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J. Zak
Department of Physics, Technion, Israel Institute of Technology, Haifa, Israel

(Received 24 June 1980)

Symmetry types of bands in solids are specified by means of band representations of space

groups. This is a new kind of representation that corresponds to bands of energies rather than

to single energies as in the case of usual representations. It is shown that each band representa-

tion defines a symmetry type of a band by specifying the symmetry of localized orbitals with

respect to a whole lattice of point group centers. In this symmetry specification the quasicoordi-

nate q in the %igner-Seitz cell plays a similar role to what is played by the quasimomentum k

in the symmetry specification of Bloch states in the Brillouin zone.

I. INTRODUCTION

The concept of bands was first introduced by
Bloch' and has since been widely used in solid-state
physics. On an intuitive level this concept means an
isolated interval of energies in the energy spectrum
of a crystal. For a more precise definition one has to
also give all the Bloch functions that correspond to
this interval of energies. Since there is often more
than one Bloch function for a given energy e and k

vector, these two indices are not sufficient for the
specification of the Bloch function. One then ends

up using the irreducible representations of space
groups for labeling Bloch functions at each point k in

the Brillouin zone. ' A precise definition of a band
involves, therefore, an energy interval and a specifi-
cation of the corresponding Bloch functions by means
of the space-group symmetry at each k vector. This
definition is adopted in a series of papers by Des
Cloizeaux. It involves both the energy spectrum and
the symmetry of the crystal. . These two pieces of in-

formation are of different nature and while it is usu-

ally hard to find the first of them, the second is, as a
rule, known. In fact, these two parts of information
appearing in the definition of a band are to a great
extent independent and it should be possible to
separate them. This is very much the same as in

atomic physics where one can talk about the sym-
metry without mentioning the energy of the levels.
Thus, in atomic physics it is quite simple to specify
the symmetry types of atomic levels by the angular
momentum quantum numbers or, equivalently, by
the rotational symmetry. One should be able to do
the same in solids and answer the question about the
symmetry types of bands without getting involved
with the energy spectrum. This is a much simpler
task than the full definition of an energy band in a
solid because it is connected with the space-group

symmetry only.
The concept of the symmetry type of a band is not

new and it has been applied to different band calcula-
tion schemes. " ' This concept was introduced in Ref.
3 by first defining a band on the basis of Bloch func-
tions as described above and then by showing how to
find symmetry adapted Wannier functions that span
the band under consideration. These %'annier func-
tions define the symmetry type of the band.

In this paper it is shown how to define the sym-
metry type of a band by directly using %annier func-
tions or more generally localized orbitals. This is
done by defining new types of representations for a
space group; these are called band representations.
Unlike the usual representations of space groups
which are based on Bloch functions, the band
representations have localized orbitals as their bases.
Each band representation is infinite dimensional and
is also irreducible in the basis of localized orbitals.
This new feature of band representations is achieved
by restricting the space of functions to localized orbi-
tals only. Such a restriction excludes finite-
dimensional representations because the latter are
based on Bloch functions which are of extended na-
ture. Different symmetry types of bands are given by
different band representations of the space group for
the particular solid. As is well known, Wannier func-
tions, or more generally, localized orbitals reproduce
energies belonging to a ~hole band. 4' What this
means is that a band representation corresponds to a
band of energies rather than to a single energy as in

the case of a usual representation of a group. But
this is exactly the feature that makes a band
representation suitable for the definition of the sym-
metry of a band as a whole entity.

Until quite recently the concept of a band as a
whole entity was not utilized because most of the ex-
periments were involved with electronic states at the
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Fermi level in metals or at the top and bottom of the
valence and conduction bands correspondingly in
semiconductors. In recent years, with the application
of powerful sources of radiation it became possible
to extract information about states ranging over hun-
dreds of eV and in such experiments the data about a
band as a whole should become accessible. The con-
cept of a band representation and the symmetry types
of bands as entities should therefore, in principle, be
connected with experimentally measurable quantities.

There are a number of new concepts that are con-
nected with band representations in solids. It is
shown in this paper that the symmetry of localized
orbitals can be fully specified with respect to a lattice
of point symmetry centers. This lattice was defined
in Ref. 3 and will be called the point symmetry lat-
tice. From the point of view of the symmetry types
of bands in solids, a space group can be looked upon
as consisting of a finite set of point symmetry lattices.
Each such lattice is defined by a symmetry center in
the signer-Seitz cell. ' The symmetry centers by
themselves are specified by the quasicoordinate q.
The latter assumes in the band representations a
similar role to the one that the quasimomentum k
has in the usual representation theory of space

groups. Thus, it is shown in this paper that the
quasicoordinate q specifies the band representations
of space groups.

In Secs. II and III of this paper the band represen-
tation is defined and it is shown how it can be used
for. the specification of the symmetry types of bands
in solids. These sections deal with the basic concepts
connected to band representations and methods are
outlined for the construction of the latter. In Sec. IV
a detailed example is worked out of finding the ir-
reducible band representations of the space group D4.
Tables I—IV contain the information connected with
these band representations. It is also shown how the
band representations specify the symmetry of Bloch
functions at different k vectors in the Brillouin zone.

II. SYMMETRY SPECIFICATIONS OF BANDS

The symmetry of Bloch functions ter„k( r ) in a solid
for a given quasimornentum k is specified by the ir-
reducible representations of the group Gk of the vec-
tor k. The latter is a subgroup of the space group 6
of the solid and is defined in the following way: to
Gk all those elements (P ~ 1) (P is a point group ele-

TABLE I. Symmetry centers and the corresponding sets of Bravais lattice vectors R . The centers a, b, c, d are with sym-
metry D4, e ', e and f ', f are centers with symmetry D2 and they form stars in couples. The symmetry centers g ~'

and g have the symmetry C4 and belong to the same star. i '~, i,i, and i " belong to the same star and have the sym-
metry C2. at, a&, a3 are the unit cell vectors of the Bravais lattice. C$, C),C2 are rotations by rr around the axes x, y, and z

1 3
correspondingly; Cz4 and C4'are rotations by 2m and 2n around the z axis; U"Y and U~ are rotations by n around the axes xy
and xy, correspondingly.

Symmetry

center E Cx
R =q —oq

Cz Cz4 C 3z
4

a(0, 0, 0)
b(0, 0, 2c)

1

1 1c( 2a, —a, o)
1 1 1d( —a —a —c)
2 '2 '2

e ' (2a, 0, 0)
e~ (O, —a, o)
f&"(—a, o,—e)1 1

f (0,—a, —c)
g~»(o oz)
g~2~(0, 0,z)
I'»(o, —,a, z)

1
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'"(-,a, o,z)
1

i&4&( —,
'

a, O,z)

a3

a2

a2 a3

0

a2

a3

a3

a1

a1

a3

a1

a2

a2

0
0

a2

a2

a1

a1

a1

a1

a2

a2

a3

0
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a1+ a2+ a3



2826 J. ZAK 23

TABLE II. Characters of irreducible representations of the point group D4 and the phases for
the band representations corresponding to the symmetry centers a, b, c, and d. / =exp( —ikxa),
g = exP( —ikya), f = exP( —ikzc).

D4 E Cx CZ
2

Cz C 3z
4

UXy UXy

D(1)
D(2)

D(4)
D(5)

1

—1

1

—1

0

1

—1

+1
—1

0

1

1

1

1

—2

1

1

—1

—1

0

1

1

—1

—1

0

1

—1

—1

+1
0

1

—1

—1

1

0

&a

qb

q~

ment and b is a translation) of G belong that have
the property

Pk=k+K,

where K; is a vector of the reciprocal lattice. The
symmetry of g„k( r ) is defined by means of the ir-

reducible representations D (P~ b) of Gk

(p~b)g„k( ) = XD'""(p~ b )p'" ( r ) (2)

band. ' Such a symmetry specification has the
disadvantage that is uses many different representa-
tions which do not seem to have anything in corn-
rnon for defining a band as one entity. Thus, it does
not seem to reflect any characteristic symmetry
features of the band as a whole. In what follows it is

shown that such characteristic features exist and that

I
n

The index I labels different representations of Gq. In
this approach one can assign a definite representation
to each k and each energy level. By defining in such
a way the representations for all the k vectors in a
Brillouin zone and for all the energies belonging to a
band, one specifies the symmetry of the given

TABLE IV. Matrix elements D&
' of the band represen-

tations of D4 induced from the band representations of D2
for the stars e", e and f", f' . The matrices are
given for the elements of D2 only. I denotes different ir-

reducible representations of the point group D2, the index r
denotes different symmetry centers.

D2 E CX CZ
2

D(1)
D(2)

D (4)

1

1

—1

—1

1

—1

—1

1

1

—1

1

—1

e(1)
e(2)

f (1)

f (2)

TABLE III. Characters of irreducible representations of
the point group D2 and the phases for the band representa-
tions corresponding to the symmetry centers e ', e, f' ',
f . g = exp( —ikxa), g = exp( —iky a ), f = exp( —ikzc ),

D ( l,e)
ll

D (l,e)22'

D (2,e)
11

D (2,e)22'

D (3,e)
ll

D (3,e)22'

D (4,e)
ll

D (4,e)22'

11

D (2.f)
ll

D (2,f)22'

ll
22'

D (4,f)
11

D (4.f)22'

E Cx
2

1

1

—1

—1

CZ
Z
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a definition of a band in a solid can be given based
entirely on a single representation of its space group.

Let us compare the symmetry of a crystal with that
of an atom. The atomic levels are specified by the
rotational symmetry around one fixed center. In a
crystal there is, as a rule, more than one center of
point group symmetry. Consider, for example, a
crystal with the symmetry D4. This is a crystal of the
tetragonal system. In Fig. 1 two kinds of symmetry
centers are given in the plane perpendicular to the C4
axis. " The squares denote centers with D4-point
symmetry and the ovals with D2 symmetry corre-
spondingly. Crystals have, in general, a number of
point group centers of different symmetry. What is
characteristic to the crystalline point symmetry is that
each center of a given kind appears not as a single
center but as an infinite lattice of symmetry centers.
Such a lattice is obtained by choosing one center of
given point symmetry and by applying to it all the
elements of the space group. ' This lattice differs, in
general, from the Bravais lattice of the crystal. Only
for centers with the full point symmetry of the crystal
(e.g. , points a and c in Fig. 1) will this lattice coincide
with the Bravais lattice. In the general case, the unit
cell of the lattice will have a structure assigned to it.
Thus, in Fig. 1, the points e"' and e' ' form the
structure of the unit cell. For a full description of
the lattice of the symmetry centers we have to also
give its position with respect to the origin of the crys-
tal. Thus, the points a and c in Fig. 1 lead to identi-
cal lattices in the space group D4. However, they are
located in different positions with respect to the ori-
gin of the crystal. A lattice of symmetry centers is
therefore specified by the point symmetry of one of
its centers, by the structure of the unit cell, and by
its location with respect to the origin. This lattice of
symmetry centers in a c'rystal replaces the single
center in an atom. Because of its important role in
the symmetry specification of bands it will be called
the point symmetry lattice. One can visualize a space

group symmetry as consisting of a finite number of
point symmetry lattices. As is shown below, the
specification of the symmetry of states with respect to
a point symmetry lattice leads one to the symmetry
notion of a band as a whole in much the same way as
an array of localized orbitals on a lattice leads to an
energy band.

In defining the symmetry notion of a band in a
crystal it should be more suitable to use Wannier
functions (or more generally, localized functions)
than Bloch functions. The reason for this is that
while a Bloch function defines a single energy in the
band, a Wannier function reproduces energies be-
longing to a whole band. In fact, there is no need
to restrict oneself to Wannier functions and the same
can be. said about a more general localized function. "
What this means is that in solids one can find local-
ized functions that correspond to a band of energies.
By specifying the symmetry of such localized func-
tions we shall clearly specify the symmetry of a band
as a whole entity.

We shall define a band in a solid as consisting of a
set of localized orbitals which are invariant under all
the operations of the space group. Such a set of orbi-
tals will form an infinite-dimensio'nal representation
of the space group. The reason for this is that the
translation operators do not have eigenfunctions in
the space of localized functions and since there is an
infinite number of translations the invariant set will

necessarily contain an infinite number of functions.
This can best be seen when the functions are ex-
pressed in kq representation. " A function C (k, g)
in the kq representation is connected with the corre-
sponding function P( r ) in the r representation by
the following formula

C(k, g) =D ' Xexp(i k R )P(cf —R„)

where 0 is the volume of a unit cell in the reciprocal
lattice and R are vectors of the Bravais lattice.
When a translation by RI is applied to C ( k, q ) one
obtains the shifted function

exp( —ik RI)C(k, q) (4)

o ()

FIG. 1. Space group D4. the squares denote centers with

point symmetry D4, the ovals with point symmetry D2.

This means that when all the translations of a space
group are applied to a function C ( k, g ) we get in

Eq. (4) an infinite set of independent functions. We
come to the conclusion that if we insist on consider-
ing only localized functions, all the representations of
space groups will be infinite dimensional. We shall
call them band representations. Since the only thing
that pure translations do in the kq representation is to
shift a function according to Eq. (4), it is clear that
the bases of band representations contain a limited
number of functions

C((k, $),C2(k, q), . . . , C (k, q)



and the same functions shifted by the phases as in

Eq. (4). When the space group elements (al t ) (n a

point group element and t a translation') are applied
to these functions wc gct

(al t )C, (k, q) = X D, [(al t ), k]C, (k, q),
I

s

(6)

where D [(al t ), k] is, in general, a k-dependent
matrix. The knowledge of these matrices for all the
elements (n I t ) defines the symmetry properties of
the functions C, (k, q). Fmm Eq. (3) it follows that
the operation of (al t ) on a function C(k, q) in the
kq representation is

Equation (6) defines a correspondence between the
elements (a I t ) of the space gmup and finite-
dimensional k-dependent matrices D [(o.I t ), k]

where by translational symmetry D depends on the
difference Kl —R only. Equation (9) defines an

I

infinite-dimensional representation of thc space
group. The matrix in Eq. (9) is nothing else but the
Fourier transform of the matrix in Eq. (8). We see
therefore that in the kq representation we get finite-
dirncnsional matrices representing the elements
(el t ) of the space group on the basis of localized
orbitals. The form of the band representations in the
kq representation [Eqs. (6) or (8)] is also important
from another point of view. The kq functions
C ( k, q ) satisfy the same boundary conditions as the
Bloch functions do"

C(k+~„,g) =C(k, q) (10)

C(k, q —K )=exp( —ik K )C(k, q) . (11)

The function C ( k, q ) can therefore be given a dou-

ble meaning. When k and q are the variables of the

kq representation, the function C (k, q) is a localized

orbital. However, the same function for a fixed
Quasimomentum 1s a Bloch-11kc fufiction 1n the r
representation. This is seen from Eq. (3) which is

the same as the relation connecting a Bloch function
and a Wannier function in the r representation. 4 This

This correspondence gives what we call a band
representation of the space group. It is only by work-

ing in the kq representation that wc get a correspon-
dence of the form Eq. (8). Thus, in the r representa-
tion Eq. (6) would become

dual meaning of the functions in the kq representa-
tion allows one to define the symmetry of the Bloch
functions at each point of the Brillouin zone from the
knowledge of the band representation. Thus, assume
that the band representation in Eq. (6) is given. Let
us choose a definite k vector and the corresponding
G„with the elements (Pl b) as defined in Eq. (I).
By using Eq. (7) for the elements of Gk we can as-
sume that P does not operate on k [see Eqs. (1) and
(10)]. The elements of Gk therefore transform a
function C(k, q) for the fixed k (that was chosen
for Gk) to a function with the same k. It follows
that by looking at C (k, q) as at Bloch-like functions
in the r representation, Eq. (6) will define a represen-
tation of Gk for each k in the Brillouin zone. But
this is exactly what is needed for specifying the sym-
metry of a band in the framework of the commonly
used definition. From the symmetry specification
of a band given by a band representation in Eq. (6)
we arrive at the usual representations of the groups
of k specifying the Bloch functions at each point in

the Brillouin zone. It follows therefore that a single-
band representation of the space group fully specifies
the symmetry of a band in a solid and it replaces the
commonly used definition which is based on many
different representations of the groups Gk.

The possibility of specifying the symmetry of a
band by a single-band representation is consistent
both with usual representation theory of space groups
and the very notion of a band in a solid. From the
point of view of usual representations a band
representation is infinite dimensional and it can con-
tain therefore all the necessary representations for
the symmetry specification of Bloch functions at dif-
ferent points in the Brillouin zone. As to the notion
of a band we find that while a usual representation
corresponds to a single energy value, a band
representation, by definition, is based on localized or-
bitals and it corresponds therefore to a band of ener-
gies.

We have come to the conclusion that each band
representation specifies a possible symmetry type of a
band. Clearly, each space group should have dif-
ferent band representations and we will therefore
have different symmetry types of bands for a given
solid. As will be shown in the next section the sym-
metry of the localized orbitals belonging to a given
band is specified with respect to the point symmetry
lattices that were defined above. Since the number
of point symmetry lattices in a crystal is finite and
since the point symmetry itself is of finite order, each
crystal will have a limited number of bands with dif-
ferent symmetry types. This is unlike in atoms
where an infinite number of different symmetry types
exists for atomic orbitals.

For distinguishing between different band
representations one can use the concepts of
equivalency and reducibility as for usual representa-
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tions. Band representations can be reducible or ir-

reducible depending on whether or not the basis in
Eq. (5) can be split into invariant sub-bases with
respect to the full space group of the solid. By defin-
ition of a band representation, the splitting is allowed
in the framework of localized functions only. Thus,
a linear combination of the function in Eq. (4) that
leads to a Bloch function C, (k, q) for the quasi-

momentum k'

C„(k, q) = Xexp(ik R, —ik R, )C(k, (f)
I

= &&(k' —k)C(k, q) (12)

should be excluded. The 6 function in Eq. (12) is an
infinite sum of Dirac 8 functions

h(k) = Xg(k —K„)

The function in Eq. (12) is excluded because it is not
square integrable. The irreducible band representa-
tions play the same role in the framework of band
representations as usual irreducible representations
play in the general representation theory. Thus, the
irreducible band representations serve as elementary
building bricks in the symmetry specification of bands
in solids.

T(k)

C, (k, q) = X T, (k)C, (k, q), (15)

then the equivalent band representation will be given
by the matrices

In thc matrix on the right the vector k is replaced by
a 'k. With the aid of Eq. (16) one can define the
concepts of reducible and irreducible band represen-
tations. The band representation D [(a1 t ), k] is

reducible if a matrix T(k) exists for which all the
matrices in Eq. (16) assume a quasidiagonal form.
This is equivalent to saying that the basis in Eq. (5)
can be split into invariant sub-bases by the transfor-
mation Eq. (15). If such a matrix T does not exist
then D [(a1 t ), k] is called an irreducible band
representation. Like in usual group representations,
the irreducible band representations play a central
role in specifying bands on the basis of space group
symmetries.

In general, the matrices of the band representa-
tions are nonunitary. However, if the basis in Eq.
(5) is chosen to be orthonormal [in this ca~e, we

shall denote the functions by a, ( k, q }]

III. BAND REPRESENTATIONS OF SPACE GROUPS

II
&

a,'(k, q)a (k, q) dq =8 (17)

A band representation was defined in the previous
section as an infinite-dimensional representation of
the space group with a basis of localized orbitals. Al-
ternatively, Eq. (6) defines a finite-dimensional band
representation but with matrices D [(a1 t },k] that
are k dependent. Since k is a variable of the wave
function, this means that strictly speaking Eq. (6)
does not define a representation of the space group
because the matrix elements in Eq. (6) are not con-
stants. It is nevertheless meaningful to talk about a
m-dimensional band representation (a band represen-
tation means also that in a finite-dimensional space
the matrices of the representation are k dependent)
with m having the meaning of the number of in-
dependent orbitals that form the band. By applying
to Eq. (6) another space group element (P1u) we
find that the matrix corresponding to the product
(P16)(a1t ) will be

D[(P u1), k]D[( at1),P 'k]

This multiplication rulc shows clearly that band
representations do not behave as usual representa-
tions but have some similarity with the corepresenta-
tion theory for time reversal. ' This can also be seen
on the concept of equivalent band representations.
Thus, if C, (k, q) is a new basis given by the matrix

D'[(al t), klD[(al t), kl=E . (18)

In Eq. (18), E is a unit matrix. The basis functions
a, (k,q) satisfying Eq. (17) are the Wannier functions
of the problem. ' In general, there is, ho~ever, no
need to work with orthogonal functions and often
this is not even desirable because orthogonality and
localization are mutually exclusive properties. '

It is easy to construct band representations of sym-
morphic space groups. A sppce group is symmorphic
if together with (a1 t ) also (a10) and (e1 t ) are ele-
ments of the group. ' This also means that the point
group elements appear with pure translations R
only. Thus, one can check that the correspondence

(a[R ):exp( —i k R )D (a) (19)

gives a band representation of G if D (a} is a
representation of the point group of G. Also, if
D(a) is an irreducible representation of the point
group of 6 then Eq. (19) gives an irreducible band
representation of G. In order to construct additional
band representations of G let us define the groups G~
of the symmetry points q in the signer-Scitz cell. '0
To G, belong all those elements (y1c) of the space

then as can be checked the band representation is un-
itary
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group for which

(yl c) =yq+ c = q —R (20)

y, = (»I4)y(»l —q) = (»lq —yq —c)(yl c) . (21)

From Eq. (20) it follows that q —yq —c is a Bravais
lattice vector R and Eq. (21) can be rewritten in the
following form

where R is a Bravais lattice vector. G, always con-
tains all the pure translations. Relation (20) is simi-

lar to the definition Eq. (1) for G„with the differ-
ence, however, that in Eq. (20) the translation c also
operates on q. G, can be chosen to be a symmorphic
space group. This is achieved by choosing q itself as
the origin for the point group elements. " (yl c) in

Eq. (20) is written with respect to the origin of the
crystal. Let y, be the point group element y when
written with respect to q as the center. Then, by

definition

q, =q, +R (27)

hat is meant by the equivalency of the centers q,
and q is that they lead to equivalent band represen-

tations in the formula (25). This is easy to check.
Denote by D "[(a]R ), k] the band representation
that corresponds to q, as given by Eq. (25). The one
corresponding to q will then -be

D'" '[(alR ), k] =exp[i k (K —aK) l

(they vary with a) for each symmetry center q„.
Two sets R, and R, for the centers q and q, are

called different if there is an a for which R, A R .
I'

Correspondingly, two symmetry centers q and q, are

called inequivalent if their Bravais lattice sets R, and
R, are different; otherwise they are equivalent.

I'

Here the following remark is in order: q, and q, are

also equivalent if they differ by a Bravais lattice vec-
tor

(yl c) = (»lc+yq —q)y, (22) x D "[(a
I K ), k ], (28)

It therefore follows that each y~ appears with a pure
translation, which means that G~ with respect to q as
a center is a symmorphic space group. This simplifies
considerably the construction of band representations
for G». According to Eq. (19), if D (y») is an irredu-
cible representation of the point group of G~ then the
correspondence

(y»lK ):exp(—ik K )D(y») (23)

a= (a„lar[, —q, ) (24)

We denote by n, the point group element n with

respect to the center q„. There is no c in Eq. (24)
because we assumed that the space group is sym-
morphic. By using Eqs. (23) and (24) we can now
build additional band representations [in addition to
the one given by Eq. (19)] of the symmorphic space
group. They are given by the correspondence

( IR ):exp[ik (R, K)]D—(a, ) (25)

where by R, we denoted the Bravais lattice vector

R, =q, —aq, (26)

defines an irreducible band representation of G~. In
this way, each irreducible representation of the point
group of G~ will define an irreducible band representa-
tion of the space group G~.

For symmorphic space groups there are usually a
number of symmetry centers q, with the full space
group symmetry G. Thus, in the space group D4
these are the symmetry centers a, 6, c, and d (see
Table I). For these centers Eq. (22) becomes

where R is defined in Eq. (27). Equation (28) shows
I

that D ' ' and D" are equivalent band representa-
tions [see Eq. (16)] with the matrix T(k)
=exp( —i k R). It is clear that if for two symmetry
centers q, and q, their Bravais lattice sets as given in

Eq. (26) are identical then the corresponding band
representations are the same. We come to an in-

teresting conclusion that assigns to the quasicoordi-
nate q a role similar to the one played by the quasi-
momentum k. As is well known only the k vectors
in the Brillouin zone lead to different representations
of the space group. From what we have shown a
similar result holds for r[: only those symmetry
centers lying in the Wigner-Seitz cell'' lead to dif-
ferent band representations of the space group. This
explains why in constructing band representations it
is sufficient to consider the groups G~ for the sym-

metry centers in the Wigner-Seitz cell.
Given the inequivalent symmetry centers q, with

the whole group symmetry G and the irreducible
representations D (a) of the point group of G, Eq.
(25) defines a number of different irreducible band
representations of the space group G. For some
groups of low symmetry this actually gives all the ir-

reducible band representations. There is a number of
such groups and one of them (C ) is considered in

detail in Zak. '

In a general case, irreducible band representations
of a space group G can be found by using the simple
induction method that is widely used in the usual
representation theory of space groups. ' The space
group G is decomposed into cosets with respect to the
subgroup G~

Equation (26) defines a set of Bravias lattice vectors G=G, +(a2la2)G, + +(afl~q)G» (29)
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Ci(k, f),C2(k, «f), . . . , C (k, g) (30)

be a basis for an irreducible band representation of
6,. Then it can be checked that the set of functions

C, ( k, q ), («»2~ a2) C.(k, p). . . (afl sf) C»(k, «f)

(31)
with s-1, . . . , m form a basis for a band represen-
tation of the space group G. This shows that each
band representation of a subgroup G~ leads to a band
representation of the space group 6 itself. In such a

way one can arrive at band representations of 6 from
the band representations of its subgroups 6, . The
latter as we saw are given by the simple formula (23}.

It turns out, however, that in order to find dif-

ferent irreducible band representations of a space
group G there is no need to consider all the sub-

groups G~. This can be seen in the following way.
Let 6 be a space group and consider all the symmetry
centers «[, that have as their symmetry G itself. For
the case of a symmorphic group this was already dis-

cussed and formula (25) gives the irreducible band

representations of 6 that are connected with the cor-
responding inequivalent centers. For a nonsym-

morphic space group G, by definition, no symmetry
centers exist with the full symmetry G. For the latter
there are therefore no band representations that cor-
respond to symmetry centers with 6 itself as their

symmetry group. Next, let us consider a subgroup

GI or G. For definiteness, let G~ be the highest sym-

metry subgroup. In may happen that there is more
than one such subgroup and then we shall consider
all of them. As with G we look for the symmetry
centers qb with the symmetry 6&. Let yb be the
point group elements of G ~ with respect to the center

gb. By using Eqs. (22) and (23} we find the band

representations of G~ that correspond to the sym-

metry centers qb.

(y~ c +R }:exp[ik (RI'," ' ' —R~)]D(y«), (32)

where

(aq)a2), . . . , (af~af)

are different elements that do not belong to G» [by
definition («»~ ~ a~) is the unit element (»~0) of the
space group]. Given the decomposition Eq. (29) one
can assign a star to each vector q which together with

q contains the vectors

(a2[a2) q, . . . , (af[af)q

Thus, the stars of the q vectors labeled by.squares in
Fig. 1 contain only «[ itself, while those labeled by
ovals contain two vectors, e"' and e' ' = C'e"' C'
is a rotation by 2

m around the axis z. A list of dif-

ferent symmetry centers with their stars for D4 are
given in Table I. Now let

where like in Eq. (26) Rq~ '' are Bravais lattice vec-
tors

(yl c) «[« (33)

corresponding to the symmetry center q«, . D (y«, ) in

Eqs. (32) denotes irreducible representations of the

point group of G~. Again, two sets Rb~ ' and
R'T ' of Bravais lattice vectors are considered dif-

b

ferent if there exists an element (y ~
c ) for which

Rb~ W R," . Correspondingly, the symmetry

centers qb and q for different sets of Bravais. lattice

vectors are inequivalent. When Rb" ''=R'T ' for
b

all (y ~
c ), then q«, and q are equivalent. As in Eq.

(25), Eq. (32) defines for inequivalent centers dif-

ferent irreducible band representations of the space

group GI. Having the irreducible band representa-
tions of G I we can construct band representations of
the full space group G by the induction procedure
which was outlined in the Eqs. (30) and (31). The
question is, however, whether this will lead to new ir-

reducible band representations of G. For the partic-

ular case we are considering here the answer is affir-

mative for a nonsymmorphic space group G because
for the latter we have not as yet constructed any band

representations. For a symmorphic group G we al-

ready have the band representations that are given in

Eq. (25) and the question is whether by induction we

can obtain new band representations of 6 from those
of its subgroup GI. This question is answered by the
following general rule. Let G~ be any space group (it
can be the space group G itself) and G2 its subgroup.
Denote by (y ~

c ) the elements of G& and by (8~ d )
the elements of 62. Since 62 is a subgroup of 6 ~ the
elements (g ~ d) belong also to G ~. Let qf by a sym-

metry center of G2. We can write for it the Eq. (33)

Rf I

qf —(&Id)qf (34)

Rl', = ql, —(&Id)qy . (35)

It is therefore clear that when the Bravais lattice vec-
tors in Eq. (33) coincide with those in Eq. (34) (or
when g& and «[& are equivalent on G2) then the band
representations of 62 corresponding to qf will not
lead to new band representations of GI. This is an

This relation according to Eq. (32) will lead to dif-

ferent band representations of 62. From them, by

induction we can find band representations of G ~.

However, if the symmetry centers qb [Eq. (33)] and

qf [Eq. (34)] are equivalent on the elements of the
subgroup 62, then the band representation of G~ that
is induced from qf of 62 will coincide with the band
representation of G~ corresponding to qb. This fol-
lows from the fact that band representations of G~
for its own centers «[b can also be obtained by induc-
tion from 62 but then the set of the corresponding
Bravais lattice vectors will be
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(2) (&) (36)

and assume that both centers have the same sym-
metry group G~ with the same set of Bravais lattice
vectors

important rule and we can summarize it in the fol-
lowing way. Given G

&
with a symmetry center qb

and its subgroup G2 with a center qf, then the band
representations of G ~ for qb coincide with the ones
induced from G2 for the center qf if qb and qf are
equivalent on G2. It should be pointed out that for
being equivalent qb and qf do not have to be equal.
The above established rule is of much importance be-
cause it reduces considerably the number of G~ that
have to be considered in the construction of the ir-
reducible band representations of a given space
group. It will be called the equivalency rule.

Given a space group G it is simple to find the in-

equivalent centers q for it and its subgroups G, . %e
start with the symmetry centers q of the highest sym-
metry. For symmorphic space groups these are the
centers with the symmetry of the space group G it-
self. Thus, for the space group D4 these symmetry
centers are" a, b, e, and d (see Fig. 1 and Tabie I).
Next we go down one step with the symmetry. In
the space group D4 we come to the D2-symmetry
centers denoted by e and f on page 179 of Ref. 11.
These points with their stars are listed in Table I ~ In
general, we go to symmetry centers with lower sym-
metry until we reach symmetry centers that are
equivalent to the ones already considered above.
Thus, for the group D4 we list in Table I as examples
the symmetry centers g and i with the symmetry C4
and C2 correspondingly. As is seen from this table,
g ' and g are equivalent with the higher-
symmetry centers u and I, i "' and i "' are equivalent
with e' ' and f"', while i '3' and i ' ' with e"' and

f"). The group D4 also has other symmetry centers
in the W)rgner-Seitz cell (see Ref. 11, page 179).
However, as can be easily checked, their G, are sub-
groups of the groups that were already considered
with equivalent symmetry centers. This means that
the other symmetry points of D4 will not lead to new
irreducible band representations. Thus, in construct-
ing the irreducible band representations of D4 it is
sufficient to consider the symmetry centers a to f
only.

In establishirig the equivalency of different sym-
(1)

metry centers the following result is useful. Let q,
and q, be two symmetry centers belonging to the

(2)

same star

qp given by

) r (1) (2))qp= (q +q

(yl c)C,"'(k, q) =exp[('k [q, —(yl c) q, ] }

x $D, (y, )C((')(k, q)
S S S

r
s 1

= $ D", ")[(yl c ), k ]
S S

I
s I

x C(lr) (k )

where the latter form is as in Eq. (6). The index i
denotes different irreducible representations of the
point group of G, and r shows that the symmetry
specification of the localized functions is being car-
ried out with respect to the point symmetry lattice
centered at q, ~ Having the explicit form of the band
representations in Eq. (40) we can now construct the
band representations of the whole space group G that
are induced by the basis in Eq (31). T. his is done in

very much the same way as in the case of finding
usual representations of space groups by using the
well-known relation'

(a I a ) ((); I a; ) = (ai I ai) (y'
I c ') (41)

(o. I a) is an arbitrary element of the space group G,
(a; I a;) are the elements in the decomposition Eq.
(29), and (y'I c') belongs to G, . From Eq. (41) we
can find the matrix that corresponds to (a I a ) for the
basis in Eq. (31). By also using Eq. (32) we have

has at least the symmetry G~ with the same set of
R '~ ' %hat this means is that by the equivalency
rule it is sufficient to consider the symmetry center
qp only.

Let us now show how one can actually construct
the irreducible band representations of a space group.
%'e have already pointed out that any group G, when
written with respect to q„as the origin is a purely
symmorphic space group. Let y, be one of its point
group elements and let (y I c ) be the same element
when written with respect to the common origin of
the crystal. Then from Eqs. (22) and (23) and by us-
ing the basis in Eq. (30) we can write the representa-
tions of G, with respect to the origin of the crystal.

( I )
()) ()) R()'(c)

C- qa qa (37)
(ala) [(().;la;)C,"'(k, q)]

r l ~ {2) (2) {y(&)(y~c)q, =q, (38)
= X D"'[(y'I c'), 'k]$$- J

r
s ]

Then it is simple to check that the symmetry center x[( alai)C""'(k, q)] . (42)



23 BAND REPRESENTATIONS AND SYMMETRY TYPES OF BANDS. . . 2833

This relation fully defines the matrix D(ala) corre-
sponding to the element (ala). It is convenient to
look at D (ala) as consisting of block matrices of di-

mension m x m. From Eq. (42) it then follows that
the only nonvanishing block in the column i of the
matrix D (a l a ) is in row j and this block matrix is

fully defined by the band representations of the space
group G, . Formula (42) therefore gives the band
representations of the space group G for any sym-
metry center. In general, these are reducible band
representations and their consideration will be left for
a separate publication.

The construction of band representations of a space
group G are simplified when G„ is an invariant sub-

group of G. In this case, Eq. (41) for the elements
of G, assumes the form

(yl c)(~;la, ) = (~, la;)(y'I c') (43)

(a, la, )(ylc)(a, la, )-' . (45)

According to Eq. (44) all the elements given by Eq.
(45) belong to G„. The latter is therefore the sym-

metry group for all the vectors of the star. Having
this in mind one can look at Eq. (40) as defining dif-
ferent irreducible band representations of the group

G, for different vectors q, in the star. If all q,
i) . (i)

are inequivalent then they will define different ir-

reducible band representations of G, .
From Eq. (43) it also follows that the matrices

D (u] c ) of the band representation given by Eq. (42)
for the elements of G, have a quasidiagonal form.
They can be written in the following way

(yl c)C,"'(k, q) =exp[i k [qr —(yl c ) q,"])

I
s 1

D[I)(y')C, '' (k, q)

(46)

This result shows that the band representation in Eq.
(42) contains all the different i'rreducible band
representations of the group G„corresponding to all
the vectors in the star of q, . It therefore proves that
the band representation of the space group G in Eq.
(42) is irreducible. We come to the following irredu-
cibility theorem: If the symmetry group of q„,G, is
an invariant subgroup of G and if all the vectors q,

(i)

in the star of g, are inequivalent, then each irreduci-
ble band representation of G, induces an irreducible
band representation of the whole space group G.

where (ylc) and (y'I c') are elements of G, . It is

easy to see from Eq. (43) that G„ is also the sym-

metry group for any vector of the star of g, . Thus, if

q,
' = (n;la;)c[„ (44)

is a general vector of the star of q„ then the sym-
(i)

metry elements for the group of cf, are

In general, the groups G,"corresponding to dif-
(iP.

ferent vectors q„ in the star are different and then
G, is not an invariant subgroup of G. However, an
important case is when the different groups G,'" have
a common subgroup H, . This latter will clearly be an
invariant subgroup of the full space group. Let us
denote its elements by (Sl d). If all the vectors q,
of the star are inequivalent on the subgroup H, then
Eq. (46) when written for (Sld) defines different
band representations of H, for all the q, . These

(i)

band representations of H, will all appear in the band
representation of G [see formula (42)] and the latter
will therefore be irreducible. This leads us to the fol-
lowing extended formulation of the above irreducibil-

ity theorem. Given a symmetry center q„ its star
vectors t[, , and their symmetry groups G„" the fol-

lowing can be proven: If the groups G,"have a
(i)

common subgroup H„and the centers q, are in-

equivalent on H, then the band representation of G
induced from G, according to the formula (42) is ir-

reducible. It turns out that in this form the irreduci-

bility theorem covers a great variety of symmetry
centers and it becomes a simple matter to construct
irreducible band representations of space groups. In
the next section this theorem is applied to the con-
struction of the irreducible band representations of
the space group D4.

IV. EXAMPLE

As an example of constructing irreducible band
representations let us consider in detail the group D4
that was already mentioned on different occasions in

this paper. The inequivalent symmetry points q for
this group are listed in Table I.

For the symmetry centers with the symmetry

G~ =D4' (denoted by squares in Fig. I and by the
letters a, b, c, d in Table I), there is only one vector
in the star. In this case the point symmetry lattice
coincides with the Bravais lattice of the crystal. The
quasicoordinates q„c[q, q„and qd define four dif-

ferent origins for the point symmetry lattices. The
symmetry specification of the localized orbitals is car-
ried out with respect to these four point symmetry
lattices. The space group D4 is symmorphic and its
band representations for the symmetry centers a, b,
c, and d are given by formula (25). The sets of the
Bravais lattice vectors [see Eq. (26)] for these sym-

metry centers are given in Table I, while the phases
corresponding to these vectors [see the phases in for-
mula (25)] are given in Table II. The latter also con-
tains the characters of all the irreducible representa-
tions of the point group D4. With the help of Table
II, formula (25) gives 20 different band representa-
tions of the group D4, four different band represen-
tations for each irreducible representation of the
point group of D4.



D4' =D2+C4D2 . (47)

Since the point group D2 has four irreducible

representations, the induction method will give us

eight irreducible band representations of D4, 4 for
each star (see Table IV).

Onc can check that the other symmetry centers of
the space group D4 do not lead to any new irreduci-

ble band representations. This follow's from the
equivalency rule that was proven in the previous sec-

tion. Thc symmetry groups of all the other syrn-

rnetry centers are subgroups of either D4 or D2 with

coinciding sets of Bravais lattice vectors. Therefore

TABLE V. Multiplication table for the decomposition of
the space group D4 with respect to D2. The table contains

the products of an element in the left-hand column with an
element in the upper rom.

E Cz4

E
Cx

C$
Cz
Cz

C 32
4

EE
E Cx

EC$
E CZ2

CZ4CZ2

Cz Cx
4 2

C4C)

Cz4E

C~~C$
Cz Cx

4 2

C4C2
E Cz

EE
E Cx

E C$

Next we consider the symmetry centers with D2
symmetry. These centers are denoted by ovals in

Fig. I and by e and f in Table I. They have two vec-
tors in each star, e"', et2' and f"',

,
f"' correspond-

ingly. Each such star defines thc structure of thc
unit cell for the point symmetry lattice. In this case
the lattci differs from the Bravais lattice. In Table I
we list the sets of the Bravais lattice vectors corre-
sponding to these symmetry centers. Table III gives
the irreducible representations of the point group D2
and the phases of the band representations of the
space group D, for the centers e and f. Each such
center, as we see from Table III, gives a different
band representation of the space group D2. The
latter is an invariant subgroup of D4. If follows from
the irreducibility theorem that the band representa-
tions of the space group D2 corresponding to a given
star induce an irreducible band representation of D4.
Table IV gives the matrices of these band representa-
tions for the elements of D2 [see formula (46)). The
matrices for the other elements of D4 can be found
from the formula (42) and the multiplication table

[Eq. (41)] which is given in Table V. This table is

written for the decomposition

there are altogether 28 different irreducible band
representations of D4. Of them 16 are one dimen-
sional and 12 two-dimensional ones. They define 28
different symmetry types of bands for solids with the
space-group symmetry D

Having the band representations of thc space group
D4 we can find the symmetry behavior of the corre-
sponding Bloch functions at different points in the
Brillouin zone. As was already pointed out, Table II
gives 20 different symmetry types of bands. Let us
show how to find the symmetries of thc correspond-
ing Bloch functions from this table. This is very sim-
ple and the only thing we have to do is to replace (,
rt, and f appearing in the table by the values they as-
sume for the particular k vectors of the Bloch func-
tions. Thus, for k =0 we have to assume

t7=f I. =Table II shows that for the Bloch func-
tion Po(r) all the phases [see Eq. (25) j following
from R„are zero. This means that for all the dif-
ferent centers Po(r) behave according to the
representations of the point group of D4. Now take
the point k = (rr/a, rr/a, rr/c ) in the Brillouin zone.
For this point we get four different symmetry types
of the Bloch function P ~, ~, ~, (7) corresponding to
the centers q, to t[q. This is obtained by putting
(=r) =)=—I in Table II. Similarly, Table II gives
the symmetry behavior for the Bloch function at all

other k vectors in the Brillouin zone. We see there-
fore that thc knowledge of the band representations
fully defines the symmetry of the Bloch functions at
different points in the Brillouin zone.

V CONCLUSIONS

It is shown in this paper how a new kind of a
representation, called the band representation, can be
used for defining symmetry types of bands in solids.
In the r representation this is an infinite-dimensional
representation of the space group but it assumes a
finite dimension when written in the kq representa-
tion. In the latter case the matrices of the band
representation are k dependent. The infinite-
dimensional representation based on localized orbitals
was already discussed in Ref, 3. In this reference the
symmetry of a band is defined on the basis of Bloch
functions and it is shown how the latter can be ex-
pressed in symmetry-adapted %annier functions. In
the present paper the order is inverted and symmetry
types of bands are directly specified by means of
band representations.

In addition to solving the symmetry specification
problem of bands in solids, band representations as-

sign a new meaning to the quasicoordinate q in the
theory of solids. As is well known, the quasimornen-
tum k and the quasicoordinate q form the symmetric
coordinates of translationally invariant systems. "
The quasimomentum k is a conserved quantity in
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periodic systems and it servers as a label for specifying
representations of space groups. With the introduc-
tion of band representations the quasicoordinate q
acquires the role of labeling them in much the same
way as k labels the usual representations. Thus, only
those q limited to two Wigner-Seitz cells lead to dif-
ferent band representations. In addition, the
quasicoordinate q specifies the point symmetry lattice
which is an invariant structure for each given crystal.
As follows from the results of this paper there is a

close connection between the point symmetry lattice
and the symmetry type of a band as a whole. Having
the information about a band it should, in principle,
be possible to measure the corresponding point sym-
metry lattice. The latter is, in general, different from
the Bravais lattice of the solid. A good idea about
these point symmetry lattices can be obtained from
the drawings in the international tables" that accom-

pany the information about the space group sym-
metries in crystals.
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