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Anoinalons transport properties for random-hopping and random-trapping models
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Previous work on anomalous transport is extended to two and three dimensions. Using critical-path analysis it is

shown that random-hopping models always lead to a finite dc conductivity and diffusion constant and thus to
normal asymptotic behavior above 1D. For RT models anomalous behavior is shown to be possible with indices in

agreement with the Scher-Lax theory, above 2D. It is also pointed out that such behavior is to be expected for an

exponential tail of traps and the temperature dependence is predicted.

The purpose of this paper is to discuss the
asymptotic behavior of transpox't coefficients in
amorphous systems. Anomalies in these coef-
ficients are fairly frequently observed and are
usually described phenomenologically in the frame-
work of Scher-Lax-Miontroll theory. ' This
approach maps the random medium on a periodic
effective medium with suitably chosen local pro-
perties. The physical models of interest are
DlRlnly of two .types:

(a) .Random-hopping (RH) models with sym-
metric two-site txansfer rates

and a distribution of these rates.
(b) Random trapping (RT) models for which

(gt /gP ) 8 &4) Ky&-lksr

where the trap depths (&,.) are the dominant
random variables.

Within the above effective-medium approaches
the two types of problems seem, in essence,
equivalent. Both lead to anomalous transport
coefficients for sufficiently singular distributions
of the random variables. This is obvious in the
original waiting function formalism of Scher and
Lax, but Rpplles Rlso to similar more compl. ex
effective-medium approaches, s which use aver-
ages of the short. -distance propex ties of the ran-
dom system to define the properties of the effec-
tive medium. Thus Scher and Lax calculate the
local average

g(t)=(exp -(p w, ,)i )
to determine the average probability that a pax-
ticle has not left its original site in a time t.

For 1D systems these prescriptions are not
correct in detail but not wrong in a rough qualita-
tive wRy. %e have shown elsewhex'e how one
can construct a correct (nonlocal effective-med-

ium appxoximation in this case. In 1D one can
also show that there is symmetry (though not
exact equivalence) between RH and RT model. s."
For two- or three-dimensional systems the appar-
ent symmetry between BH and RT model. s is in-
tuitivel. y surprising. If one waits long enough in
an RT model a diffusing particle should eventually
fall. into deep traps even if they are very rare.
The trapping rate is even enhanced as one goes
from 1D to 2D to 3D.' ' Thus, the long-time
behaviox of an BT model will always be dominated
by the deepest traps. The situation for BH models
is quite different. In 1D there is no way around
a high (low W) barrier but for higher dimension-
alities a low concentration of such barriers can
always be avoided. This is indeed the conclusion
implied by the critical-path analyis of Ambegao-
kar, Halperin, and I anger. " Following a similar
line of analysis we shall show that the RH and RT
models are indeed qualitatively different whenever
the percolation density is smaller than one (i.e.,
above. lD). Only the RT models can show anomal-
ous asyptotic behavior.

To estimate the actual transport coefficients
we use a self-consistent scheme developed else-
where'-' for one-dimensional problems. This
enables us to set a lower limit on the dc con-
ductivity for BH models and to relate the anomal-
ous power laws in RT models to the temperature
and txap distribution. Since we have discussed
anisotropic (quasi-1D) systems elsewhere' "
the discussion is restricted to isotropic systems.

THE RH MODEL

%e consider a mastex equation on a lattice

where P is a vector whose components
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are the occupatian probabilities of the relevant
sites (on a d-dimensional lattice). The random
matrix W describes the transport process. To
conserve particle number, one must have

%~=0, — Py =0 .d'dt; )
(6)

For random hopping (RH) one further assumes
symmetry [Eq. (1)]

For simplicity we finally assume that 8' only
couples nearest neighbors on the lattice

8'y
&

——se for i, j as nearest neighbors

= 0 otherwise.

Finally, we assume the values of the transfer
rates (w) to be independent random variables on

each bond with a random distribution p(u).
We first want to show that an BH model always

has a finite dc conductivity. We da this by set-
ting a lower limit on this quantity. We are inter-
ested in the effect of smal. l S' on the transport
properties. Consider for definiteness the mean
square and width of the distribution

lim o((u) ~(l/W) ' .
g ~0

(i4)

Now for an RH model the conductance of a (2D
or 3D) lattice cannot be smaller than that of a
bundle of disconnected 1D strings placed in par-
allel. For example, the conductance on a cubic
lattice along the x axis cannot be smaller than
that of the 1D strings one obtains if one only keeps
connections along x and disconnects parallel rods.
Equality holds for an ordered system but, in

general, not in the presence of disorder. Analog-
ous constr'uctions are always possible and it
follows that the existence of a finite dc conduc-
tivity for a given p(ce) in 1D is sufficient to assure
that it is also finite for higher dimensionalities.
Thus, anomalous behavior cannot occur for dis-
tributions which lead to (13). The actual value
of the conductivity is, of course, always higher
than would be implied by Eq. (14), because the
small 8' will tend to be shunted out by parallel
connections. We emphasize that this argument
does not apply to HT models. It is thus sufficient
to consider singular distributions [Eq. (11)]which
would lead to anomalous behavior in 1D.~' In
analogy to the procedure we have used for the 1D
situation, we introduce a lower curoff into p(se),
for example 8', and remove all 8' smaller than
S" from the lattice. This defines a percolation
problem. The total density of removed bands is:

u'(t)) =g i'p$(t), p/(o)=6(j )

For a normal system

(8)
p(m)ds/ =1 —P.

On the resulting percolation network of (bond
density p), the W are distributed according to

where D is a constant. Anomalous behavior would

show up if one had instead

P 'p(w), I/& W„
pj,n;@' j =

0, m&S'
(16)

(io)

where v&~2. On a1D chain this occurs when p(W)
is sufficiently singular, 4 i.e., when

Obviously the conductivity of this network
[cr(W )] is a lower bound on a. The removal. of
the small W (& W„) cannot increase the conduc-
tivity. Thus

lim p(co)~sv ', 0~a&1 .
e"o

Such distributions lead, in 1D, to an anomal. ous
v[ = (1 —a)/(2 —e)] and to a frequenc'y-dependent
diffusion constant and conductivity

o&o(W ).

To have a finite o (W ) one wants

1&p(W )&p

(17)

o(~)~(-f(o) " ', (y-O .

On the other hand, when p(W) is such that

0/W&= J da[p(w)/w]

is defined, one has v=~3 and

(i2)

(13)

where p is the critical percolation density. We
now want to estimate o(W„). For p close to p,
the conducting skeleton of the percolation network
consists of long 1D strands between junctions
whose length is

{16)
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where t~ and p" are the conductivity and correla-
tion length exponents for percolation. These
strands have an average conductance W,«/I
where

W,f ~
= ({1/W)~ ) ',

()/))' ) fdw[p=(w))' )/I, ] . (20)

The conductivity of a network with the same p
for which all 8' are replaced by 8',« is a l.ower
bound on o(w )

o(w. ) & w„, (p —p, )" . (21)

yy g70t~l (22)

the variance of the strand conductances becomes
small. When this is not the case, one still, has
a lower bound. High-conductance strands are
weighted more heavily than those with low con-
ductance in the network conductivity.

We have thus determined a lower bound for 0'

o & o(w„) & w.„(t -p, )" . (23)

We can improve this somewhat by maximizing the
right-hand side of (23) with respect to W . From
Eqs. (11); (16), and (19) one has

w„,(w. ) w:, (24)

and from (15)

t
S'

p-p, ' ut~ds) W,
' ~(1 —A,„' ), (25)

where we have defined

For small (t) -p, ) (i.e., when I is large) the right-
hand side of Eq. (21) should be a good approxima-
tion. Specifically, when

o&W; "- "a [(1-a)t]'/[a+(1-a)t] &. (30)

This is in the same spirit as the Ambegaokar,
Halpel ln~ and Ranger llxQlt. As pointed out
earlier, this is probably not very good as a num-
erical estimate except for e 8 1 when p —p,
becomes small [Eq. (29)]. This is also true
for another reason. In 3D p, is quite low. ( 0.15).
Thus the low-W behavior [Eg. (11)] is not really
meaningful near p, except in the most singular
limit e = 1.

We emphasize that we have assumed a singular
distribution with no lower cutoff [i.e., Eq. (11)]
which would lead to anomalous behavior if used,
e.g. , in the Scher-I ax analysis [Eq. (3)].

The fact that we have shown that the dc con-
ductivity must be finite obviously does not imply
that no anomalies will be observed in random
systems at higher frequencies. Such anomal. ies
are, in fact, very common. For anisotropic
systems they can be described very well. as
crossover effects from anomalous one-dimen-
sional to normal three- (or two-)dimensional
behaviors and comparison with experiment seems
very satifaetory. ' " For an isotropic 3D system
the situation is more complex. " The very-short-
time behavior ean, of course, be determined
from a cluster expansion. For longer times one
is tempted to generalize the critical-path analysis
to finite frequencies. There are, however, two
difficulties. Even for diffusion on a percolation
network, the short-time behavior is not well
understood. There is obviously a crossover when
the mean-square distance traveled becomes com-
parable to the eonnectivity correlation length and
the high-frequency behavior cannot be deduced
from the dc conductivity. In the present problem,
one has an additional scale introduced by the
random distribution. Thus, a naive approach
does not seem very meaningful.

RANDOM-TRAPPING MODELS

p(w. ) =p. , ~„=w./w. .

w (p-p)'=w""-"'~ (I-~'-.)teff c

The maximum of this limit is found for

(2s)

(2V)

As emphasized above, there is a fundamental
difference between BT and BH models above 1D,
This reflects the qualitatively different dimension-
al dependence of the two problems. As d in-
creases it becomes easier to avoid a low-8' bond.
This is reflected in the fact that the critical
percolation density decreases

X =(a/[a+ (1 -a)t]}""-~'

giving

(2S) dp„(d)
d(d)

(31)

(1-a)t
(P Pg /Pg y (1 a)t

(2s)
On the other hand, the trapping probability v(t)
increases with d (for a given concentration of
traps). The upper critical dimensionality for
this problem is two. ' For d&2



dt
—=&c, v(t)~t t-~ (32)

where A is a (lattice-dependent) constant of order
1 and c, is the trap concentration. This is to be
eontx'asted with the much slower 1D behavior

x(e )=e-"- '

for which both inequalities (38) and (41) are
approximately valid. Using (39) gives

8„(t)t= 1,

(42)

(43)

v(t) ~ t"' . (33)
and finally for the actual distance traveled

[In 2D there are logarithmic corrections to w(t)

and the situation is somewhat more complex. ]
Specific RT models have been considered in the

literature and shown to lead to anomalous be-
havior. " We have considered the 1D case in Ref.
6. To compare with our random barrier analysis,
we consider the analog of Eq. (11):

(x'(t)) ~ x(t) ~ t'-

v= (1 -c.)/2,

(44)

which is the result one mould obtain by applying
the Schex -Lax procedure' to the same system.
This is equivalent to having a frequency-dependent
diffusion constant and conductivity

p(e) e-. , e-o
D(ru) ~o(e) o- 8„~~ (46)

8= exp[- (&/T}] (35)
This should be compared to the 1D result'

(37)

and for convenience set 8'=1 below.
We try to set limits on the frequency-dependent

diffusion 8 . Nom for a walk of N steps on the
lattice, the probability of being trapped in a deep
trap with 8& 8 is small if

( Is
"p(e)d 8 I = e-"-" .) (33)

On the other hand, for a walk involving only 8& 8
one mill observe the average residence time,
l. e.y

N(t) te„, (39)

and 8 measures the effectiveness of the trap. It
is easy to see that this corresponds to an expon-
ential tail in the trap distribution

p(&) ~ exp[- (&/&, )], o' = (&, - &)/&, . (36)

This is therefore a very reasonable distribution
for amorphous insulators or semiconductors. To
simplify the' model we assume

D, ,(~)~o, (&)~~""-" (4V)

Thus the traps are move effective in reducing
diffusion than they mould be in 1D, reflecting the
difference between Eqs. (32) and (33).

Comparing to the physical model, for the trap
distribution [Eqs. (35) and (36)], one predicts

o((g, p) cc (g'rm r' ~ rm, -

with anomalous behavior only for T & T . We
note, however, that the assumption (37) implies
constant geometrical factors and neglects the
expected correlation of the extent of bound trap
states with their energy (- b,). When this is
important, the results wouM be somewhat mod-
ified.

When p(ev) is such that (I/+ is defined [Eq.
(13)], an analogous argument shows that one al-
ways has a finite dc conductivity (i.e., a normal
situation, in our terminology). Obviously, this
does not exclude peculiar temperature dependenees
(e.g., of the Mott type) or high-frequency ano-
malies. "

8„=((1je), )-'~8„ (4o}

if N is sufficiently large so that the variance in
transit times becomes small

N»(I/O'), /(1/8),' ~ 8-"-~' (41)

This defines a unique relationship between 8 and
N

We have extended previous studies of anomal-
ous transpoxt properties in one-dimensional and
anistropic systems. Using a critical-path an-
alysis me were able to set a lomer limit on the
dc conductivity for two- and three-dimensional
random-hopping models. We are thus able to
shorn that such models cannot result in anomalous
low-f requency transport. The estimates me derive
for the conductivity are frequently only qual. ita-
tive. We were not able to analyze the intermed-
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iate frequency regime which would interpolate
between the high-fx'equency cluster expansions
and the low-frequency behavior dominated by the
dc conductivity. For random-trapping models
we find an enhancement of the anomalies found
in one dimension. The exponents agree with
those obtained from the Scher-Lax analysis. %e
have thus shown that above one dimension random-
hopping and random-trapping models belong to
qualitatively different classes. This wouM also

apply to the mathematically equivalent random
force constant and random mass lattice models.
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