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Theory of radiative recombination by diffusion and tunneling in amorphous Si:H
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A theory for geminate electron-hole recombination in amorphous semiconductors is given, which includes the
effects of both difFusion and tunneling. The exact solution of' the model is obtained neglecting the Coulomb
interaction, which is included later in the prescribed diffusion approximation. It is shown that any combination of
diffusion and tunneling will lead to a t '" long-time behavior for the reaction rate. The model is used to carry out
an analysis of the photoluminescence decay in plasma-deposited amorphous Si:H as a function of temperature. The
t '" long-time decay is observed at intermediate temperatures {T-150K), and the calculated luminescence

quenching is in good agreement with experiment. The initial thermalized pair distribution function of electron-hole
separations obtained from the low-temperature {T= 8 K) luminescence data is used to determine the Onsager
photogeneration efficiency at room temperature. The calculations are in good agreement with the corresponding
quantum efficiency obtained from recent xerographic measurements on the same material.

I. INIODUCTION

Eff icient photoluminescence has been reported
1D hydx'ogeDRted -Rmox'phous 8111con px'epRx'ed with
a low defect density. '2 Experimental investiga-
tions have resulted in a model of a radiative tun-
neling mechanism in which the electron and hole
are localized in band-tail states, sepaxated by
a distance of order 50 A. ' Studies of the tempera-
ture dependence of the luminescence decay have
led to a qualitative understanding of the effects
of carrier diffusion on the radiative and nonradia-
tive processes in terms of an Qnsager model.
Recently we have reported the results of a model
calculation which provides a more quantitative
description of the recombination. ' In this paper
the calculation and the experiments to which they
apply are described in detail.

The samples studied here were prepared by
plasma deposition of undiluted SiH4, using low rf
power (leer)'. The time-resolved luminescence
measurements were pex'formed by a gated photon
counting technique~ d6sc1 1bed 1D detRll elsewhex'e.
Pulsed excitation down to 50 nsee was used, the
excitation wavelength being 5309 A. The lumines-
cence decay is found to be independent of excita-
tion intensity until the electron-hole pair density
exceeds about 1.5x10' em ', beyond which non-
geminate recombination becomes important. ' The
current experiments were all carried out at low
light intensities so that recombination takes place
mainly through geminate pairs.

The calculation is based on the geminate recom-
bination model used to analyze the photoconductiv-
ity quantum efficiency of chaleogenide glasses, "
but which now includes thermally activated diffu-

sion and the radiative tunneling mechanism. Vfe
show that the calculated decay is in good agree-
ment with experiment and that reasonable values
of the diffusion coefficient axe obtained. Various
other predictions of the calculation are also dis-
cussed.

Before describing the ea1culations we summarize
the experimental information upon which the model
is based. 7he model was developed by Tsang and
Street, s and is supported by other reported data 8

although previously a different recombination
mechanism has been suggested. ' The principal
experimental result is the observation of a broad
distribution of decay times extending from 10 ' see
to 10 ' sec'. The decay is interpreted as a tun-
neling process in which the radiative recombina-
tlon x'Rte I'„ is g1ven by

~„=(g, exp(- 2y/r g.

~, is of order 10' sec ' for an allowed transition,
g is the electron-hole separation, and y, is the
effective Bohr radius. The wide range of decay
times originates from the initial distribution f (r)
of electron-hole separations. From the decay
data one can directly obtain f(r) which typically
peaks at -5~0.

Tsang and Street also deduce that a geminate
recombination model applies at low excitation
1nteDS1ty. At h1gh intensity thex'6 ls R t1Rns1tlon to
nongeminate recombination which occurs when
the separation between pairs becomes less than
the mean value of g. This transition is observed
as a change in the recombination kinetics and can
be directly observed in the luminescence decay.
All the calculations described here refer to the
low-intensity geminate regime, to which the data
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also apply.
The use of Eq. (1) is based on the assumption

that carrier diffusion is negligible and thus the
time dependence of f (r) is governed by tunneling
recombination alone. Tsang and Street argue that
this assumption is vabd at low temperature (-10
K), but breaks down as the temperature is raised.
Their evidence is that tbe radiative decay time is
observed to decrease by about an order of magni-
tude between 10 and 80 K. They interpret the
change as a decrease in the mean value of y in

Eq. (1}, originating from the thermally activated
diffusion of the electron and hole. The qualitative
description which forms the basis of our calcula-
tions is the Onsager model in which these temper-
ature ranges are important:

(1) I.ow temperatures (0--20 K}. Here diffusion
is negligible and the time dependence of f (r) is
given by tunneling recombination.

(2) Intermediate temperatures (-20-60 K). Dif-
fusion now becomes significant. The average
electron-hole separation is much less than the
Onsager radius [Eq. (18}]so that the electron and
hole diffuse together, ' increasing the radiative
transition rate.

(3) High temperatures (~ 60 K). The Onsager
radius becomes comparable to, or less than, the
average electron-hole separation and the thermal
energy is sufficient to overcome the Coulomb in-
teraction. The pair separates, giving a nonradia-
tive process which decreases both the observed
decay time and the luminescence efficiency.

The transition between regimes (2) and (8) is
taken to be the temperature at which the tumines-
cence efficiency begins to decrease. The transi-
tion temperature between regimes (1) and (2} is
less easy to establish. However, the assumption
of no diffusion at 10 K is supported by the small
change in the decay time between 10 and 45 K.

Our calculations therefore use the 8-K decay
data to establish the initial distribution f (r) of
pair separations. We then introduce a diffusion
coefficient B as a parameter which determines
the additional time dependence of f(r) Since we.
are assuming a thermally activated D, the tem-
perature dependence of the decay is implicitly
contained in this parameter. The diffusion para-
meter is assumed to be constant for all electronic
sites. In effect we are averaging over the energy
distribution of band-tail states. This assumption
represents a serious departure from the real
situation, but is required to give a tractable cal-
culation. The approximation is most serious at
fairly low temperatures when diffusion is over
a small distance and is largely determined by
the local distribution of states. At high tempera-

tures when diffusion is the dominant effect, a
unique value of D is a more reasonable assump-
tion. Details of the calculation follow in Secs. II
and III, and a discussion of its application to
a-Si:H is given in Sec. IV.

~po =DV po —(d~ "opo, (2)

where D is the sum of the diffusion coefficients
of the two particles, ro is the tunneling length,
and ~o the tunneling rate.

The solution of Eq (2} w. hich is of particular
interest bere is the radially symmetric Green's
function po(r, t iu), corresponding to the initial
condition

p, (r, 0 iu) = 5(r -u)/(4nu'),

where g is the initial separation of the pair, and
the boundary condition

p,(a, tiu)=0,

where the latter equation describes recombination
on a perfectly absorbing (black body) sphere of
atomic dimensions at the origin with radius g(y.
It is convenient to derive the solution in terms
of eigenfunctions of Eq. (2) of the form

2t
pa(r t)=ac(r)e' ',

where g, satisfies

1 d &, dg, 't' I+ (o"k'-&'e ~}g„=0, (6)

with the boundary conditions

g„(a)= 0,
k' being the eigenvalue. In Eq. (6) we have used
ro as the unit of length, &g,

' as the unit of time,
and set co, r02/D = o. '.

It is well known that Eq. (6) can be transformed
into a Bessel's equation with the change of vari-
able"

Z =(xe

g, (r) = (1/r)f, (z),

giving

d'f~ de

(8)

(9)

(10)

II. SOLUTION OF DIFFUSION EQUATION
WITH TUNNELING

For the time being we neglect the Coulomb inter-
action between the electron-hole pair and take
into account only tunneling recombination. The
probability density po(r, t) that the pair is separ-
ated by a distance z is determined from the Smol-
uchowski equation~
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The solutions of Eq. (10) are modified Bessel
functions with imaginary index, f«„,(z). Using
the boundary condition Eq. (t) we obtain

rikant and Kotomin. " The amplitude of the den-
sity distribution function depends on the initial
separation u [through Pg(u)], as well as the point
of observation r [through jg(r)].

The functions gz(r) form an orthogonal and com-
plete set.

It can be verified easily that

III. PRESCRIBED DIFFUSION APPROXIMATION

In order to take into account the Coulomb inter-
action between the electron-hole pair, we modify
Eq. (2) to give'

J dr r'g, (r)g;(r) = Ã, 5(& —&'), (12)
~O =Ddlv Vp+ 2 p —uoe "p,

where

sinh(n }tv)

The completeness property can be demonstrated
by solving Eq. (2) using the I aplace transform
and verifying that the only singularity of the solu-
tion is a simple branch cut along the negative real
axis. This is equivalent to the statement that all
the eigenvalues are real, positive, and nondegen-
erate. The time-dependent Green's function, cor-
responding to the initial condition Eq. (3) can then
be easily obtained:

a'(rka(u) -a2)
Qg

(14)

contrary to statements in the literature. ""
At this point we are obliged to comment on a

previous solution to Eq. (2} given by Berlin, "
who claims that f, (z} must be equal to K,.~(z).
Berlin's argument is based on an obvious math-
ematical error, and consequently his conclusion
that the eigenvalue spectx'um ls discrete ls in-
correct, as. is some of the subsequent work based
on his results. ""It is clear from our earlier
discussion that the eigenvalues have a continuous
spectrum.

In the limit 0- 0 it can be shown from Eq. (11)
that

g~(r)= . (& —o),
n&a(r)

Jo ne'

p(r, t) = I" (t)p, (r, t), (19)

where p, is the solution of Eq. (2). Substituting
Eq. (19) into Eq. (18) and integrating over r we get

inp(t) = -4mor

where g, (t) is the survival probabibty in the ab-
sence of th.e Coulomb interaction,

where r, =q'/ekzT is the Onsager radius, (I is the
magnitude of the electronic charge, q is the dielec-
tric constant, and~ is the unit vector. The exact
solution to Eq. (18) is not known. However, at
low temperatures where the cax'rier mobilities
are smaQ and xecombination takes place predomi-
nantly by tunneling, the Coulomb term may be
regarded as a small perturbation and treated by
a variant of the prescribed diffusion approxima-
tion (PDA) developed by Mozumder. " We also
take the limit of a vanishing radius for the per-
fectly absorbing sphere at the origin, and set
g = O. As we have shown earlier~ this does not
lead to a divergence, and is equivalent to using
the Qnsager boundary condition at the origin,
p(0, t) g~. Only pairs which are initially very
close are poorly described in this approximation,
while the specific details of recombination of the
more distant paix's are unimportant in our model.
At room temperature, tunneling recombination
may be ignored, as shown in Appendix C, and
Eq. (18) may be solved exactly. The validity of
the PDA in the high-temperature limit is dis-
cussed elsewhere. '

In the PDA we assume

a(r) = —K,(ne ") — ', f,(ne ")
Io ne (18) D.(() = 4w ( ~'dr p.(r, () ,(21)

is the well-known steady-state solution to Eq (2).".
When Eq. (15) is used in conjunction with Eq. (14),
the following long-time behavior for the Green's
function may be established:

3/2

po(r& tlu) =
~

a(r)h(u)(t- ~),
(4zg

a result which has been reported earlier by Fab-

The corresponding survival probability including
the interaction is then given by

(22)

and the. recomblnatlon rate ls

„()
do(t)
df
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t

tt, (t) deet, f=r*dr e '
p, (r, t)

0
(25)

Now the solution of Eq. (2) corresponding to the
initial condition

p, (r, 0) = f(r) (26)

is given by integrating the normalized initial dis-
tribution with the Green's function Eq. (13),

p, (r, t) =4m J" u'du f(u)p, (r, t[u)
0

-& t2

dk ' dQQ' Q g~ Q, 27
0 &). o

where we have again used ro as the unit of length
and ~o' as the unit of time.

Using the relation

2n'k
&a (2S)

we have

From Eels. (20) and (22) we find

ft (t) = F(t)[4~@,p, (0, t) + ft,(t)], (24)

where ~,(t) is the recombination rate due to dif-
fusion and tunneling alone (neglecting the Coulomb
interaction):

teraction may be calculated within the PDA by
using E(ls. (20), (22), and (24).

IV. APPLICATION TO a-Si:8

Figure 1 shows new luminescence decay data for
g-Si:H at temperatures ranging from 8 to 150 K.
The data are slightly different from those reported
by Tsang and Street, for two reasons. First, the
luminescence is measured at the peak of the spec-
trum (-1.4 eV at 8 K) rather than 1.3 eV as in
Ref. 3. The time-resolved shift of the lumines-
cence spectrum leads to a weak energy dependence
of the decay. In particular, the high energy en-
hances the fast decay components and causes the
change in slope below 10 ' sec seen in Fig. 1.
Second, we have been particularly careful to use
a sufficiently low excitation intensity to avoid the
transition to nongeminate recombination. This
leads to a larger luminescence intensity at very
long times than was reported previously. In our
theoretical analysis we neglect the small shift
of the time-resolved spectra to lower energy, as
well as the fast decay components.

The solid line fit to the 8-K data in Fig. 1 is
obtained using the expansion

N
der'fir) re 'g tt„exp(=-d, e'), (33)

OO 4)O

p (0, t) = duke duu f(u)g„(u), (29)
0 0

while the corresponding reaction rate and survival
probability are given by

8K".
I

a-Si:H

"dk 2

tt (t) 4tr f d=rr e 4 lrl
o &n "o

X dQQ Qgk Q
0

tt, (t) n, (")+f dt'dt, (t')=
t

oo
dk

-Q t oo

=f1,( )+ 4e ', der'e '"g, (~)
o k'&~ o

(3o)

I-

LLJ
Oz
LLj
O
V)
Llj

LLI)
LLI
K

)20

150
los

(O4

IO

)02

where

du u f(u)g)4(u),
40

(31)

00(~) =4w J dry f(r)~Ko(ne ") — ' Io(ae ")).E.(~)
0

0 I 0

(32)

E(luation (32) is derived in Appendix A. Correc-
tions to Eqs. (30) and (31) due to the Coulomb in-

Io-4 I0IO-'
TIME (sec)

FIG. 1. Log-log plot of photoluminescence decay
curves it different temperatures in response to an ex-
citation pulse of short duration. The solid lines show the
fit to the theory described in the text. The excitation
energy is denoted by E„, and the luminescence energy
E
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and the coefficients A„, B„are determined by a
least-squares fit of the theory to the experimental
luminescence intensity given by

THERMALIZATION DISTANCE (A)
12.7 25.3 38.0 M.7 63.3 76.0 88.6

I I

«g„f(t) = C+ log„[R(t)/R(t, )], (34)
1O' 0.6

where t." is a constant and t, corresponds to the
time of the first data point. At low temperature
the recombination can be reasonably assumed
to take place by tunneling only, and in this case
Eq. (25) reduces to

ft,'(t) = const —G (T}e ' '""
dT

40

Comparing with Eq. (35) in this paper gives

4''f(y ) = const TG(T),

where r = (~,/2) ln(&u, T) and this relation is valid
only when diffusion is negligible.

The thermalization distances shown in Fig. 2
were calculated using ~0=11 A, &0=10' sec '.'

(3'f)

(38)

TABLE I. Values of parameters for xLormalized dis-
tribution function, Eq. (33).

9.369 x 102
2.226 x ].03

7.944 x 10
5.903

3,238 x10
1.636 x 10
1.564 x 10
5.534 x 10 ~

tt (t)=4ttt f r'ttt'e'~"f(t')exp( twe~-),, (p'pl
0

so that Eq. (33}gives

N
tt, p)= gtt„ f tttttt'lltttttllettp(-tt„tt —tM'l. (ptt)

ye=1 0
t

The values of the coefficients up to &= 4 obtained
from a best fit of Eqs. (34) and (36) to the 8-K
data are given in Table I. We note that a general
numerical evaluation of the recombination rate
at higher temperatures is very difficult because
of the wide range of integration over k in Eq. (30)
and the relatively large values of oI (arising from
small values of the diffusion coefficient) in the
arguments of the Bessel functions. The choice
of the functional form for f(z) given by Eq. (33}
allows the interior integrals in Eq. (30}to be done
analytically (as shown in Appendix B) and greatly
simplifies the calculation of the recombination
rate.

The shape of the initial thermalized distribution
of electron-hole pair separations is shown in Fig.
2 and should be compared to the lifetime distribu-
tion g(T), obtained earlier' from an analysis of
the data for 7 =12 K, using the expression

I-
tO
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LLJ
I
Z
LLI 4V 10-x
LLL

V
CO
LLL 3x
X

LLL 2

I-

LLI
IK

0.5 &
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0.4 +~

x0
0.3 D

IS
K
L-
(0

0.2 &

0.1

10
1O-' 1O-' 1O-6 1O-5 1O-4 1O-3 1O-' 1O-'

T IME (ssc}

FIG. 2. Initial thertmalized distribution function of
electron-hole pair separations, obtained from a least-
squares fit,of Eqs. (34) and (36) to the data shown in the
figure. The thermalization distances (upper scale) for
the distribution function were calculated using the re-
lation foQowing Eq. (38) in the text and assuming xp 11
A, ~p =10 sec . As in Pig. 1, E„denotes the excita-
tion energy, and EI is the luminescence energy.

The small hump in the distribution function for
t-10 ' sec shown in Fig. 2 is absent in the earlier
analysis. This feature ar ises from the best fit
of our theoretical curve to experimental points
which are slightly scattered at short times. Other-
wise the distribution functions are very similar,
as expected from Eq. (38).

We now assume that the initial distribution func-
tion remains unchanged as the temperature is in-
creased, and the change in the luminescence decay
is due solely to thermally activated ditfusion. Qf
course when diffusion becomes important the re-
lation Eq. (38) is no longer valid, although it may
still be useful to calculate a temperature-depend-
ent lifetime distr ibution which incorporates the
effects of diffusion in some average way. ' For a
fixed initial distribution, the reaction rate at high-
er temperatures depends on only one parameter,

The solid-line fit to the 150-K data in Fig. 1
is obtained from the calculation with a value fca
(y of Vy1.

We find that most of the decrease in lumines-
cence intensity at higher temperatures is due to
a combination of tunneling and pure diffusion, and
the effect of the Coulomb interaction is negligible
except for short times (corresponding to small
distances). 7he value of the diffusion coefficient
required to fit the data is so small as to practical-
ly eliminate the contribution of the Coulomb term
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(containing r, ) in Eq. (24). We speculate that the
small effect of the Coulomb term may be related
to potential fluctuat'ions in the amorphous material,
which tend to local. ize the charge, leading to an
effectively reduced Coulomb interaction in our
model.

Qne important general result of the calculation
is that in the diffusive regime the decay has a
time dependence t '~' [see Eq. (17)]. Figure 1
shows that the high-temperature data accurately
follow this relation, thus providing strong experi-
mental support for the model. The asymptotic
curve for the pure tunneling case is reached for
longer times than shown in Fig. 2, and the theoret-
ical result is of little value here because it de-
pends on the form of the distribution function out-
side the interval for which it is accurately known.
The small discrepancy between the calculations
and the data at short decay times may arise for at
least two reasons. One is the presence of a fast
component in the decay due to thermalizing carri-
ers which we have not allowed for in the calcula-
tion. The second is that our assumption of a sin-
gle value for the diffusion coefficient is most like-
ly to break down at short times, when the effects
of the local distribution of sites is most important.
Taking into account these effects, we believe that
our results show good agreement between theory
and experiment.

Two further checks on the validity of the model
can be obtained from our calculations. First,
from the value of z we deduce a mobility of
2x10 ' cm'/V sec, using the Einstein relation,
and the values of p pp quoted earlier. We antici-
pate an uncertainty in this value of not more than
an order of magnitude, arising mostly from the
estimates of &,. Thus our results compare reas-
onably well with the measured electron mobility
at 7' = 150 K in similar samples of 10 ' cm'/V sec."
Second, the temperature dependence of the lumi-
nescence intensity can be estimated from the cal-
culation under the assumption that it is represent-
ed by the fraction of electron-hole pairs that do
not separate. At T = 90 K we estimate the lumines-
cence quantum efficiency to be 709&, which is in
excellent agreement with the observed decrease
from the peak value. This result provides inde-
pendent confirmation of the validity of the model.

Finally we use the initial thermalized distribu-
tion function shown in Fig. 2 to estimate the quan-
tum efficiency of photoconductivity at room tem-
perature as a function of the electric field, assum-
ing that all charge carriers which do not recom-
bine can be collected by the electrodes. Qf course,
we would expect this assumption to be valid only
at high electric fields, and in general. the observed
photogeneration efficiency at low fields would be

IO

a-Si /
/

/ /

Ex=2335eV /O /
T=300K

O /

U rh. /
LLI /
X

ra-Se &Z r

&IOa
I 0 0

a-Se:f(&) 4~ 2 S(r-u), u=8.8A, rc=88A
4ITu

0
a-Si:f (r) from luminescence data, rc=48A

IO
O3

I I

IO4 C5 IO'

APPLIED FIELD (V&cm)

FIG. 3. Calculated quantum efficiency of photoconduc-
tivity {charges/'photon) for a -Si:H, using the distribution
function shown in Fig. 2. The curve for a-Se at the
same excitation energy (E„) is obtained by interpolating
the results of Ref. 6.

lower than the theoretical value because of trap-
ping in the bulk. At room temperature the dimen-
sionless parameter &'=&y 0/D is very small
(-10 4), and the effect of tunneling can be taken
into account in a perturbation calculation, as out-
lined in Appendix C. The end result is that tunnel-
ing is completely negligible at T= 300 K, and Fig.
3 shows the results of the standard Qnsager cal-
culation of the quantum efficiency, ' except for
the fact that we have integrated over the actual
distribution function shown in Fig. 2 instead of
using the spherically symmetric p function. The
interpolated values of the photogeneration effici-
ency for a-Se at the same excitation energy
are shown by the dotted line, and are obtained
from the data in Ref. 6. The curve for ~-Si:8 is
higher than reported previously because earlier"
we used an incorrect value for the dielectric con-
stant. The results shown in Fig. 3 were obtained
using the correct value, q = 11.5.

As usual in the Qnsager calculation of the quan-
tum efficiency, we assumed a perfectly absorbing
sphere of small radius at the origin of the recom-
bination center. If the electron-hole pair encount-
ers a potential barrier at small separations, it
would be more appropriate to assume a partly
reflecting boundary condition, "and this would
increase the calculated quantum efficiency over
that shown in Fig. 3. However, in the absence of
any microscopic information about the final recom-
bination step, we choose a perfectly absorbing
boundary and compute the lower limit to the theor-
etica) quantum efficiency shown in the figure.
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However, this curve is still expected to be higher
than the observed quantum efficiency at low elec-
tric fields because of trapping in the bulk, as men-
tioned earlier.

Hecently xerographic discharge measurements
have been carried out on samples similar to those
used for the photoluminescenee measurements. '0

For high electric fields (E- 5x104 V/cm} the cal-
culations are in excellent agreement with experi-
ment. At lower field strengths, carrier trapping
is observed and we will have to wait until a more
involved experiment is performed to verify our
cal.culation over the whole fieM range. Neverthe-
less the fact that the predicted high quantum effic-
iencies are observed at high fields adds more
support for the geminate recombination model.

and excitation energy. Further experimental in-
vestigation of these effects would be very valuable.

In conclusion, we have developed a new model
of geminate recombination which includes tunnel-
ing and diffusion, and we have discussed photo-
luminescence and quantum efficiency of photo-
conductivity measurements which give strong
evidence for the applicability of the model to
g-Si: H. In addition, we have obtained an estimate
of the microscopic mobility which can be related
to future time-of-flight experiments. We suggest
that the luminescence of chalcogenide gla, sses can
be explained by the same recombination mecha-
nism which takes place in g-Si: H and we note that
our model can apply to transitions involving defect
states provided that one of the carriers is free
to diffuse in band-tail states.

V. DISCUSSION AND CONCI. USIONS

Geminate recombination has previously been
discussed for chalcogenide glasses. In that case,
emphasis has been on the quantum efficiency of
photoconductivity, which is given by the fraction
of pairs that do not undergo geminate recombina-
tion. The validity of the model for g-Si: H suggests
widespread applicability to amorphous semicon-
ductors. The same t ' ' decay is observed in am-
orphous Si:0 for a wide range of compositions, "
and the luminescence decay in &-As,83 also ex-
tends over many decades in time with a t
asymptotic behavior. " These results are perhaps
not surprising because the model. is of particular
relevance to systems with a short carrier mean
free path. There are, however, differences in
the detailed application of the geminate model for
chalcogenides and g-Si: H. Chalcogenide glasses
are noted for a room-temperature photoconductivi-
ty quantum efficiency which depends strongly on
both electric field and excitation energy. However,
similar effects are much less pronounced in non-
chaleogenides. It has been argued that this is due
to a different mechanism of geminate recombina-
tion. It is assumed that chalcogenides have a very
efficient nonradiative recombination mechanism
over a wide range of temperature, while in g-Si:H

it is much weaker. Qur results support this model
in that we find at higher temperatures (T & 150 K)
the diffusion rate is sufficiently large to quench
the radiative recombination by tunneling. Thus,
unless some other geminate process takes over,
we would predict a photoconductivity quantum
efficiency close to unity and approximately in-
dependent of electric field and excitation energy.
However, if the temperature is sufficiently low
that the luminescence has high efficiency, we pre-
dict that the photoconductivity quantum efficiency
will show a strong dependence on electric field
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APPENDIX A: ESCAPE PROBABILITY
FOR DIFFUSION AND TUNNELING

p, (a [u) = p, (Q'u) = 0,
2

p,'(u+ 0~u) —p,'(u —0~u) =—

(A2)

the last equation being due to the inhomogeneous
source term in Eq. (Al), we obtain the solution

2

p,(r~u)= 4 I,(ne" )h(r, ),
7lg p

where

r, = max(r, u),

r, = min(r, u).

(A4)

(A5)

and&(r) is defined by Eq. (16).
The survival probability or escape rate is. then

easily obtained as

The ultimate survival. probability for the case
of diffusion with tunneling can be determined from
the steady-state solution po(r ju). For the initial
condition Eq. (3), the corresponding steady-state
equation is (in dimensionless variables)

1 d (,dp„)
n r' dr~ dr j ' 4''

7he general solution of the homogeneous part of
Eq. (A1} is a linear combination of the functions
r '&0(ne ") and r 'Io(ne ). Using the boundary
conditions
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n, ( ) = iim —,—p, (r~u))l
which may be generated using the recurrence re-
lation"

=h(u). (A8) zI'(a+ 1)y*(a+ 1,z) =aI'(a)y*(a, z)- e '. (B5)

Setting a = 0 and integrating Eq. (A6) over the ini-
tial distribution f(r) then gives Eq. (32).

APPENDIX B: COMPUTATIONAL METHODS

From Eqs. (11), (30), and (31), we see that it
is necessary to compute integrals of the form

and

I, = J[ drre I, ~( ne ")
0

I2= ~ dr e "exp(-Ae ")I&„(ne "),
0

(Bl)

(B2)

where p, = ~ k.
Using the series expansion for the Bessel func-

tion, we find

exp[-i pch '(A/a)]
I2

(A
2 2)ly2 )& n (B6)

For moderate values of tj, , Eqs. (B3)-(B6)can
be used in the computation. However, when p,

is small, the real parts of these integrals domi-
nate and the imaginary parts generated become
inaccurate in this case. It is then necessary to
compute the imaginary parts of the integrals sep-
arately. Thus we also require expressions for
the following integrals:

Ja= d't xe '"+&q ae
0

(B7)

When g»~, the upper limit of the integral in

Eq. (B4) may be extended to ~ and in this case we

get24
'

and

( /2)22+i'

2 2 k!I'(I+0+ jp)(2+ 2k+i'}2 ' (B3)
J2= dhe "exp -Ae "A,„ne " .

0
(B8)

j.

I,= du e ""I,„(nu)
0

Using the integral representation for the Bessel.
function"

, (B4)
(n/2) +'" I'(2k+ 1+i p)y*(2k+ I+i p, ,A)

k!I'(I+ k+ ip, )

where y*(a, z) is the incomplete gamma function"

A,„(z)= „dt(cosset)exp(- zch t),
0

we find

(B9)

1-

dt costj t du u~ ln u[exp(-nucht}
0

ln(ncht)+ (y- 1)+exp(- ncht) + E,(acht)
dt cosy. t

0 Q Ckt

(p, 2/2)[ln(n/2)- Rett(1+ip/2)] 1 "
cosset'+ —, dt 2 exp -acht +Z, ncht ], (Blo)

where tt (z) is the digamma function" and E,(z) is
the exponential integral. Note that for ~ » 1, the
remaining integral in Eq. (B10) is negligible com-
pared to the first term:

(p2/2)[ln(a/2) —Rett (1+ ip/2)]
n 2sh(p. v/2)

Similar ly,

J2= dt

cosset

, (A+n»1)A+ ncht '

v sin[pch '(A/n)]
(A'- n')'i' sh(pv)

w sh[p, cos '(A/n)]
(

2 A2)g/2 h(
'

)
(A& n). (B13)

J2= dt
(cosp, t)[l- exp(-A- acht)]

A+ acht

so that for (A+ a)» 1 we have'4

(B12)

APPENDIX C: PERTURBATION TREATMENT
OF TUNNELING

From the nondimensional form of the modified
diffusion equation [cf. Eq. (5)], we see that the
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tunneling term is proportional to n'=(d, ro/D. At

room temperature, D- 10 ' cm'/sec, "so that
z'-10 and hence the tunneling term can be treat-
ed as a small perturbation.

The steady-state Smoluchowski equation is

sponding to po and p, . Equations (C5) and (C6)
may be solved by using the Green's function po(f ~u)

satxsfy~ng

d iv),(f ~
u) = 5 (f' —u), (Cv)

divj (I) = f(F) —(g,e '"~"0p(f'),

wher e

(C1)
which has been obtained by Onsager. 4 Thus we
have

j(f')= -&e 'rr(e p) (C2)

I~

p,(f) = d'uf(u)p, (P~u), (C6)

(x 2'is= -) + cosa),
+c

(C3)

where F = qEr, /2keT, E is the aPPlied electric
field, and 8 is the angle between $ and the field.

Using the perturbation expansion up to order
o. ', we obtain

is the current density, f(f) is the normalized
initial distribution function which acts as a con-
tinuous source term here, and ~ is the total po-
tential divided by k~T:

p, (r) = -(o, J" d'ue '" "Op,(u)p, (f'~&),

and the escape probability can be written as

ii =)im
jII[ ds l(d)

=Op+Qj,

where

(c9)

(C10)

pÃ) = p.(f')+ p, Ã),

with

divj, (f) = f(f'),

(c4)

(C5)

Qp= d u Qp (C11)

(C6)divj, (f') = (d,e '""0-p,(t),
where j, and j, are the current densities corre- and

Og= (dp d u8 ppp Qp ) (C12)

ii,(o)=lim]F/dd ~ ) tlc)

I
is the well-known Onsager escape probability for particles generated at u, which makes an angle e with f.
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