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Treatment of the exciton-yhonon interaction via functional integration. I.Harmonic trial actions
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We consider an exciton-LO-phonon system described by Frohlich s Hamiltonian. Making use of the functional-

integration technique one can eliminate the phonon terms exactly leading to an effective two-particle system with
the same spectral properties as the original one. The action functional of this effective system is approximated by a
general isotropic harmonic trial action. Using Jensen s inequality we obtain an upper bound on the ground-state

energy in analytical form. Expressed in excitonic rydberg units, this bound is calculated as a function of three
variables: the ratios of electron and hole (band) mass o, excitonic rydberg and LO-phonon energy, and the static and

high-frequency dielectric constant. For a given value of the electron-phonon coupling constant this bound is rapidly

decreasing if o. tends to zero, leading us to an upper limit for the total ground-state energy which is considerably

lower than that given by other authors using, e.g., effective Hamiltonians. The same holds true for the corresponding

estimate of the self-energy of the system. If electron and hole mass are comparable, our bound is worse than that
derived from effective Hamiltonians. The reason for this behavior is that the contribution of the electron-hole

Coulomb potential to the total energy becomes more important. In this case a harmonic approximation is too poor.
We include an analytical discussion of limiting cases, which adds nicely to the numerical results.

I. INTRODUCTION

This paper is concerned with a treatment of the
exciton-phonon problem by means of functional-
integration techniques. In view of the enormous
literature on the subject there may be a need to
clarify the motivations for such an approach.
They can be summarized as follows. Firstly, the
effects of exciton-phonon interactions can be dis-
cussed in a highly transparent manner. In par-
ticular, it is possible to reduce the original elec-
tron-hole-field problem to an effective two-par-
ticle problem without need of any approximation.
Secondly, the functional-integral approach pro-
vides us with analytical results which are diffi-
cult to prove otherwise. We mention the explicit
formulas for binding energies in limiting cases,
which are given in Sec. III. Thirdly, the numeri-
cal results complete nicely those found by other
authors.

We start with FrOhlich's Hamiltonian for the
interaction of an electron and a hole with a branch
of longitudinal-optical lattice vibrations. It reads

2 2

2m& C„~q, -q2[
k

2

[g, (fs)e'"'s a-„+H.c.].

Here (p~, q, ]. are momentum and position opera-
tors of electron and hole, fm&} their band mass-
es. a k, a„are annihilation and creation opera-

tors for phonons with frequency ru and wave vec-
tor %; the quantization volume is V. Finally,
the electron-(hole-) phonon coupling is given by

g 1, j=1 (electron)
-1, j=2 (hole)

(2)

where

g= i(2we'hu&l-e*)' ' e* '=e ' —e '

c„and e, are the high- and low-frequency limits
of the dielectric function. Spectral properties of
Hamiltonian (1) can conveniently be deduced from

p, (r,r„r,'r', ) = Tr,„&r, r, ~

e-'"~ r,'r,') . (4)

Here
~ r,r, ) is an eigenstate of the operators

q„q, ~
p& may be viewed as a reduced density

matrix, (hap) ' as a (formal) temperature. It is
well known that the phonon trace in expressions
of type (4) can be evaluated if & is quadratic in the
phonon operators (see Feynman and Hibbs'). The
result is
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Equation (5) introduces a functional integral. In
particular, f;,;;.;, O'R,O'R, x ~ ~ ~ is to indicate
Wiener integration over all real, three-dimension-
al paths with fixed endpoints R, (0) = r,', R, (p) = r, .
The action S[R„R,] reads as follows (see
Schultz'):
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0

Finally, R(7) = (1/I')(dR/dr), Z~„denotes the free
phonons partition function, and

G(~) = cosh[5 ~(P/2-
~ ~) )]/[2 sinhk(o(p/2)] (7)

integral. However, then

G(~ ~'-)
5g at d7'dT

i p ( ) ( )i
0 (9)

is the temperature-dependent oscillator Green's
function. Equation (6) clearly shows the effect of
the exciton-phonon interaction: It is described by
the second part of the formula and consists of two
self-interaction terms (j =j ) and two corrections
to the coulomb potential (j 4j '), both of equal
size. All terms are "noninstantaneous, " the over-
all contribution is negative; the latter can be
shown by using the Fourier decompositions of
G(v —~'} and )R(r}-R(r')) '. Therefore the
ground-state enexgy is lowered in comparison
with the free-exciton case. It shouM be noted that
Eqs. (5) and (6) describe an effective two-particle
system. Its spectral properties are exactly those
of the original one. To get a fixst impression of
what is going on in such a system let us quali-
tatively discuss (5) and (6): Dominant contribu-
tions to the functional integral are due to paths at
equal "time" r = r' and paths R, (7) with consider-
able overlap. %'e are to clarify the relative weight
of such contributions.

(1) Let K(0»dl p '(dt = pe'/25'e2}. Because of
pk(()»1, G(v —7') is strongly peaked for v= 7'.
Moreover, 10 dr' 1&oG(7 —v')=1. Therefore
Sa&G(x) approaches a 6 function in 0&x& p. This
fact in addition to Sao»N, „assures us that the
self-interaction terms are dominant. The effect-
ive two-particle interaction takes the form

This is the well known cancellation of phonon ef-
fects which characterizes a "small" ox "bare"
exciton; the system may be viewed as containing
two bare particles embedded in a Coulomb poten-
tial screened with 6„.
Unfortunately it seems impossible at the present
time to evaluate the functional integral (5) exactly.
To proceed further we follow ideas of Feynman, '
Haken, ' and Moskalenkoe and construct an upper
bound on the ground-state energy.

H. UPPER BOUND ON THE GROUND-STATE ENERGY

To begin with, let us define the expectation va1-
ue of a quantity A. with respect to an arbitrary
trial action 8:

) f O'R5 Re ' "' A[R„R]
( )f6'ft, 6'ft, s

Here we introduced the abbreviation

O'B, 6'8, R„R,

R„R, ~

~

~

I j~f 2 Tjl' 2

Now all following considerations rely on Jensen's
inequality: Let S be a trial action such that

Z0=-Iim p- 1

~2 8 1
(%,(v) -R,(~)[

' (6)
hE= lim p ~{S-S)z

Therefore the system may be viewed as contain-
ing two polarons embedded in a Coulomb potential
screened with e, ("polaronic exciton"). This is
exactly the result of Sak's perturbation approach. '

(2) Let p '«K&u «8„. Now paths with R,(7)
= R,(v) give leading contributions to the functional

I

S[R,r]= J dv~ 2
R'(v)+ —r (y)]j

0

exist. Then E0+4E is an upper bound on the
ground-state energy E0:

g ~K g +gg

In this paper we choose as trial action
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Notice that we introduced center-of-mass and
relative coordinates R and r; furthermore,
M=m, +m„g '=m, '+m, '. f, ( 7-v'), i=1, 2,

ax'e cont1nuous functions which sex've to mlnl
mixe the upper bound (14); without loss of gener-
ality we may assume f, (T - r' ) =f, (v' —r).

S [ R, r] is a general isotropic harmonic trial
action. To have it translation invariant, the
equations

8 8
0= d~'f, (v ~')= d7'f, (~-~'), 0&~& p

0 0

must be fulfilled. To evaluate (12), (13), and (14)
we make use of an idea due to Feynman~: Suppose

we knew the generating functional

I[v)„ve] (exp=I v(v[vV, (v) ~ H(v)ve, (v) r(v)] )

wherein f q, (7)} are two integrable functions and
0= f", dv&), (v); the latter is to hold true because
of translation invariance. Then E„~Ecan im-
mediately be deduced. To prove this we proceed
as follows: From (13) we have

5E= lim 4E8,
g~ oo

where

8
AEs=p '(S —S)3= e'/(—pe„) d7 (r(~) ')-,

0

pg
-p-'Jl dydee' G(v -~') Q 5,5, (I R( )7- R(~')+ pr(7)-p, . r(~')I ');

0 4x

+& ( )(vR( v)%-( v) v; &v( &v ) Vr(&v) «(-)&;v&'( v- v) v(&)R«v(v')&;)

(19)

and

p~=m, /M, p, =-m, /M. (20)

1y' = —ln () $3@ e-syfR, l ]
p

(23)

AQ expectation values in (19) can be derived from
(1V). For example, choose

Consequently,

Eo= 11m Ex x .
g ~co

Now consider

(24)

](),(v) = i% [pq 5(7 —v, ) —p~r 5(7 —7,)]

8
5sft 5s~c-v])]'. R, r ) S [R P]

BA. -8+ y8

and 1st I(%, v„v, )=I[@„q,]; then
p

0
d~dr' f3(~- v')(R(r) r(7'))~

(25)

(I R(&g) —R(v, )+pgr(7;) —
pg r(7,)I ')y

d'k I$, v„v,) . (22)

Consequently, this derivative is known from the
x'esults above. Moreover, E„0is a free enex'gy
of two decoupled particles with quadratic actions
and may be taken from. ' Hence, E0 can explicitly
be computed from (24) and (25) and

The remaining quadratic terms in (19)are obtained as
functional derivatives of i[@„q~]with respect to q„
]l,. As forE„ letus replace f, by Af„accordingly S
by S~. A. is a positive number. Moreover, we de-
fine a "fxee energy" I'z by

&~=i = &X=0+,~
BA,

The remaining task is to find I[q„q,]. This can
be done in analogy to Ref. 7 or according to the
recipe we give in Ref. 8. The result is

v)„, „v), ,„v),, „— „v), . «V, .+ „«V, „«), .),C . -2J3 +A
he 0? 2 2pf A„C„-B'„
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where

1
8 8

l, , =d ' dee '" 'ij(e), f, =d- f dec& „y)e)

A„=Mv'„/h'+2pf, „, Q„=p, v'„/I~+2p f, „,
B„=Pf, „, v„=2)ttt/P .

Now it is an easy task to calculate the upper bound on E, according to (14). Introducing dimensionless
variables

1t=S~& n I n

and letting p -~ (compare Ref. 7), we arrive at

(29)

Eo~ B[h„h„h,], (3o)

where
3 "

d I f)t(x) A, (x)h, (x)+A, (x)h, (x) —2h,'(x)
e

e' (t)e) '~'
e(

""
e„h ~ ha&j

(x) ) -1/2 ~ e- t

Here ht (x), i=1, 2, 3, is proportional to the Four-
ier transform of f, (s) in 0& s ~~ and therefore
may be chosen to minimize (31). Furthermore,

A, (x) =x'+ h, (x), i= 1, 2

X(x) =A, (x)A, (x) —[h,(x)] ',
(32)

(33)

Ptte (t) = J~ dx
~

—A,(x)[1—cos(xt)] +2A( )x[ pt+p,'e -2pt p, .cos(xt)]
0

-&(p, /M)'(pt+ pt, )h, (x)[1—cos(xt )]
~

(34)

IH. EVALUATION OF THE UPPER BOUND

Every set of functions h,. (x), i =1, 2, 3, gener-
ates an upper bound on Z, via Etl. (31). For a
given set the actual value of this bound depends on
the interplay of three dimensionless physical par-
ameters which we choose as follows:

q, o., o are well suited for analytical investiga-
tions of (31); this will be shown in the sequel. As
far as numerical calculation and the comparison
with previous work is concerned, we shall later
use a different set of parameters which was in-
troduced by other authors. Necessary conditions
for B[h„h„h,] to take a minimum are

g2
)7= ~ v P, /2&) =v'6l /II(u

e„N
(35)

(38)

8 B[h„h„h,]
ah, (x). (38)

(t=m, /m, . (37)

E0 and B are invariant against interchange m,—m, or etluivalently o—o ' [see Hamiltonian (1)
and Etl. (31)]. Therefore we may assume o ~ l.
A particular consequence of this symmetry is that
the partial derivatives of E, and B with respect to
0 vanish for 0=1.

These equations can be discussed well in limit-
ing cases: Let n«1. It is easy to show [use (38),
i = 3] that h, (x) =O(u) for all tI, o, x. Further-
more, this minimizing solution contributes a term
O(o. ') to the bound. If we are for terms of order
o, ' and o.', we may put h, (x) -=0. As for h, (x) we
find from (38), i=2, that up to contributions of
order o., h, (x) = s', where s is positive and inde-
pendent of u. So we get from (31)
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B[h„h,=s', h, =0]/h&u=4s — ~s +— dx In~1+ ', I-
2~~ q 3 " i a, (x)~ a, (x)

r 2' "0 k
x' x'+&ix

. Qt e '
dt

o 4 gg'(f)
(39)

where P&&. (t ) now takes the simplified form

p.
" 1 —cos(xi )

Pgyt (t ) dx

+—(p,'+p,'i —2p) p, is ") .4s (40)

Qoulombic term in the trial action.
(B) q«1, a =O(f): Polaronic excifon, comPar-

able masses of electron and hole. Now the mini-
mizing value of s has the property s«1. Ex-
panding P» (f ) up to second order in s and setting
h, (x)=—0, we arrive at

8 ~ o.

=-——"[1+O(q 'o '~')] .8 8„
3~ 1(d

(41)

Apart from the "wrong" factor, 8/3)( instead of 1,
this is exactly the result which was to be expected
from the qualitative discussion in the Introduction.
The discrepancy in the numerical factors is due to
the harmonic approximation of the instantaneous
Coulomb interaction in (15). Nevertheless, pho-
non influences are excellently described within
the Gaussian approximation. This is suggested
by polaron theory; further support comes from a
subsequent paper (II), in which we will discuss a

It should be noted that (39) is an upper bound on

E,/fice under all circumstances though in general
not the lowest one, if c( g 1. We discuss three
cases.

Q, ) q ~g»I: Bare exciton. The minimizing
value of s has the property s&q'»1. As a conse-
quence the leading terms in p». ~ ~ ~ cancel; h, (x)
is zero. We obtain

B 8= ——q2[1+O(q 'o 3)')]
$(d

——(q —e) 1++ — +O(uq )
8 3

3' &ip, I

= -Q n —— If(d+O(o(q') . (42)
8 p~e4

37K 26 0

Here we introduced the usual electron-phonon and
hole-phonon coupling constants o.~

= o./g) p ~

and
the "reduced polaron mass"

=Q [mg(1+a,.i8)] '
(43)

We stress that in comparison with a free exciton
the two simultaneous changes m~- m, (1+n, /8)
and e„-c, occur. As for the "wrong" factor 8/3w
in (42), see Sec. III(A).

(C) q«1, o)/Wv»&: Polaronic excision, small
electron hole m-ass ratio. Expressing p&, p/M
by o and collecting leading terms in Wo we obtain
from (39) and (40)

B . 3 ""
( a, (x)& a, (x) n "" e

I~ „2, 'g x* ) x*+8,(x)a Wv ., op(() I

—n —
3 2, ", h(o+O(o(rp)+O(neo),
8 p, (1+ -'„a)e'

3F 2fo. 5 (44)

where

( ) ()"„1—cos(xt)
x'+ h, (x)

Interestingly enough, the first part in (44) is ex-
actly the expression for a general Gaussian bound
on the self-energy of a free polaron with coupling
constant n/vv, which was studied recently. ' For
large a/v o this polaron bound approaches

I

—(3)(') ' (n/vo )'. Consequently, a dramatic low-
ering of the ground-state energy occurs. The
second part in (44) contains the self-energy (- u)
and the "polaronic" Coulomb term of the relative
motion. As a & q«1, the appearance of the weak-
coupling result for the (polaronic) self-energy was
to be expected.

We close this section with a compilation of our
numerical results. Starting from expression (31)



for the bound on E, we performed two calculations.
In a first example we used

IV. DISCUSSION AND COMPARISON
WITH PREVIOUS WORK

«, (x)=y, , x& 0, i =1, 2, 3 {4e)

[y,} being real variational parameters which
serve to minimize (31). The corresponding trial
action S may be characterized as harmonic and
instantaneous. - In the following table and the fig-
ux'es this is indicRted by H.Q.

Our second example is

«, (x)=—0, C, =0.
{47)

dl, = pe'/(28'e, ') .

Instead of (35)-(3V) we use additionally the par-
ameters

6l, /I(u, s,/s„, m, /m, . (49)

Table I and the Figs. 1 and 2 contain our results.

8, , C~, D, are real variational parameters. Now
the trial action g is a two-particle generalization
of Feynman's4 trial action; in pax'ticular, it is
noninstantaneous. The corresponding results are
characterized by an index "FE." As was indicated
earlier, we parametxize our numerical results
in a way that differs from that which we took for
the analytical investigation —a comparison with
pxevious work is easier this way. The enexgy
unit is the excitonic Hydberg

An intexesting aspect of our results is the rapid
lowering of the total energy bound if o =m, /m,
tends to zero. As was shown in the preceding
part, the reason for this behavior is strong hole-
phonon coupling, which has to be treated adequate-
ly. The same strong-coupling effect shows up for
the bound E'on the self-energy which is additional-
ly given in the Table and in Fig. 1. Z was calcu-
lated as a sum of two one-polaron bounds on the
corresponding ground-state energy accox'ding to
Feynman's theory. ' '

As fRx' Rs R comparison with px'evious work is
concerned, we have already mentioned the early
pioneering papers of Haken' and Moskalenko',
they intx'oduced the functional-integration method
to exciton theory. In his first paper Haken inves-
tigated harmonic and nonharmonic trial actions,
the latter being of Coulomb type. Here we are
concerned with the harmonic case. Haken's ex-
ample can be derived from (15) by taking f,(r)
=f,(v) = 0, f,(v) = C,5(~) In a s.econd paper he ad-
mitted additionally a harmonic coupling of m„m,
to two fictitious particles, which is equivalent to
having contributions to f, (7) of the form p& [5(7
—~' ) - ts, C, (~- ~' )], j= 1, 2 [as for G (v - v' )
see Eq. (7); «ru has to be replaced by ts]. Mos-
kalenko used f,(v) = C,[5(7) tea (-r)], f,(v}
=C,5(r), f,(7}=0. In both cases a numerical eval-
uation is missing. Recently AtzmQller' reinvesti-
gated Haken's examples for special matexial par-
ameters in the region m, /m, & 0.12. His results
are in good agreement with ours.

TABLE I. Upper bounds on the ground-State energy g) and self-energy (Z) of the exciton
in units of dlo= pe /28' eo as a function of the mass ratio m~/m2 and the energy ratio di 0/Sco.
The value of ea/e is fixed as 2. Bn o, BFs, and Bs„s correspond to Eqs. (46) and (47) and
Ref. 12, respecti. vely.

Energy
bounds 0,02 0.05

m )/m2
0.1 0.5 1.0

-&H.o.
-&PE

12.201
12.534
11-333
5.4726

7.1242
7.2482
6.0299
4.8432

4.1337
4.1358
2.8534
4.3977

3.6606
3.6539
1.8030
4.2303

3.5563 3.4980
3.5521 3.4943
1.2922 1.0144
4.1418 4.0907

3.4870
3.4837
0.9613
4.0810

-&H.o.
-&rE
-Z

13.626
13.587
12.870
9.0961

8.5519
8.3032
7.5786
7.2005

5.5661
5.3113
4.4212
5.6818

4,6340
4.5807
3.2893
5.0380

4.1726
4.1597
2.6149
4.6709

3.9058 3.8546
3.9019 3.8514
2.1539 2.0554
4.4464 4.4024

-&H.o.-BpE
-Z

15.395
14.866
14.614
12.185

10.311
9.6183
9.3479
9,3639

7.0275
6.7388
5.9757
6.9935

5.6775
5.5745
4.5467
5.9258

4.8928
4.8576
3.6462
5.2865

4.4069
4.3935
3.0174
4.8789

4.3111
4.3000
2.8818
4.7972
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~I+

10

BH.o.
." ~iAS

-8

-10

-10

f

O.OI 0.02 0.05
m~ lm~

I i

0.5
I i I I

0.0l 0.02 0.05 O. l 0.2
l I

0.5 1

FIG. 2. Upper bounds on the ground-state energy
(B) of the exciton in units of d4 as a function of m~/mt
and %0jS(d. ~0/c„ is fixed as indicated.

oIe~ = 2

-10

1 l I

O.Q f Q.Q2 Q.Q5 O.l 02
l I

0.5

FIG. 1. Upper bounds on the ground-state energy

(8) and self-energy (Z) of the exciton in units of Qo
as a function of the mass ratio mq/mt. eo/e„and
(go/&ra are fixed as indicated. In the case dto/S~ =pc the
deviation of BH & and B&E is within 2%; therefore only
BH Q appears in the figure.

A host of theoretical predictions comes from the
discussion of so-called "effective Hamiltonians. "
An outline of this concept can be found, e.g. , in
Refs. 11 and 12; mostly the authors use normal
variational methods. Recent publications are due
to Kane, "Pollmann and BQttner, "Bednarek,
Adamowski, and Suffczynski, "Aldrich and Bajaj,"
Hattor1, and Mahler and Schr5der. In TaMe I

and in Fig. 1 we show the result of the involved
variational cRlculRtlons in Ref. 12; the energjj
bound B„s compares favorably with those which
can be found in Refs. 10, 11, and 13-15.

Obviously BIAS 18 supe1'101'. to BHQ and BFE 1n

the region o & 0.05. The main reason for the dis-
crepancy was given in Sec. IIIA: The harmonic
approximatiop of the instantaneous Coulomb po-
tential underestimates the corresponding contri-
bution to the total energy by a factor 8/Sn. For
o& 0.05, however, things change drastically: Now

BHQ. Rnd BFE Rx' supex'iol to BSAs It is intex'

ing to notice that even our upper bound Z on the
self-energy is lower than B~», if 0 is sufficiently
small. This has an important consequence: B —~
is an estimate for the binding energy of the ground
state. B—Z & 0 indicates "no binding"; actually
this is what happens in the case of effective-Ham-
iltonian theories of type" ", if (as in our case) a
better approximation fox the self-energy is used
than that, which derives from the polaron theory
of Lee, Low, and Pines. " In particular, the re-
sult of the extrapolation 0- 0 must be doubted;
nevertheless, this limit is physically relevant;
it applies to the case of a bound polaron.

Usually bound polarons are described by a Ham-
iltonian which can be derived from (i)—choose p,
= 1, p, =0—by a unitary transformation which sub-
tracts automatically the infinite self-energy of the
static charge (see the work of Platzmann, "Mat-



suura"). We compared our results with those of
Hefs. 17 and 18. Taking care of the relation
46t, /S~ (s,/s —1)= e and choosing realistic val-
ues for the parameters, me found good agreement.
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