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Effect of frustration on the band edge in amorphous semiconductors
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The existence of odd-membered rings leads to an erosion of antibonding states in a simple tight-binding

Hamiltonian on a random network. %'e obtain better estimates of the magnitude of this erosion by systematically

introducing fivefold rings into a diamond lattice with a supercell containing 8000 atoms. It is shown that the

position of the band edge moves roughly linearly with the number of fivefold rings and that the slope agrees with

that obtained from perturbation theory.

I. INTRODUCTION

There has been much interest in the past de-
cade in the electronic' ' and vibrational proper-
ties of continuous random networks, ' the proto-
type of which is fourfold coordinated and is be-
lieved to describe the structure of amorphous
Si (a-Si) well. In the very simplest theories
("sP'" orbitals with nearest-neighbor overlaps
only, and nearest-neighbor central forces only' )
the eigenvalues of two separate problems, the
electronic band structure and the vibrational den-
sity of states, can be related to the eigenvalues
of the Hamiltonian

This is the simplest Hamiltonian that contains the
topology of the network. The state

~
i) is defined

at a site i and has an overlap (set equal to 1) with

the four neighboring sites in the network. This
is denoted by the angular brackets in the summa-
tion. Because of the intimate connection between
(1) and the electronic and vibrational states in
these networks, it is important to have a good
understanding of the properties of the Hamil-
tonian (1).

Rewriting (1) in matrix form leads to a semi-
positive real symmetric matrix with all zero en-
tries except for four entries of 1 in each row and
column. It is sometimes called the connectivity
matrix of the network. Using the theorem of
Frobenius, ' it can be shown that the eigenvalues
e of (1) are bounded by

4~((~(4 (2)

The state at +4 corresponds to the "bonding" state
with equal amplitudes, for example 1, on every
site. The "antibonding" state at -4 corresponds
to alternating amplitudes+1, -1, +1, etc. , from
site to site. It is clear that such a state can only
be constructed on a bichromatic network (i.e., one
that can be divided into two sublattices & and B
such that all the four neighbors of A are on B and

vice versa). Examples of such networks are the
diamond structure itself, wurtzite, and the Con-
nell- Temkin' continuous random network. It is
generally believed that a-Si contains odd rings,
the smallest of which involves five bonds. We
thus expect an erosion of the states around the
antibonding band edge at ~= -4.

This problem has received a considerable
amount of attention that we will review briefly
as it is not all easily accessible. We will use the
symbol n, for the average number of fivefold
rings through a site in the network. It was shown'
that if the network can be dissected into fivefold
rings of bonds so that each bond is included in
such a ring exactly once (n, = 2), then the lower
band edge occurs at

e = -4 cos(m j5) = -3.236 . (3)

While no real networks are known to have this
property, it was shown by direct calculation that
Ge III has its lower band edge at the position
given by (3). Ge III is a metastable high pressure
form of Ge (Refs. 9 and 10) that has ~ of its sites
with four fivefold rings and 3 of its sites with
three fivefold rings so that n, =3.33.

The fact that the erosion in these two networks
is identical, even though they have differing
numbers of fivefold rings, led to a notion that as
the number of fivefold rings in a network in-
creases the lower band edges move from -4 to
-3.236, with -3.236 being an asymptote that is
reached when the number of fivefold rings becomes
sufficiently large (n, ~ 2). It is interesting to note
that the original Polk continuous random net-
work" "has n, =1.9. Subsequent continuous ran-
dom networks have shown similar values except,
of course, for the Connell- Temkin network that
has n, =0.

In order to test these ideas, it was convenient
to have a network in which n, could be varied
continuously. This was done by Goldstein" by
introducing "defects" into the diamond lattice.
Although somewhat artificial, this was a conven-
ient way to construct a network in which n, could
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be varied. This calculation showed that the lower
band edge did move more or less monotonically
with the number of fivefold rings. However, the
calculation encountered two problems. (a) The
initi:al slope at small n, did not seem to be cor-
rect, and (b) it was unclear whether the specu-
lated asymptotic behavior did indeed occur.

In the next section we repeat this calculation
using 8000 atoms rather than 64. The problem
with (a) is cleared up but (b) remains obscure.
However, it seemed to us useful to publish this
work to make it available in the open literature.
We note that since the work of Goldstein in 1974,
the word "frustration" has been coined by workers
in the spin glass area. ' We note that this is also
a manifestation of frustration. The inability to fit
spins pointing alternately up and down around an
odd plaquette or polygon is similar to the inability
to fit amplitudes+1, -1, etc., around an odd ring.
The major difference is that we are interested in
a density of states rather than a thermodynamic
quantity.

II. THE CALCULATION

A defect that creates four fivefold rings can be
created by removing a site and its four bonds'
shown by dashed lines in Fig. 1. Although a single
defect of this kind cannot shift the band edge in an
infinite network, it does change the nature of the
local density of states at the band edge from
-(E+4)" to (E+4)"-' where y= —,

'
and, as we will

show later in this section, the magnitude of the
shift for a small finite fraction of defects can be
inferred from the behavior of a single defect.

The numerical computation proceeds as follows.
An N-site cubic network is chosen with periodic
boundary conditions so that the fourfold connecti-
vity is maintained. The diamond structure can be

described with a cubic unit cell with 8 atoms/unit
cell. We used a large cube with 10 unit cells in
each direction to give 8 x 10 = 8000 atoms. We
also reproduced the original calculation of Gold-
stein with a large cube with 2 unit cells in each
direction to give 8 X2 =64 atoms. A convenient
labeling scheme is chosen for the sites (1 through
N) and a register of the four neighbors of each
site is generated. A random number generator
is used to provide an integer in the range 1 to &
to determine which site is to be removed. An-
other random number is used to choose one of
the two possible reconnections between the neigh-
bors of the removed site (see Fig. 1). A register
is kept of both sites removed and of sites that are
now on a fivefold ring as a result of the reconnec-
tions. The original labeling is now modified to go
from 1 to N -1 and the procedure repeated, ex-
cept that if an atom already has one or more five-
fold rings through it, it is not removed as this
would create a fourfold ring. The procedure is
repeated until the required number of defects has
been created. It was found possible to remove up
to about 15% of the sites in this way. The register
of remaining sites and their four neighbors de-
fines a real symmetric sparse matrix. The ex-
treme negative eigenvalue was obtained using a
block Lanczos routine developed by Scott." In-
deed it was the existence of this routine that en-
couraged us to reexamine this problem.

The results for the position of the lower band
edge against fraction of sites removed are shown
in Fig. 2. It can be seen that the results for 8000
atoms (crosses) lie above these for 64 atoms (tri-
angles) and are rather monotonic. At a number
of places, crosses lie vertically above one an-
other. This is because even though the same frac-
tion of sites were removed, different random con-
figurations of the defects were produced leading to
different extreme negative eigenvalues.

The initial slope in Fig. 2 can be calculated by
perturbation theory. The definition of the Green's
functiong for the Hamiltonian (1) is given by

/

r

/

g= (~-&) '. (4)

The defect matrix for a single defect as shown in
Fig. 1 is given by3

FIG. 1. Showing a defect atom and its four bonds by
dashed lines. When atom 1 is removed, the host lattice
is reconnected by the solid curve bonds, joining atoms 2
and 3 and atoms 4 and 5 so that every site remains
fourfold coordinated but four fivefold rings are intro-
duced into the network.
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FIG. 3. Showing the number of fivefold rings per site
(n5) against the fraction of sites removed (c).

FIG. 2. Showing the shift in the lower band edge with
the fraction of sites removed for the 8000-atom samples
(crosses) and the 64-atom sample (triangles). The
dotted line shows -4cos(7t/5) = —3.236 [see Eq. (3)] and
the dashed line is the result of perturbation theory [Eq.
(&4)]-

where the kets just designate the states associated
with the atoms in Fig. 1. The Green's function
with a single defect present G is then given by

G =g+gVG

and the change in the density of states is given by

p A(c)[g g (c)jl(c)

where c is the concentration of defects. Then

1 sp 1 & sy l ( )
y

p Bc + Bc Bc f cp Bc

(10)

If A, &, and y are continuous functions of c, then
the last term in (8) dominates as a- ao so that

correct. Similar arguments exist for phase
boundaries in thermodynamics. " We assume that
near the lower band edge &p, the density of states
can be written as

op= — Q(G -g )
Im

7T

—lnDet(1 -gV) .Im 8
7T Bf

The Green's functions can be decomposed into the
various symmetry types associated with the point
defect in Fig. 1. Near the lower band edge at
z=-4, only the s-like symmetry contributes and
we find that

1 BP y 8&p

p Bc & —
&p Bc

but from (10) we have

18p y

p 86 4 —&p

Combining Egs. (8), (11b), and (12),

(11b)

(12)

Bphp= — —-W (,Bc, ~ 8 j' (8)

so that

Bt'p (~ z) g

BC

where W is the Watson integral3 for the diamond
lattice. It can easily be shown that this is the
same as the Watson integral" for the fcc lattice
and given by

8' = 0.44822. .. .
The initial slope can be obtained by the follow-

ing argument which is nonrigorous but probably

= 3.094. .. , (14)

where we have used the equivalence between ~p
and &p/&c for one defect.

The argument above allows us to go from a sin-
gle defect to a small but thermodynamically sig-
nificant number of defects. The initial slope (14)
is shown in Fig. 2 as a dashed line. It agrees
well with the results for the 8000-atom sample but
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less well with those for the 64-atom sample as
the defects are not sufficiently far apart (because
of the periodic boundary conditions).

When the first defect is created four separate
fivefold rings are made. If the defects are well
separated the number of fivefold rings per sites
should be

n, = 20c/(1 —c),
where c is the fraction of sites removed. The
factor (1-c) in the denominator arises because
the total number of sites is reduced. In fact we

see from Fig. 3 that n, is linear in c and very
nearly given by

n, =20c (16)

to a very good approximation. This occurs be-
cause sometimes fewer than four fivefold rings
are made when a defect is created. On the aver-
age it appears that 4(1 —c) fivefold rings are
created. In Fig. 4 we show the fivefold ring dis-
tribution as a function of the fraction of sites re-
moved. In Fig. 5 we have replotted the data from
the 8000-atom sample against the number of five-
fold rings per site. The dotted line is at -3.236
[see Eq. (2)j and the dashed line is the result of
perturbation theory [Eg. (14), with the factor of
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FIG. 4. Showing the fivefold ring distribution against
the fraction of sites removed (c).

, and ———are the probability that a site
has 0, 1, 2, 3, 4, or 5 fivefold rings passing through it.
The graph is obtained by averaging over three different
ensembles. The fraction of sites with six fivefold rings
is too small to show.

-ag ~ e e ~
~

e e ~ ~
y

e ~ e e
~

~ e r v
y

r e r ~
y

e ~ e e
~

~ ~ r ~

0.0 04 1.0 15 LQ R5 3.0 $5
5—f'old rings per site

FIG. 5. Showing the shift in the lower band edge of the
8000-atom sample with g5 (the average number of five-
fold rings going through a site). The dotted line shows
-4 cos(71'/5) = 3.236.

20 from Eg. (16) incorporated to give an initial
slope of 0.01547].

III. CONCLUSION

If we assume that each pair of fivefold rings
around a defect introduces a single "frustrated"
bond into the network, then there are a fraction
ng20=0. 10 of such bonds in Polk-type continuous
random networks. This leads to an erosion of the
lower band edge.

This has important consequences for the size of
the gap in amorphous semiconductors. To esti-
mate the size of the effect we use the one-band-
two-band transformation"

E= V, + (V, +4V, + V,V,e)'~

with values of the parameters (V, = —2.5 eV, V,
=-6.75 eV) appropriate for Si and Ge. Taking
n, =1.9 which, from Fig. 5, gives a shift of -0.35
in the band edge, we find that the bottom of the
conduction band moves up by about 1.24 eV. The
top of the valence band is dominated in this model
by a 5 function (broadened into a band in a more
realistic model), whose position is unaffected by
the topology. Thus the band gap is increased by

1.24 e V by frustration. Put another way for every
additional 1/o of frustrated bonds the band gap in-
creases by =1/10 eV. (Of course, in reality, by
band gap we mean the gap between the mobility
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edges. ) This is a large effect and must be taken
into account in any realistic attempt to understand
the size of the band gap in amorphous materials.

This effect is important because essentially all
other effects, such as dangling bonds, variation of
overlap parameters, etc. , will go in the other di-
rection and tend to close the band gap or at least
produce Lifshitz tails.
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