes exponentially with increasing r. Hence, the in-

tegral is proportional to the area of a circle with ra-
dius in 1/mo and we write

so any extra divergences can be absorbed into Zg.
The integral is finite. In the region i x imo ( I the
angular propagator is defined by Eqs. (2.5), (2.9),
and (3.10)

(4.4)

We see that g2 becomes relevant for P02 & p2ir.
This result should be interpreted as specifying the

value of p for which a Kosterlitz-Thouless phase tran-
sition survives at po= 82r. If p' ( 8 which means

p =1, or 2 (uniaxial disorder), then as the tempera-
ture is lowered, the impurities become relevant (at
P02= p2m) before the vortices have a chance to con-
dense (at Po=gn). The transition which occurs at
p2m is of unknown variety and separates a high-
temperature phase dominated by vortices from a
low-temperature phase of vortices and impurities.
This situation is shown in Fig. 6(a) where the flow in

a at lowest order comes from Eq. (4.8). We antici-
pate that there are additional divergences in the
higher order terms which require that this theory be
renormalized around po2 ——p2m rather than 82r. We
can only say that the resulting critical behavior is not
Kosterlitz- Thouless.

Consequently, for the remainder of this paper we
will assume that p ~3 (concentrating on the most
physically interesting value p =3). Then we see
from Eq. (4.11) that, at lowest order, the impurities
are irrelevant until P02 & 9rr, a lower temperature
than the conventional LY transition. The flows of
the coupling constants are shown in Fig. 6(b). If we

JI dx [cospo'( x ) —1]=A/cm()

where A is a finite constant. So

(4.6)

I' ' =Jag'cm (cm a )
(p /Se )+(p e/p )-2

p
(4.7)

Now, to order O.p, eave-function renormalization is
not necessary (Za = I ) and

(a) p& 2

2) 1-((()()/Se)
(4.8)

Thus, doing the n renormalization in Eq. (4.7) gives

I "' = A ag 'cm'(cm'a') ' (cm'/)(2)
(p n/p )-[ (p+Se)-1

2 P

(4.9)

and we see that there is an additional divergence as-
sociated with the impurities when P02 & p2rr. In order
to make Eq. (4.9) finite we must define

2)1-(P w//20)
2 2

g (4.10) g
2

which implies that the renormalized coupling g' satis-
fies the flow equation

(b) p~&

r

g 2 91nZg =2 p —1
8 In)r Ii lnK p20

(4.11)
FIG. 6. (a) Lowest-order renormalization-group flows for

p2 ( 8. (b) Lowest-order renormalization-group flows for
8n & I8(') ( p n showing a Kosterlitz-Thouless fixed line.
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can believe these low-order results, they predict a
Kosterlitz-Thouless fixed line for

Sm & leo & p m (4.12)

4 & 2mKeff ( —,p (4.13)

Comparing with the result of Ref. 4, Eq. (1.6), we
see that the effect of disorder is to make the spin-
wave behavior of the planar model stable against an
underlying threefold symmetry in some finite tem-
perature range. Notice that relative to an ordered p-
fold field the smallest value of p for which an XY
fixed line is stable is halved (from p =6). We can-
not say much about the low-temperature phase

I

which can be written in terms of E,rr= Po/4m' to give

po & p'~. Here the impurities are relevant, and flow
is to zero-vortex fugacity and some large value of the
disorder. It is tempting to interpret this as the spins
becoming locked in to the underlying field in a phase
which bears some resemblance to a spin-glass.

Ho~ever, we have obtained these conclusions from
the lowest-order flow equations which are known to
be unreliable. Hence, before we can be confident
about the above interpretation we must investigate
the divergence structure at higher orders.

It is important to check that the impurities do not
modify the wave-function renormalization carried out
by Amit et al. The lowest order in which there might
be momentum-dependent divergences proportional to
go is nogo. The momentum-independent part of this
term is

2 2I') 2 (0) = — J'J tdx dy [ (e ""'—1)fcosp8( y ) cosp8( x —y ) + sinpO( y ) sinpO( x —y ) —I ]

+ 21(x) [cosp0( x ) —1]+ 2[cospO( x ) —1][cospO( y ) —1] ) (4.14)

and the integral is finite. The divergence in J is canceled by the renormalization of a in Eq. (4.8), so this term
is proportional to go Jg, just like Eq. (4.9) and requires no additional renormalization. The momentum-dependent
part which contains a potential new divergence is

2 2

I'22' 2(q) = — J2Jr dxdy (e'q ' " —1)e't"'[I —cosp8( y ) cospO( x —y ) —sinp8( y ) sinpO( x —
y )]

(4.15)

The only region where the integral might diverge is
~
x

~
& 5 where b, mo && 1. There

2

I (x) = — lncm02 (x'+ a'), ( x (mo « 1
4m

Thus, consider the integral

(4.16)

i' x
dx dy [I —cospO~( y ) cospO( x —y ) —sinpO( y ) sinpO~( x —y )] . (4.17)

[car 2 (X2+a 2) ]P2/4~

Integrating by parts on ~ x
~

and using the fact that

=0, iximo & 1, (4.18)

which follows directly from the Cauchy-Riemann
equations defining 0, it is easy to see that the small

~
x ~ part of J is multiplied by

1 —cospO( y ) cospO( —y ) —sinpO'( y ) slnpO( y )

(4.19)

which vanishes since 0( y ) =0(—y ). Hence, we find
that the dependence on the cutoff of I'2' 2 is exactly

0 0

the same as that of I""'2. This is a crucial observa-
Po

tion because it means that the wave-function renor-
malization carried out by Amit et al. is sufficient also
for weak disorder. %e might also note that the term
order o.ogo has exactly the same dependence on the
cutoff as nogo.

Hence, in our expansion to second order in eo and
lowest order in go, all contributions from the impuri-
ties are finite provided p ~ 3. No renormalization of
go2 is required and the flow equation for the renor-
malized couplings are just those of Kosterlitz as
derived by Amit er al. , Eq. (2.23). Consequently for
small positive 5 flow is to the Kosterlitz-Thouless
fixed point n'=5'=0 and the expansion in powers
of n and 8 can b expected to converge.

However, from the lowest-order results for the im-
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purity terms we might expect this expansion to break
down at some point. As we have just noted to the
order considered the Kosterlitz equations are in-

dependent of g'. Since this flow is towards n'=0 for
5 ) 0, any terms in Eq. (4.11) which go like

g x power of o. can be set to zero. Hence, Eq.
(4.11) is valid to lowest order in g' and all orders in

8 & 0 and can be used as a guide to the region of
validity of the 5 expansion. We see that, when p =3,
g' flows to zero (impurities are irrelevant) provided
8 ( —,. At 5 = —, the impurity vertices become margi-

nal, and for larger values of 5 are relevant. Hence,
we predict that the Kosterlitz-Thouless fixed line ter-
minates at 5 = —confirming our lowest-order result.

8

It is comforting that this occurs for such a small
value of 5 when p =3. We are inclined to trust the 5
expansion in this range.

This result enables us to predict the exponent q for

p =3 at the upper and lower transition temperatures,
T, (g') and T2(g'), corresponding to 5=0 and —, ,

respectively, From Ref. 4,

I
7l =

2mK, fr
(4.20)

Hence, we find that rt = —, as T goes to T~ (g') from

below and rt =
9 as T goes to T2(g') from above.2

The g2-T phase diagram for p =3 is shown in Fig. 7,
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FIG. 8. Typical diagrams contributing to I 2, the diagrams
shown here combine to give a factor of ( I —nb~).

(i) The coupling between the spins and the random
impurity field, Eq. (2.7) is rotationally invariant and
this symmetry is preserved by the impurity distribu-
tion Eq. (1.3).

(ii) Note that there is an alternative to the n 0
trick for calculating Green's functions of the
quenched system: Calculate the connected Green's
functions for a fixed but arbitrary impurity configura-
tion and then average the result over the impurities. "

The replica method we have used provides a con-
siderable simplification because it builds in the sym-
metries of point (i) which result in a massive cancel-
ation of diagrams if Green's functions are calculated
prior to averaging. However, when n AO the replica
method includes some diagrams which would be
disconnected before averaging. The n 0 limit-re-
moves them [see Eq. (3.3)]. We show that the only
diagrams allowed by (i) to contribute to I',,'" and I,,'"
would be disconnected if we worked with a fixed-
impurity distribution. These diagrams combine to
give factors of I —n 5;, which vanish when n 0 ac-
cording to the prescription of Sec. III. We carry out
the proof, which amounts to enumerating all possible
diagrams, only for the off-diagonal two-point func-
tion I I'". The proof for. I",&"' is similar.

Rotational invariance is manifest in the replica for-
mulation of Eq. (3.5), where the interaction with the

I

APPENDIX

Here we prove that the matrix two-point function
I'2' has the structure of Eq. (3.12), i.e., we show
that I &" and I „'"' vanish when the n 0 limit is

taken. The essence of this result is the two following
observations:

EL C j-Q- -~
= ( I-8[j) - (n-I) 8;j

El ~j
([ 8jj)( -[) — ( -2-8[j)

El
I
—Q-~-~-----o—

i + i —Q-w-~-----&

=(n-[) 8', j
- ( I

—8;j )

FIG. 7. g -T phase diagram for p =3. FIG. 9. Remaining. contributions to I 2.
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random impurity field is

2
go

X o h2npp; o h2mp

i&J

h 21') . h21lp)
Po Po

(Ai)

by the requirement that i &j. This implies that di-

agrams in which both "boxes" of an impurity vertex
are connected to the same vertex are not allowed, be-
cause the propagators are diagonal in replica space
and would require i =j. Consequently, the only al-
lowed diagrams would be disconnected before averag-

ing.
In Fig. 8 we show a pair of diagrams which com-

bine to give a factor 1 —n 8&. Here the shaded boxes
are taken to be identical in the two graphs and are
connected together only by the impurity averaging.
Otherwise the notation is conventional. The first
graph in which both external legs are connected to
the same "black box" is proportional to (n —l )SJ,
since there is a free sum over the replica label of the
upper box except that it must not be i. In the second
graph we must have i &j and it has the opposite
sign, so is proportional to —(1 —5,, ). Adding we ob-
tain the factor 1 —n 5„". The remaining diagrams and
the way in which they combine to give 1 —n5,&

are
shown in Fig. 9.
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