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Two-dimensional Ising model in random magnetic fields
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The statistical mechanics of finite L && L Ising square lattices in a field +h of random sign is

investigated numerically by a modified recursive transfer matrix method for 6 ~ L ~ 16. Our

. results are consistent with the absence of a spontaneous magnetization for h & 0 even in the

ground state. The singularities occurring at T =0 in the range 0~ h «4J, J being the exchange

constant, are discussed in terms of a cluster expansion. For nonzero T, less than the critical

temperature of the pure two-dimensional Ising model, and h sufficiently small, the system exhi-

bits a nonzero spin-glass order parameter of the Mattis type although there is no magnetization.

The ferromagnetic correlation function becomes long ranged for h 0 and is calculated from

the domain-wall density.

I. INTRODUCTION

Recently there has been much interest in systems
with quenched random disorder. ' Particu!arly in-

teresting is the case of random magnetic fields' ':
(i) For spin dimensionality n ) 2 it has been shown
that ferromagnetic order is unstable against arbitrarily
weak random fields for systems with dimensionality d
less than (or equal to) d, =4,"' while in the Ising
case (n =1) the lower critical dimensionality d, = 2.'
(ii) For n ~ 2 the critical exponents of d- dimension-
al systems are the same as those of the corresponding
pure problem in d —2 dimensions, ' and scaling laws

are correspondingly modified, 3 while not much is
known in the Ising case about the critical behavior at
the physical dimensionalities d =2, 3.'9 (iii) For
strong enough values of the random field an interest-
ing multicritical behavior is predicted. ' (iv) An ex-
perimental realization of these systems can be provid-
ed by site-disordered antiferromagnets in a uniform
magnetic field. '

The present paper is concerned with the Ising case
in two dimensions, i.e., right at the predicted lower
critical dimensionality. There one expects that no
spontaneous magrietization will occur for nonzero
random fields +h, although for h =0 a transition oc-
curs to a ferromagnetic state at a critical temperature
(ks T,/J = 2.27 in the case of nearest-neighbor in-

teractions. "' So far not much is known about the
detailed properties of this transition.

As more rigorous techniques are not available for
this problem, we perform a numerical study applying
a modified "recursive transfer matrix method" re-
cently developed for the study of two-dimensional
random systems. "'6 This method has been
described in detail in the context of the two-

dimensional Edwards-Anderson spin-glass, "and
hence will not be described here. In Sec. II we rather
discuss the properties of our model at T =0, where
for sufficiently large h a "cluster expansion'-' is used
to discuss singularities of thermodynamic functions
similar to those encountered already in the one-
dimensional case." Section III then contains our
results at nonzero temperatures. In Sec. IV we give a

calculation of the correlation function for small A

which results from the estimated domain-wall densi-

ty, and Sec. V contains our conclusions.

II. GROUND-STATE AND LO%-TEMPERATURE
PROPERTIES OF THE RANDOM FIELD MODEL

P(h;) = —[5(h; —h)+5(h;+h)] (2)

Consider now a finite domain of n sites, and denote
by , n (l +y) th—e number of sites within the domain

where the random field has a negative sign. Thus y
denotes the (small) relative deviation in the number
of minus signs from its mean'value. It is easy to
show that for large enough n the probability density
distribution for having a particular y is Gaussian,

p(y) = (n/2w)' 'exp( ——,
' ny') (3)

We consider the Ising Hamiltonian

K= —J X SS)—Xh;S;, S;=+l
(J&

''
where J is the exchange constant, the summation
(i,j ) runs over all pairs of nearest neighbors, and h;
is a (frozen-in) random variable distributed according
to the probability
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If the domain has a quadratic shape and the spins
surrounding it point up, the energy cost for overturn-
ing the domain, neglecting edge effects, is (at any
temperature T & T, )

hE =4f,Jn —2nyhM

where f, is the interface free energy and M the spon-
taneous magnetization per spin at h =0. From the
exact solution" '" we have

pi

f, =2J —
, ksT ln[(1+u)/(1 —u)]

-2J/k Tu=e

and

M = (1+u )' (1 —6u'+ u )' /(1 —u )'~' . (6) pi

The probability that AE ( 0 is thus given by

pl
P (hE & 0) =

&
dy p (y)

=(2n) '~'J, ( „exp(——,'z')dz . (7)
S

Equation (7) implies that P(d E )0) is nonzero and
becomes independent of n for large n. Thus

P (AE & 0) = —erfc( 42f, /Mh )

which for h ~0 reduces to (x = J2f, /Mh )

P(hE & 0) = exp( —x')
2 n'x

FIG. I, Ground-state domain pattern of the two-

dimensional Ising lattice in a small random magnetic field
(schematic). Arrows indicate orientation of the domains.

Hence the density of domains is essentially given by,
for small h, (neglecting preexponential factors for the
moment)

pq=P(AE & 0) ~ exp( —2 f,'/M'h') (10)

Figure 1 illustrates the domain pattern which em-
erges on the basis of this argument. Large domains
of up-spins contain smaller domains of down-spins,
which in turn contain smaller domains of up-spins
again, etc. The density of misoriented subdomains
within each domain tends exponentially strong to
zero as h 0, cf. Eq. (10). Figure 1 is schematic, of
course, as the shapes of the various domains need
not be regular. The implications of these results for
the correlation function are investigated in Sec. IV.
The expected qualitative behavior is shown in Fig.
2(a).

The correlation function decays from unity to the
square of the magnetiiation of the pure system on a
length which is basically the correlation length of the
pure problem, (~"". On a much larger length scale,
governed by the correlation length g"'"d' (h) of the
disordered system, the correlation function decays to
zero.

It is important to note that this decay does not im-

ply the absence of any order. Since the distribution

of random fields is quenched, the regions where sig-
nificant excess of one sign of the random field occurs
are also fixed. Even if the domain pattern of Fig. 1

is degenerate in energy with other domain arrange-
ments, we nevertheless expect to have a nonzero
Edwards-Anderson order parameter' q,

q = [(S;)j]„&0,
where [ ],„denotes an average over the random
field configuration [taken with Eq. (2)]. Since"
(R —= r; —rq)

lim [(S;S))r2],„=q', (12)

the correlation function [ (S;S&)r],„does not decay
towards zero for large distances [Fig. 2(b)]. We
speculate that, in analogy to [(S;S&)r]),,„, the decay
is governed by. two different lengths: at a length of
essentially g'"" the correlation reaches a value of
about M4 (M is the spontaneous magnetization of
the pure system), while the spin-glass order parame-
ter q is reached on the length scale g""d' (h) (which.
diverges as h 0). For h 0 we have q M [Fig.
2(c)], while at some critical field h, (T) the spin-glass
order breaks down (note that M,', the magnetization
in the random field directions trivially has to be sub-



23 TWO-DIMENSIONAL ISING MODEL IN RANDOM MAGNETIC. . . 289

[ &Sl Sl&t],„
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%e hence suggest that for d = 2 the behavior of this
model is quite nontrivial for h ~ 0: the order param-
eter'

(14)

I

impure
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—Mr
2

jrandom [h]

(b)

$ " being the spin orientation of S; in the f th ground
state of the system, is not related to the spontaneous
magnetization of the model Eq. (1), as for higher
dimensionalities. On the other hand, we expect that
spin-glass order parameters for the model Eq. (13) do
not vanish as they do for Edwards-Anderson spin-
glasses. "

Finally, we note that our treatment [Eqs. (3)—(10)]
does not imply that for a ferromagnet in an arbitrarily
weak staggered (nonrandom) magnetic field h, breaks
up into domains also. In this case, the excess
number of sites with fields of one sign within a
domain can never be larger in comparison with its
surface area, in contrast to the random field case.
Hence Eq. (3) does not apply to staggered fields.

While these considerations of the behavior in weak
random fields clearly are fairly qualitative, the
behavior in strong random fields can be analyzed
much more precisely. For h ) 4J all spins follow the
random field, hence the internal energy E per spin
just is E = —h, the magnetization per spin M, mea-
sured along the local direction of the random field is

unity, while the ferromagnetic susceptibility XI;, de-
fined via

i&-T&Tc ksTXF = X (SS,) r —(S, ) r(S, ) r (15)

(c) yields for T 0

k&TX, =X(l —(S,)') W=o . (16)

hc (T)

FIG. 2. (a) Expected decay of the averaged spin-
correlation function at a temperature at which, for h =0, a

spontaneous magnetization M occurs (schematic). (b) Ex-
pected decay of the averaged squared correlation (schernat-
ic). (c} Expected variation of the Edwards-Anderson order
parameter (schematic).

At h =4J, however, spins for which following the
random field would involve breaking four bonds be-
come effectively decoupled [Fig. 3(a)]. Since the
probability of the configuration of random fields
shown in Fig. 3(a) is ( —, )', and there are two such

configurations [the second just has all the random
fields of Fig. 3(a) reversed], we find that at h =4J a
fraction —, of the spins is loose, i.e., has (S;)o=0.
Hence we obtain for M„, the susceptibility and entro-
py

tracted in the order-parameter definition).
Obviously, using e~ = sgn(Ir;) and transforming Eq.

(1) with S~' = e;S; one obtains a Mattis spin-glass' in
a homogeneous field

K= —$ JdSIS, —h $S, , Jrg=e;eJJ . (13)
(iJ) i

15 1M
16 /C+ TXf '

S/ks = —, (ln2) (h =4J)

For 3J & h & 4J the central spin of the configuration
shown in Fig. 3(a) is no longer loose but rather
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For h = —8J we have loose "trimers" [Fig. 3(c)],

ll

(a) (b)

401 45
M, 512 ' kB TXf 512

S/kii = „,(ln2) (h = —,8J)

while for —,SJ & h & —,8J

(21)

M =
256 '

(22)
(c)

E =-i(7 ——(4J —tt) ——(6J- 217) —(8J - 3A)
16 64 512

At h = —,SJ we have loose "quadrumers" [Fig. 3(d)],

M (026 ks TXf 236 S/ks 4(IiI6 ( ln2 ), (23)

(e)

0
tl . Il tl

while for
5

12J & h & —,5J these quadrumers are an-1 1

tiparallel to their random field and thus

361
M, 512 '

E = -It ——(4J —i'7) ——(6J —2Ii)
1 1

16 64

I I
I

tl

—(8J —3h) i2
—(10—4h) 60I6

(24)

(g)

FIG, 3. Local random field configurations which lead to
singularities at T =0 as described in the text. Arrows
denote direction of random field at each site. Sites which

form a loose cluster at the singular field are connected by

straight lines.

aligned antiparallel to the random field. Hence

M = — E= —h ——(4J —h)7 1

r 8' 16

ks TXf =0, S/ks =0 (18)

27M =— 1

kBTXf =
16

(19)
S/ka = —(ln2) (h =3J)

For 8J & h & 3J these "dimers" are no longer loose
but rather aligned antiparallel to the random field.
Hence

Similarly, for h = 3J a cluster of two spins in the con-
figuration shown in Fig. 3(b) becomes effectively
decoupled from the rest. Since the probability of this
random field configuration is ( —, )', and there are

four equivalent configurations, we have

while for —7J & h & —,12J

10927
15 384

E = —
17

——(4J —h ) ——(6J —2J) —(8J —3h)
L6 64 512

—(10J—4h), , —(12J—5h ) „,6, (26)
etc.

It is easy to realize that the critical values R, of the
ratio R —= h/J at which singularities due to loose clus-
ters of spins occur are given by

R, =p(&'/n (27)

where p„'~' is the bond perimeter of a cluster of type y
which contains n lattice sites. The bond perimeter is
the number of nearest-neighbor bonds connecting
sites of a cluster with neighboring sites outside of the
cluster. " The maximum perimeter for each n is ob-
tained for fully ramified clusters (i.e., for which inter-
nal bonds do not form any closed loops). It is given
by

At h = —, 12J clusters of five spins become loose [Fig.

3(c)],
22 479 3 125 125

32768 ' S f 32768

(25)

M =—13

p
(ramified) 2rt + 2 R (ramified) 2 + 2/ri (28)

E = —i(7 —(4J —/7)/16 ——(6J —2A)

ks TXf =S/ks =0
(20)

As a result, there is an infinite number of singulari-
ties in the regime 2 & R ~ 4. In between these
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(m &k &1)

n = mk, p„=2m +2k R, 2k +2m
mk

(30)

0.8-

or, ]]ll] 1

0.0 2.5 3.0
1

3.5 4.0 R

while for general n = mk + I the most compact confi-
guration is given by a rectangle of linear dimensions
m, k where one side has a kink a distance l apart from
the edge with linear dimension m +1. The perimeter
then is (k & 1)

mean field theory paqt) 2 +2k +2 R
2k +2m +2

mk + l
(31)
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Introducing further kinks at the surface of the cluster
increases the perimeter in steps of 2 per kink.
Hence, starting from the minimum perimeter given
by Eq. (31) all even integers appear in the numerator
in Eq. (31), up to the maximum value which is

reached for fully ramified clusters, Eq. (28). Rami-
fied clusters with just one closed loop have a perime-
ter

~ 0.08-

004- )Nf) f t

[d)

20 25 3.5 4.0 R

FIG. 4. Variation of (a) M, , (b) internal energy, (c) sus-

ceptibility, and (d) entropy with R =I]/J. Arrows indicate
where singularities occur at T =0. Dashed curves in (a),
(c), and (d) indicate qualitatively. the behavior at nonzero
T« T, .

p
(square) 4j ~ R (square) 4/ J (29)

Just as the ramified clusters produce infinitely many
singularities for R 2+, the squares produce infinite-
ly many singularities for R 0+. Similarly, for rec-
tangles [Fig. 3(g)] of linear dimensions m, k, we have

singularities, all thermodynamic functions are con-
stant (as M„, ka Txf, S) or vary linearly with R (as
E), cf. Fig. 4. At nonzero temperature these singu-
larities are rounded off, but at low enough tempera-
tures we still expect a very nonmonotonic behavior of
kaTX, S (as well as BM,/Bh, BE/Bh), which reflects
these singularities in the ground state (Fig. 4). This
behavior is similar to the one-dimensional case",
there, however, singularities occur at h/J = 2/n,
n = 1, 2, 3, . . . , etc. , the behavior as described here
extends down to h 0. In our case the behavior of
thermodynamic functions changes qualitatively at the
mean-field critical field, ' R, =2. For 0 (R ~2
singularities occur at every rational number. This
conclusion follows from an examination of random
field clusters containing closed loops [e.g. , Figs. 3(f)
and 3(g)]. .The most compact clusters are squares
[Fig. 3(f)]. Their perimeter is (note that only these n

are possible for which Jn is integer)

p~=2n R~=2 (32)

which implies that there are no other singular values
for R & 2 than the one given in Eq. (28). For
R ( 2, however, for every rational R = /@sr„, pv, in-

tegers, clusters can be constructed which are loose at
this R: we choose n =j v, p„= j p, , where j is an
even integer. The equations jv = rmk + l,

jp, = 2k + 2m + 2i, where i is an integer counting the
numbers of kinks of the cluster, obviously always
have solutions for R in the given range. However, a

pronounced effect on thermodynamic functions is ex-
pected only for those R where fairly many small clus-
ters contribute, as the probability of finding a given
cluster decreases rapidly with increasing cluster size.
From the above it is clea~ that pronounced effects are
expected at R =2 and 3 [where the cluster of Fig.

5

3(g) contributesl, R = —[Eq. (27), n =9], R =—
[Eq. (28), k =2,m =4].

While the cluster expansion easily yields accurate
results on ground-state properties for R ) 2, for
R ( 2 the above considerations do not yield any ex-
plicit predictions. The modified recursive transfer
matrix approach"' can be applied here conveniently.
Note that Fig. 5 shows that the ground-state energy
strongly deviates from the mean-field prediction for
R & l. A value U/J = —2 is reached as h 0
asymptotically. Figure 5 implies that the domain ef-
fects of Fig. 1, which destroy the ferromagnetic state
for small h, contribute only marginally to the internal
energy. However, these data do not give any indica-
tion as to the location of the critical field h, (0).

Figure 6 shows the behavior of kqTXy and M, .
These results actually refer to a finite temperature
(ka T/J =0.2, i.e. , about 9% of the critical tempera-
ture of the pure system), but we expect the results at
T =0 to be fairly similar. The results for M„show
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FIG. 5. Ground-state energy plotted vs random field for
various L x L lattices. The dashed curve indicates the ex-
pected behavior of the infinite system and the full curve is

the mean-field result (MFA).

kBTXflN g R

1.00 -g

075 [

very little size dependence, and we believe that they
reflect quite faithfully the behavior of the infinite lat-
tice. It is seen that the singularities for h/J & 2 are
already smoothed out at the considered temperature.
Some irregularities in the M„vs h curve for 1 ( h/J
& 2.5 are probably a remnant of the T =0 singulari-
ties. For h/J & 1 M, is very small. The statistical
inaccuracy of the results (as well as the smallness of
the lattices studied) prevents us from stating whether
M, has a singularity at the critical field h, (T) for
T & 0 as well, or not. While mean-field theory im-
plies a transition to the ferromagnetic state at h/J =2
(Ref. 8), our results [Figs. 4(c) and 6] indicate that
the susceptibility there is still fairly small, and instead
increases strongly for h/J = 1. The saturation of
ks TX/N seen in Fig. 6 for small h implies that there
is a nearly perfect degree of ferromagnetic correlation
(for the lattice sizes L =6, 8 considered). This is
consistent with Eq. (10). However, Fig. 7 shows that
the fields at which k& TXf saturates decrease with in-

creasing L, consistent with the absence of a spon-
taneous magnetization M (Iim~ ks TXf/N M )
for h &0.

Note that (S;)r =—0 for T & 0 in zero magnetic
field, as finite systems have no phase transitions.
Therefore for h

'

0 the "susceptibility" ks TXI/N is
not dominated by the susceptibility of the pure Ising
system which is obtained there below T, in the ther-

modynamic limit, but ks TXF/N converges smoothly
towards the square of the spontaneous magnetization
M: we do not include any nonzero homogeneous

magnetic field H here, and thus what we denote as
"ferromagnetic susceptibility" here and in the follow-

ing is in fact

ksTXF —= X [(SS,) r],
ij

and hence

lim kaTXf/N = lim X [(S;SJ)r],
iV ~oo N ~oo Ij

2= M2

D. 25—

Symbol L

x

8
0 12

FIG. 6. Susceptibility k& TX&/N (left part) and magnetiza-
tion in random field direction M, (right part) plotted vs ran-
dom field h/J at k&T/J =0.2. Error bars were calculated by
averaging over about 70 realizations of an 8 x 8 lattice,
about 40 realizations of a 6 x 6 lattice and about 30 of a
12 & 12 lattice.

Figure 7(c) illustrates this behavior comparing data
for zero random field and L = 6, 12, 16 to exact
results for M' (Ref. 14) for T less than the critical
temperature T, of the infinite system. Above T„ the
susceptibility Xf in the thermodynamic limit, as taken
from high-temperature series expansion estimates, "
is used to compute the corresponding expressions of
ks TXI/N. Clearly, our numerical calculations for
rather small lattices cannot accurately describe the
critical behavior of the infinite system„ i.e., at T, our
susceptibility Xf for any finite N is also finite. But
one can see clearly from our calculations that a tran-
sition occurs from a disordered regime, where
lim~ ksTXf/N 0, to an ordered regime where a
nonzero order parameter exists in the thermodynamic
limit. From the inflection point of the Xf vs T curves
one can estimate the transition temperature T, of the
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144—
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(a) infinite system to within a few percent, since the
variation with N of this inflection point is small. This
is to be expected since ks TXf/N = M~ as long as the
correlation length g is distinctly smaller than the
linear dimension L of the system and g is large only
in the vicinity of T, . Conversely, if we were to find
that the inflection point shifts strongly to lower tem-
perature as W is increased, such as occurs for a
nonzero random field, we would conclude that we are
still in the regime of the disordered phase but with a
correlation length much larger than the linear dimen-
sion L.
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FIG. 7. (a) Susceptibility k~TXf and (b) effective square
of the spontaneous magnetization plotted vs random field at
kz T/J =0.2 and various lattice sizes. Full curves are the
calculations of Sec. IV. (c) "Susceptibility" k~TX&/N for
various N and zero random field plotted vs temperature.
Full curves are drawn using the corresponding exact results
(Refs, 14 and 24).

III. SUSCEPTIBILITY AND SPECIFIC HEAT OF THE
RANDOM FIELD ISING MODEL

The temperature variation of the susceptibility
ks TXI/N (i.e. , normalized such that it converges to-
wards M' for N ~) is shown in Fig. 8 for several
values of the random field. For h/J =0.5 the
behavior is hardly distinguishable from the case h = 0
(cf. Ref. 15), apart from a decrease of the "effective
critical temperature" from ks T,/J =2.27 (in the pure
case} to ks T,'""/J = 2.0 For h/J = 0.75 the behavior
is similar, with ksT,'r"/J =1.8. While the curves for
L =6, 8 are nearly identical for T ( T, "", the curve
for L = 12 is afready significantly depressed. This in-

dicates that the data in fact do not converge to a
nonzero M'(T} for N ~, and the curves of Fig.
8(b) simply reflect the strong increase of the fer-
romagnetic correlation length rather than the ex-
istence of a spontaneous magnetization. At h/J =1.0
the curve for L = 12 is already significantly depressed
even for low temperatures [Fig. 8(c)], while the
curves for L =6, 8 remain nearly identical at low

temperatures. At h/J =1.25 the size dependence of
ks TXI/N is already very pronounced for all L con-
sidered. We believe that the ferromagnetic correla-
tion length for h/J =1.0 must saturate at about 12
lattice spacings, while for /t/J = 1.25 it saturates at
about 6 lattice spacings (or less).

Figure 9 shows the internal energy and Fig. 10 the
specific heat of our model. For h/J & 1.0 the size
dependence of the specific heat is insignificant, and
the data indicate the existence of a broad Schottky-
like peak only. This is consistent with our above dis-
cussions of the susceptibility which implies that when
the ferromagnetic correlation length does not become
very large, there is not even a rounded phase transi-
tion but only short-range order. For h/J =0.5, how-
ever, the peak of C at ks T;""/J = 2.0 grows with L
and becomes sharper, and the same is true for
It/J =0.75 (Fig. 11). In both cases no saturation ef-
fect is seen. We interpret these findings as a transi-
tion to Mattis-like spin-glass order (Fig. 2). This sit-
uation would be compatible with Grinstein's modified
scaling conjecture' (d —2) v = 2 —a only for u ~, v
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FIG. 8, Susceptibility k&T'X&j plotted vs temperature for (a) h/J =0.5, (b) 0.75, (c) 1.0, and (d) 1.25. Several lattice
sizes are shown. The full curves on (c) are the calculations of Sec. IV.

being the correlation length exponent, o. the specific-
heat exponent, and d the dimensionality. No predic-
tion for 0, arises in this case trivially, in contrast to
the two-dimensional XY model where v = ~ has been
established, ' and hence the standard scaling law
de=2 —o implies o. = —~, i.e., the specific heat does
not diverge, and only a broad Schottky-like peak
remains. " It seems doubtful to us, however, wheth-
er Grinstein's scaling conjecture holds in our case.

Figure 12 compares our findings to those obtained
from mean-field theory. ' A true ferromagnetic state
with a spontaneous magnetization occurs for h = 0

only. For nonzero but sufficiently small h a "transi-
tion" to a quasiferromagnetic state is observed,
where the magnetization still saturates completely
within domains of fairly large size and we have
nonzero spin-glass order parameters. As far as the
ferromagnetic correlation function is concerned, the
transition to this state may be either a rounded (gra-
dual) transition or a phase transition to a state with a
power law decay of the spin-spin correlation function.
The tricritical point found in the mean-field treat-
ment does not seem to have any significance for the
interpretation of our numerical results.
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FIG. 9. Internal energy per spin plotted vs temperature
for an 8 &8 lattice at various values of the random field.
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We now define PJ(1) as the probability of crossing

j domain walls while moving along a path connecting
two spins So, Si, separated by I lattice units. Since
the locations of the domain walls are essentially iri-

dependent and they are uniformly distributed, P, (l)
should be well represented by the, Poisson distribu-
tion

(34)

with y, given by Eq. (33). For a given distribution of
domain walls at a temperature T &( T, (h =0), the

As discussed in Sec. II, the probability of finding,
for the two-dimensional Ising model in the random
field described by Eq. (2), a domain containing n re-
versed spins is given by P = —, erfc(x) with

x = J2 f, /Mh for large n For weak f. ields, where
x && 1 and P (& 1, the average size, cJn, of a region
containing one such reversed domain can be estimat-
ed by setting (l —P) = e '. Thus o. = I/P. Noting
the scale invariance of the system for distances much
greater than P ' ', we conclude that in weak fields
the interface (domain-wall) density p, perpendicular
to any given direction is given by
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FIG. 10. Specific heat plotted vs temperature for several
values of the random field; (a) L = 6, averaged over 70 real-

izations, (b) L =8 averaged over 40 realizations, (c) L =12
averaged over 30 realizations.
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Using Eqs. (15) and (36) and taking 0~ I ~ R, we

obtain for the ferromagnetic susceptibility

kaTXf =M [1 —(2pR +1)e '" ]/2p, . (37)

This result should be valid in weak random fields and
at low temperatures.

We have applied Eq. (37) to the same arrays stu-
died numerically and discussed previously in Secs. II
and III. The results, for Xf vs h at kaT/(=0. 2 and

Xf vs T for h/) =1, are shown in Figs. 7(a) and 8(c),
respectively. Considering first Fig. 7(a), we see that
the analytic results compare reasonably well with

those obtained numerically, particularly when one
remembers that Eq. (37) can only be a first approxi-
mation for the small arrays and necessarily relatively
strong random fields studied numerically. The calcu-
lated temperature dependence of Xf shown in Fig.
8(c) is also in reasonable agreement with the numeri-
cal results for T & 0.6T, ; at higher temperatures both
the dependence of M on h and the fluctuation contri-
bution to Xf, which are not included in Eq. (37), will

become important. .

Returning to Eq. (35), we note that

FIG. 11. Log-log plot of specific-heat maximum vs linear
dimension of the system at various values of the random
field.

spin-spin correlation function is simply

(SaSt) r= (—I)~M', (35)

where M is given by Eq. (6). Using Eq. (34), we

average (SaSt) over all possible domain-wall confi-
gurations, obtaining

OO

[(S,S,)rta„=M' X (—1)~ ~ e "' =M2e-'~'
J~P

(36)

(SaS&) r = ( I ) JM (38)

2
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X

for any configuration. Thus, as noted earlier, this Is-
ing system exhibits spin-glass order, of the Mattis-

type, at low temperatures in weak random fields.
This conclusion is corroborated by a direct numeri-

cal calculation of this correlation function with our
modified transfer matrix approach, Fig. 13. It is seen
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FIG. 12. Phase diagram of the random field model, as
compared with the mean-field approximation (MFA) (Ref.
8). The broken line is our estimate for the transition
paramagnet-Mattis spin-glass, Note that the line h =0 is

special as for A 0, T ( T~ a transition to an ordered fer-

romagnetic state with nonzero spontaneous magnetization
M(T) occurs.
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FIG. 13. Spin-glass correlation function I (SaSa)'I,. „—I„"
plotted vs distance R at k~T/J =1.0 for several values of the
random field.
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V. CONCLUSIONS
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FIG. 14. Spin-glass order parameter q —M, resulting

from Fig. 13, plotted vs h at k&T/J = 1.0.

that for weak random fields the correlation function
settles down at constant values if / exceeds a few lat-
tice spacings. Thus the order parameter q of the
Mattis spin-glass can be identified (cf. Fig. 2). Its
variation with the field is shown in Fig. 14. The criti-
cal field at which the transition to the disordered
state occurs agrees roughly with the location of the
specific-heat maximum. This breakdown of the
spin-glass order cannot be analyzed in terms of the
above domain-wall considerations, however, which
hold for weak random fields only.

In summary, we have shown that for T = 0 the sys-
tem experiences an infinite number of (first-order)
phase transitions as a function of random field in the
range 2 ( h/J «4, at the values h/J =2+2/n,
n = I, 2, . . . , . In the range 0 ( It/J «2 there exists
even in any finite interval infinitely many (weak)
singularities (whenever h/J is equal to a rational
number in this range). A spontaneous magnetization
does not exist even for small nonzero h in the
ground state, but order of the Mattis spin-glass does
exist. For T & 0 these singularities are wiped out at
temperatures as low as about —,0 of the pure critical

temperature. For T less than T, of the pure system
the transition from a paramagnetic state to Mattis or-
der at h, (T) is located by observing a specific-heat
singularity. In this ordered phase a strong ferromag-
netic correlation develops as h 0. The (ferromag-
netic) correlation function is calculated from the den-
sity of domain walls in the system and the resulting
susceptibility is in fair agreement with the numerical
calculations. Thus, unlike other two-dimensional
spin-glasses, this system clearly exhibits spin-glass or-
der at nonzero temperatures (note that there is no
trivial relation to the pure Ising model, in contrast to
the standard Mattis spin-glass). An investigation of
the critical properties of the present spin-glass system
would be of great interest,
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