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The Iow-energy charge transfer (CT} excitation characteristic of both n-molecular conductors
and compjex-ion-radical salts is interpreted as a nearest-neighbor Coulomb interaction V that is

comparable to the bandwidth, 4Ir I. Partly filled segregated regular stacks in organic conductors
are represented by extended Hubbard models, vIihose exact CT energies and intensities are ob-
tained by diagrammatic valence-bond (VB} methods for four electrons on finite rings and

chains, together with an approximate treatment of V in partly filled infinite stacks for infinite
on-site correiations U. Finite V —4lr I yields an intense iow-iying CT band, containing t'and
U —2V excitations, that depends weakly on the band filling. Finite V a1so splits the usual CT
absorption around U for half filled bands into strong absorptions around U —V, weak ones
around U, and much ~eaker bands around U+ V and U+2 V. The CT spectra of mixed-

valence, tetrathiofulvaiene (TTF) salts are mode1ed with V —0.4 eV, U —1.4 eV, and

It I
—0.i0—O. i3 eV. Similar CT transitions in complex tetracyanoquinodimethane (TCNQ) salts

are consistent vvith the insensitivity of the V peak's position to the filling or the structure. Re-
stricting the basis to one valence state per site produces sever ii general consequences for
dipole-allowed optical transitions.

I. INTRODUCTION

There is great current interestl 2 in the magnetic,
transport, and structural properties of m-molecular
organic solids based on acceptors like tetracyano-
quinodimethane (TCNQ) or chioranii and donors
like tetrathiofuivaiene (TTF) or ltlitlitl'ltl' -tetrameth-
yl-p-phenylenediamine (TMPD). While quantitative
results remain elusive, a classification of electronic
properties has provided a useful qualitative frame-
work. These organic solids crystallize in face-to-face
arrays of planar A, A, D, or D+ molecules, with sig-
nificant m overlap indicated along the stack by close
contacts of 3—3.5 A and typical van der Waais separa-
tions between stacks. The first classification4 is con-
scqucAtly lAto segfegare'd stacks contalAlng all A s of
all D s and mtxed DADA stacks The
second classification is into regular stacks containing
a singie charge-transfer (CT) interaction Ir I and alter
naring (dimerized, trimerized, tetramerized) stacks
with severai Ir I's and triplet spin excitons. The third
classification involves the stoichiometry6 or the de-
grcc3 of CT in the ground state. Simple, or half filled,
stacks contain A or D+ radicals and exhibit a single
CT absofptloA; cofP/plex, of mlxcd-valcAcc, salts con-
tain A ~ or D+" stacks with y & 1 and show addition-
al, low-energy CT excitations' that can be associated
with electron transfer from ionic to neutral species.
These three criteria produce eight classes, most of
which are realized. experimentally. 3 Thus all organic
conductors are segregated complex regular systems,

Further distinctions within a given class must be con-
sidered for scmiquantitative applications.

The underlying physical picture' is one of weakly

overlapping molecular solids with a modest
bandwidth 4Ir I

—0.5 eV along the stack and on-site
correlations U & 4It I against doubly occupied 3
sites or doubly ionized D+ sites. Correlations in

narrow-band solids suggest a valence-bond (VB)
description for extended versions of Hubbard
modelss in the difficult intermediate regime3 9

U —4Ir I where band-theoretical results are suspect.
Although restricted to finite systems, diagrammatic
VB methods describe correlations in mixed stacks, 'o

ln segregated s~acks, " and ln magnetic insulators. "
Such numerical methods give both energies and wave

fuActloAs, thus ylcldlAg thc posltloA BAd intensity of
CT transitions.

%C focus herc on the CT spectra of segregated
complex stacks. These A ~A ~A ~ or

D ~D "D ~ ' ' ' systems have B slAglc CT 1A-

tegrai Ir Ir, a m»integral ionicity y & i, and additionai
low-energy CT transitions. Torrance et al. '4 and Ta-
naka et al. '~ have carefully examined the optical prop-
erties of a number of TCNQ and TTF saits, in

scvcl'B11AstaAccs BugmcAtlAg pl'cvlous powder data
with single-crystal reflectivity data. Their results are
summarized in Table I, together with related optical
data on complex salts. '6 Molecular (m m') transi-
tions of TCNQ or TCNQ are polarized in plane and

begin around 1.5 eV, the in-plane n m' transitions
of TTF or TTF+ start around 2.2 eV. '4 The polariza-
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TABLE I. Low-energy optical properties of representative TTF and TCNQ crystals.

System
Filling

'y

CT Absorptions
g (eV) a (eV) Ref.

Comment
Structure/Conductivity

TTF-Clt p

TTF Clp 8p

TTF-Brp 79
TTF-Ip 7i
Rb-TCNQ(II)
Cs2(TCNQ) 3

1.0
0,80
0.79
0.71
1.0
0.67

(M or) 2(TCNQ) 3' 0.67

(TEA) (TCNQ 2 0.50

Q(TCNQ}, 0,50
N MP-TCNQ' —0.9
TTF-TCNQ 0.59

0.59
0.59
0.52

0.45
0.74
0.68
0.4
0.68
0.5
0.35

1.5
1.5
1.5
1.5
1.05
1.45
1.36
1.49
1.4
1.5
1.4
1.4

14 Dimers; insulator
14 ' Incommensurate regular TTF+&

14 and X arrays; conductors with

14 l complicated temperature dependences
15 Regular stack; phase II; insulator
16 Trimerized stacks;
15 Semiconductor
15 Trimerized; semiconductor
16 Tetramerized; small gap semiconductor
15 Regular, cationic disorder; activated
16

I
mobility; conductors at 300 K.

16 Regular; two-stack conductor,
power law T &60 K

"'Mor = morpholinium. TEA = triethylammonium. 'NMP = N-methylphenazinium.

tion of thc CT transitions A and B in Table I along
the stack thus supports their usual" ' interpretation
as CT processes. The 8 transition is the usual Mul-

liken CT band for dimers" and also occurs in simple

(3 = I) salts like K-TCNQ or TTF-CI. As usual with

m-radical solids, other mechanisms have been sug-

gested and Tanaka et al. ' associate the B transition
with molecular excitations arising from the fact that
the molecular planes are not perpendicular to the
stack.

Diagrammatic VB mcthodsto, it, » permit a more
quantitative analysis of thc A transition of complex
salts in Table I. The extensive configuration interac-
tion (CI) among A, A u, A P, and A sites in

TCNQ r stacks and among D, D+n, D+P, and D+'

sites in TTF+~ stacks can be treated exactly, albeit in

rather small systems. We relate the A transition in

Table I to a Coulomb interaction V between electrons
on adjacent sites. A significant V of the order of 4~t ~

in turn affects the higher-energy 8 transition. The
analysis of CT excitations, and especially of the A

transition, in segregated complex regular stacks with

both on-site ( U ) and nearest-neighbor ( V ) correla-
tions is developed in this paper.

We note that Table I suggests a common electronic
origin like V for the A peak. The point is that similar
spectra are seen in complex salts whose structural
and transport properties are quite different. The
trimerized Cs2(TCNQ)3 and tetramerized TEA
(TCNQ)2 salts are semiconductors and show triplet
spin excitons. The acridinium (Ad) and quinolinium

(Q) salts have disordered cations, a modest region of
high conductivity around 300 K, and power-law mag-
netic properties at low temperature. The organic con-
ductors TTF-TCNQ, TSeF-TCNQ, and TTF-X„are
again different. The insensitivity of the A transition

of complex salts to the ionicity 0.5 ~ y ( 1.0 or to
the structure is strong qualitative evidence for a com-
mon origin involving neither y nor the structure,

The electronic states of extended Hubbard models
for densities 0.5 ~ y ( 1.0 are developed in Sec. II in a
manner quite analogous to Hubbard's original treat-
ment of on-site correlations. Their optical properties
are summarized in Sec. III and are illustrated by VB
computations on finite chains and rings. The result-
ing picture of complex ion-radical salts is discussed in
Sec. IV. The emphasis has deliberately been restrict-
ed to explicit solutions of extended Hubbard models,
thereby omitting extensions to various electron-
phonon interactions, to long-range Coulomb interac-
tions (screening), or to higher-energy molecular exci-
tations. We focus instead on the role of correlations
for optical properties of partly filled regular stacks.

II. PARTLY FILLED EXTENDED HUBBARD MODEL

Metals have partly filled valence bands, while insu-
lators and semiconductors have a finite-energy gap,
25E„between a filled valence band and an empty
conduction band. Mott argued" that correlations de-
cisively alter this elementary picture in the limit of
narrow bands. At large separations R, a hypothetical
regular array of H atoms dissociates into neutral
atoms, with 2AE, = I —A = 13 eV required to pro-
duce a separated electron-hole pair. Regular arrays
with one valence electron are metallic at small R, as
illustrated by alkali metals. The crossover from a
band, or MO, to a localized, or VB, description
remains mathematically intractable for realistic long-
range Coulomb interactions. Hubbard models dis-
card all correlations except the on-site interaction



2812 S. MAZUMDAR AND Z. 6. SOOS 23

U ) 0 for two electrons at the same site. Even then,
exact results are restricted to one-dimensional arrays.

In the simplest case of one valence state per site,
the Hubbard model for a regular segregated stack is

3C„„= ~r ~
$(ap' ap+~ '+ttp+[ ap )

+ U gap a~&apaap
p

The fermion operators ap (ap ) create (annihilate)
electrons in the valence state of the pth site. All in-

trasite electronic correlations can be included formal-
ly'9 when the parameters ~t ] and U are defined
phenomenologically. 3 The U =0, or band, limit of
Eq. (1) is sketched in Fig. 1 and consists of 2N
tight-binding states.

a„~= —2]r I coskc

for —m ( kc ~ m in the first Brillouin zone and a
spacing c along the regular array. The U ~, or
atomic, limit'a of Eq. (1) leads to subbands involving
various numbers of doubly occupied sites. The
lowest subband in the atomic limit is, as shown in

Fig. 1, again given by Eq. (2), with only N states for
spin/ass fermions. Neither of these exact limits is sat-
isfactory for tr-radical solids: the band (U =0) limit
incorrectly predicts that half filled regular systems are
metallic, while the atomic (U ~) limit incorrectly
predicts Currie-law static susceptibilities. They
nevertheless provide starting places for discussing the
different regime U —4~t ~

where correlations are
comparable to the bandwidth. The exact ground-
state energy" and excitations" of Eq. (1) are known
for arbitrary U/~r ~

and for arbitrary filling. " There is
a single CT absorption around U for any y.

The low-energy absorption of the complex salts in

Table 1 thus requires extending Eq. (1) to include ad-
ditional Coulomb interactions or lattice vibrations.
We develop the former alternative here and intro-
duce Coulomb interactions V„among electrons n

sites apart, as in Pariser-Parr-Pople (PPP) model'4 for
polyenes. Since estimates of V„ for n ~ 2 in organic

~red V X ltp ltp+1 + r X (cp cp+1 + cpy[cp )
p P

(4)

involving the U=~ limit of Eq. (1). Finite Ucalcu-
lations are deferred to Sec. III. The operators cp, cp
in Eq. (4) describe spinless fermions and n, is now
restricted to 0 or 1. For N sites and N, = yN elec-
trons, we seek solutions to Eq. (4) with a given
number of fermions,

y=N '
Xnp
p

(5)

In the special case y=0.5, des Cloizeaux and Gau-
din" solved Eq. (4) exactly in terms of an equivalent
spin problem. The excitation spectrum has no gap for
V ~ 2]r ( and a gap of order V for V && 21r I There
are no exact results, even for y =0.5, for finite U.

We anticipate a gapless excitation spectrum for „, &

for intermediate ionicity 0.5 ( y & 1.0. The following
approximate solution of 3C„,& is exact at both ( =0
and V =0 and parallels the original treatment of on-
site correlations U. The two-time retarded (+) and
advanced ( —) Green's functions ((A (r);B(t')))' —+'

are defined" as

( (A (r );8 (r') ) )
'+-'

=+i 8(+(r —r')) ([A (r),8(r')]„) . (6)

Here [A,B]„is the commutator (tl = —) or anticom-
mutator (q=+), whichever is more convenient, of
two operators A and 8; ( ) denotes the thermo-
dynamic average; and the step function O(x ) satis-
fies

fl, x&0
0, x(0

solids indicate that at most V~ is comparable to 4~r ],
we limit discussion to Vt = V and augment Eq. (1) by

Xt = V $ npnp+)
p

t t
where np op ap +a»ap& is the number operator.
Previous treatments" of the extended Hubbard
model dealt primarily with the ~t ~

=0 limit and/or
y= 1 or —.Hubbard has discussed the Wigner lat-

tices arising from the t =0, U=~ limit when addi-
tional V„are retained. This limit is hardly appropri-
ate for n. -radical solids, whose interesting magnetic
and transparent properties reflect n overlap, and thus
finite ~t ~, along a one-dimensional array.

For simplicity, we consider the reduced Hamiltonian

m/c -n/c egg

FIG, 1, Schematic representation of a normal, partly filled
metallic band the resulting Hubbard subbands for on-site
correlations U large compared to the bandwidth 4itl. The
usual CT transition is around U,

This simple Green's function is related to more com-
plicated Green's functions through its equation of
motion

E((A;8))p=(2n) '([A, B]„)+ (([A,X];8))F
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where ((A;8) )s, the Fourier transform of the re-

tarded and advanced Green's functions, is defined
over the complete energy axis. The Green's function
for sites p and q

G~ (E) = ((cp(t);c, (t') ) )E

is related to the density of states p(E) per site
through

p(E) =—'
lim X[Gpp(E+iq) —Gpp(E —iq)] . (10)

N ~-0+

when U = ~. The number operators n~+~ and n~ ~

are thus strongly correlated and either one or the
other must vanish in (np+~+np ~)cp W. e consequent-
ly have the exact, though ad hoe, result

((np„n, , cp, e, ) )s =0,
which further simplifies Eq. (14). In addition the

(npq. ~) = (np ~) expectation value is —y for sites ad-

jacent to p, whereas the usual result (n„) = y holds
for other expectation values. This simplifies Eq. (14)
to

We now find G~(E) and p(E) for 3C„,d by modifying
the treatment of on-site correlations. EI'~ (E) = (4qr) '7 + VI'~ (E) (16)

A. Zero bandwidth

II~(E) satisfies an identical equation. Substituting
Eq. (16) into Eq. (12) yields

The ]t ~
=0 hmit of Eq. (4) yields 3C~ and is exactiy

soluble. Its development here draws attention to
specific correlations that persist for the more interest-
ing case of ~it ~ & 0. For t =0, the number operators
np are conserved, with [3C,, np] =0. We also have

[cp,3C(] = V(np~)+ np ))ep

The equation of motion (8) now yields

"pq (E}= ( (np+«p'eq ) ) p.

II~ (E) = ( (n, (cp c,') )p

(13)

%e note that I ~ = H~ by symmetry. Again using
the equation of motion leads to

EI'~(E}=(2qr) 'g~(npq. () —(2qr) 'gpqtq(cp'~)ep)

+ VI'~(E)+ V((np~)np )ep ,c,'))c .. (14)

The equation for II~ is identical to Eq. (14), except
for replacing p+1 by p —1 everywhere. The term
(cp'q. (ep) vanishes for ~t ~

=0.
The propagator G~ 2(E) describes the motion of a

particle being added to the system. %hen only on-
site (U) correlations are considered, the injected
electron goes either to an empty or a singly occupied
site; the former does not change the total energy. ,
while the latter increases it by U. The result of ad-
ding an electron is then virtually identical with mov-
ing an electron already in the system. This is no
longer the case for nearest-neighbor ( V) correlations.
Now an electron transfer can at most raise the energy
by V, while adding an electron between two singly oc-
cupied sites increases the energy by 2 V. The point is
that an electron transferred to site p must originate at
either site p + 1 or p —1. Conversely, either p + 1 or
p —1 must be empty for an electron to leave site p,

EG~ '(E) =(2qr) 'g~+ V[I'~(E)+11~(E)], (12}

where we have defined

2m F. F. —Vi
(17)

The t 0 limit has states at F. =0 and at E = V, as
expected from 3.'~ for electrons at sites next to empty
and occupied sites, respectively.

The density of states at F. =0 is 1 —y, while the
density at E = V is y. The Fermi energy is initially
fixed at p, =0 as the lo~er level is filled up and every
other site is occupied. The lower level is filled for

y = 1 —y, or y =0.5, when the chemical potential
jumps to p, = V. In contrast to the lo~er subband of
the Hubbard model (1), the ground state of 3C, is
doubly degenerate at y =0.5, since there are two
ways of occupying every other site. This effect per-
sists for finite It I, where 3C2 again splits the lower
subband of Eq. (1) without breaking the symmetry.

S. Finite bandwidth

The relevant commutators of n~ or c~ with the re-
duced Hamiltonian (4) generalize Eq. (12) to

EG~(E) =EG~~ '(E)+t [Gpss( q(E) +Gp ) q(E) l

I"~(E) and II~(E) are now coupled to higher-order
Green's functions. In addition to the terms in Eq.
(14), EI ~(E) now contains

t[((np+) p+), q'))~+(( pq) p &,
.Cq"))s.

+ ((( p+I p+2 Cp+2cp+1+Cp+Icp —pep+/)cp, cq ) )E]

(20)
A similar contribution is found for EII~(E), with

p g m replacing p + m. The strong restriction on
n~+&+ n~ ~ discussed above is a consequence of the

where the superscript is a reminder of zero-
bandwidth limit. The resulting density of states is

(18)
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( (~p+lcp-)'cq ) )E = (r)p+1) Gp I q{E)

( ( p+l p+2 p' q") ) E = ( p+i p+2) Gpq(E)

(( p+l p+l p' q))s= ( @+2 p+))Gpq{E)

(22)

(23)

(24)

In Eq. (22), we separate operators for uncorrelated

U = ~ limit and persists for finite bandwidths. Thus
Eq. (15) is again found. It also follows exactly from
the definition (9) that

( (Ilp+)cp+)'cq ) )s ( (cp+)cpcp'cq ) )E = 0 ~ (2 I)
This simplifies somewhat the contributions (20) for
finite (t I.

No approximations have been -made yet. The
remaining higher-order Green's function in Eq. (20)
produce a hierarchy that precludes exact results. We
decouple by following Hubbard's approximations for
on-site correlations. Our approximations are

sites, while in Eqs. (23) and (24) we decouple opera-
tors for correlated sites. These are the simplest ap-
proximations that still yield the exact t =0 results
and can also be expected to give reasonable results
for large V.

Having decoupied in Eqs. (22), (23), and (24), we
note that (lip+)) = y and that (cp+)cp+l) = (cp+lcp+) )
by symmetry. The equations of motion {16)and
(20) for I'~(E) then reduce to

EI'~(E) = (4qr) 'y8~ —(2qr) '8p+), (cp'q. )cp)

+ VI- (E) +ytG, (E)

+ t ((npcp+), cq') ) {25)

No' replacement has been made for the last term in

Eq. (20), which corresponds to IIp+) q(E). Using the
approximations above, we obtain a similar equation
of motion for IIp+l q(E). Combining this with Eq.
(25) gives

I

E2
E —V — 1~(E)=(4qr) 'y8~ —(2qr) ')P8p+) q+ytGp l q(E)E V Pc

)

+ [(4qr) 'ygp+) q
—(2qr) '4&8~ ytGp+lq(E)] (26)

with )P =.(cp+)cp) . A similar develoPment yields for IIpq (E). Substituting into Eq. (19) and Fourier transforming
the resulting equation leads to

2qrNG(k, E) =
E —V(1 —y) + 2 V)p» coskc — (t + 2 V)p»)

E —V

f2
(E —V ) (E —2 coskc ) —2 Vy t coskc — (E —2t coskc —2 V y cos2kc )

E —V

(27)

We have used the definitions

G~(E) =N ' XG(k, E) expik(p —q)c
k

C) = N ' XCl» ex pike
k

(28)

We obtain a splitting of the lower Hubbard subband
for arbitrary y and V. The resulting density of states
per site can be expressed as

p(E) =N ' X [A» 8(E —E„)+A„+8(E—E„+)] . (30)
k

with —m ( kc ~ m in the first Brillouin zone.
The result [Eq. (27)] for G(k, E) is exact for both

t = 0, when 4k also vanishes, and for V = 0, when
G(k, E) reduces to (2qrNq») ' with q» given in Eq.
(2). For strong correlations (large V), the last, term
in the demoninator of Eq. (27) can be neglected.
The poles of 6 (k, E ) then give the energies

2E» ——( V + 2t coskc )

+ [( V + 2t coskc ) l —8(1 —y) Vt coskc ] ' l

(29)

I

The coefficients A„are found from Eq. (27); their
sum is equal to one.

We obtain from Eq. (29) a gap of Ek+ —Ek for any
finite V, thus missing the minimal V =2~t

~
required

for a gap in the exact" spectrum for y =0.5. Of
greater importance, ho~ever, is the demonstration of
electronic excitations around V for any y„ including

y /0. 5 where the spectrum is gapless. The bands
Ek arid Ek are shown in Fig. 2 for several densities
y. The bandwidths and CT transitions Ek —Ek are
almost independent of y. The electron-hole sym-
metry X„d ensures that y & 0.5 and y ( 0.5 excita-
tions coincide. This feature is unfortunately lost for
finite U, when the analysis is far more difficult. The
splitting of the lower Hubbard subband in Fig. 2 by
an intersite Coulomb interaction V thus entails no
loss of symmetry in the regular chain. The resulting
excitations around V are weakly dependent on y.

While more elaborate treatments of X„,d are possi-
ble, they probably have limited relevance unless the
restriction U ~ is relaxed. Furthermore, finding
the oscillator strengths of the transitions around V re-
quires going beyond a density of states. For suffi-
ciently large U, we still expect the two subbands in
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0 ~ ~ ~

chain in Eq. (31) no longer appears.
The oscillator strength'9, f», of a transition from an

exact eigenstate ~k) to the exact eigenstate ~s) is

,f» ta» [ (s l)tt I kl' = «s I. I k ) i 'ta;»' (33)

~ ~ ~,I'
~ ~

~ + ~
where tee,k = F., —Fk is the exact excitation energy.
The sum rule' for transitions to all possible final
states can be written as .

~ ~ ~

F»= Xf»g=2 '(kI[[p, 3'1, p[Ik) (34)

Since, p, reduces to number operators for systems
with one valence state per site [p„nnnn'] vanishes for
arbitrary spin-independent interactions. We thus ob-
ta'in

F„= (k I k, I k-), (35)

FIG. 2. Splitting of the lower Hubbard subband by a
nearest-neighbor interaction V =4~t ~, as given by Eq. (29)
for y=0.50 and y=0.70. The CT transitions around V are
associated with the A peak of y & 1.0 salts.

Fig. 2 to be separate, but with reduced splittings.
The approximate treatment of V in infinite systems
will then guide exact results for CT transitions in fin-
ite systems with arbitrary U, V, and

~
t ~.

III. OPTICAL PROPERTIES

The Hubbard model (1), its extended form [Eq.
(3)1, its modified versions, ' or the PPP model'4 all

describe systems with precisely one valence state per
site. We first note several general consequences of a
restricted basis, which significantly alter the optical
properties and have apparently not been discussed
previously. These results hold for any spin-
independent interactions V„between sites separated
by n lattice spacings and are not restricted to one-
dimensional arrays. The Hamiltonian 3'. then con-
tains a transfer term, the t term of Eq. (1), and vari-
ous. on-site and intersite interactions. For one
valence state per site, the dipole moment operator"
P, is

1

P, = X nn Pnn-N+1
p

(31)

for regular chain N sites and lattice spacing c. The
complete operator is p, ec, where e is the electronic
charge. The number operator np =0, 1, or 2 describes
the occupancy of the valence orbital. The corre-
sponding dimensionless velocity operator v is

(an an+, —an+t an )
PcF

The origin, which was taken at the midpoint of the

where h, is the t term of Eq. (1). The ground-state
expectation value of —h, is positive and gives the to-
tal intensity of all CT processes at absolute zero.

Our result for Fk should be contrasted with the
usual Thomas-Reiche-Kuhn sum rule, ' which goes
as the number of electrons. The usual result is based
on a complete set of states, rather than one valence
state per site. The t 0 limit of Eq. (35) naturally
suppressed all CT excitations, whereas conventionally
including a complete set of molecular excitations
would still yield the sum rule for individual
molecules. The U ~ limit of Eq. (35) also
suppressed CT excitations for y = 1, since each site is
then singly occupied and no charge motion can be in-
duced by a field. The result has been discussed' for
purely covalent VB diagrams, which provide an alter-
native statement of the y= 1, U ~ limit. The ex-
act sum rule (35) for restricted bases thus depends
on y, on U/~r (, and on the initial state (k ). Care
must consequently be taken in applying standard
results to the optical properties of various extended
or modified Hubbard models. We emphasize that the
issue is internal consistency rather than the merits or
deficiencies of Hubbard models.

We have previously. obtained" exact eigenstates
~k) by diagrammatic VB methods for cases'with
N, =4 electrons on N =4, 5, 6, and 7 sites. All oscil-
lator strengths f», in Eq. (33) or sum rules F» in Eq.
(35) can then be obtained" directly. Describing each
transition at Irta, » by a Lorentzian I», (z) normalized
to f», yields

( ),f» f/ [(.—;»)+1 '1

where z =It«&/v 2~r ~
is a reduced energy and the half-

width at half-height, I, is related to the excited-state
lifetime. While the generalization to I,k is straight-
forward, such detailed parametrization is premature
and a single adjustable I is used in simulating CT
spectra. The absolute absorption intensity l»(z) for
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initial state (k) is found as usual"

8~3p ~g 2NO
II, (z) = $ II„(z)

ehN
(37)

V

(b)

(c)
U-V

where a is the lattice spacing, e is the speed of light, p

is the electronic charge, No is Avogadro's number,
and N is the size of the finite chain or ring. Such
computations clearly require both energies and wave
functions.

The extended Hubbard model, Eqs. .(l) and (3),
contains three parameters: U, V, and (t ~. These are
not restricted in direct numerical solutions. The
nearest-neighbor interaction V splits the lower Hub-
bard subband, as shown in Fig. 2, and is a candidate
for the low-energy A peaks in Table I. A finite V

also modifies the usual CT processes for the 8 peak.
Four electron cases illustrate all possible transitions
for an infinite one-dimensional array. The simplier
N, =2 systems are inadequate in this respect.
Representative CT processes are sketched in Fig. 3.
The VB diagrams" have singlet-correlated, singly oc-
cupied sites denoted by lines, empty sites denoted by
dots, and doubly occupied sites denoted by crosses.
Diagrams with S = 1 or 2 are shown by arrows con-
necting the singly occupied sites with parallel spins.
The transition (a) in Fig. 3 changes the correlation
energy by V. Changes of U —2V, U —V, U, U+ V,

U+2 V, and U —3 V are also possible. The last is il-

lustrated by (f) in Fig. 3 and requires a VB diagram
with a doubly occupied site in the initial state. Such
admixtures are small in the ground state for typical
values, of U, V, and ~t~. Thus both (e) and (f) are
weak transitions, as are transitions around U+2 V

that involve indirect coupling'2 of VB diagrams. The

most important CT processes for finite V occur
around V, U —2 V, U —V, and U. It is readily seen
that N, = 2 cases can only produce V and U —V tran-
sitions, while larger N, does not produce additional
processes in one dimension. The many allo~ed CT
processes for extended Hubbard models immediately
suggest that the broad experimental bands are com-
posites of many absorptions.

The N, =4, N =7 ring is the smallest cyclic system
with an absorption around V. The velocity operator v

in Eq. (32) commutes with the rotational quantum
number k and with the total spin S, but imposes an
additional selection rule involving a reflection plane
cr. VB diagrams in o-=+ and —subspaces are illus-
trated in Fig. 4. It is readily seen that ( p ~uq ) A 0
requires a change of o- without changing S or k. This
additional symmetry requirement precludes transi-
tions at V in the N, =4, N =6 ring. The N, =4,
N = 5 ring has no excitations at V, since electron
transfers like (a) in Fig. 3 conserve the number of V

interactions.
The ground state for any total S for N, =4, N = 7

lies32 in the k =0, o- =+ manifold whose dimension
is 20 for S =0 and 1& for S = 1. The k =0, o. =—
manifold has 8 VB kets for S =0 and 12 for S = l.
For odd N there is always at least one V for
N, = (N + I )/2. The corresponding singlet VB ket
appears only in the 0-=+ manifold. All & singlet
transitions in the k = 0 subspace consequently in-

volve energies of V or more. The nature of the tran-
sitions can be identified from the VB functions in the
cr = —subspace. There are two transitions around V

involving VB diagrams without doubly occupied sites,
one transition around U —V, two around U, and
three weak transitions at higher energies. The posi-
tion and oscillator strengths of the strong singlet CT
transition are listed in Table II for several values of
zo= U/J2~t~ and z~= V/J2~t(. These results are ex-
act.

The triplet spectrum has the additional complica-
tion that a VB function with a single V can occur in

the a-= —manifold of the N, =4, N =7 ring. The
lowest S =1 transition is an intraband process that

(d)
U

(e)

0-3V

U

FIG. 3. Representative CT processes for singlet VB di-

agrams. Changes in the on-site ( U) and nearest-neighbor
( V) correlations are indicated. Unnormalized, symmetry-
adapted linear combinations of such diagrams form the VB
basis set.

FIG. 4. Singlet VB diagrams for N, =4 electrons on N =7
rings. The indicated linear combinations are even and odd
with respect to a reflection plane and are in subspaces con-
nected by dipole-allowed CT transitions.
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TABLE II. CT transitions of N~=4, N =7 rings from the lowest S =0 and S =1 states.

Correlations
U/~&lt I V/Xzlt I

Total spin
S

CT transitions'
~Ea ~Ec

Oscillator strengths

F„ Fg

3.2926
5.0861
3.5872
4.6460
5.0497
5.6640

6.6537 8.5182

6.9046 9.2545

0.0560 0.0171 0.0002

0.0670 0.0184 0.0002

10 0 4.2440
5.884
4.1556
5.3229
5.8683
6.4311

9.2831 12.2710

9.4114 12.7343

0.0540 0.0234 0.0002

0.0749 0.0369 0.0001

'Units of J2~t(. bEquations (33}and (35}.

should not occur in an infinite chain. %e have there-
fore classified ' only 11 triplet transitions involving
energies of V or more. Exact results are given in
Table II for several values of zo = U/ J2 j t ( and

z, = v/~&lt I.
The absorptions in Table II can be grouped as A,

8, and C in order of increasing trarisition energies
around z~, zo . z], and zo, respectively. The total os-
cillator strengths F&, F~, and F~ in Table II were ob-
tained via Eq. (34) for transitions of any one kind.
%e note that Fc is rather weak compared to F& and
Fq. This higher-energy transition is probably masked
by intramolecular excitations in TCNQ and TTF ion-
radical salts. The oscillator strength F& exceeds F&

by a factor of 2—3, indicating that the V transition is
the more intense. All other transitions at 2 V, U+ V,

etc. , are less intense by at least two orders of magni-
tude.

There are no energy gaps for conduction in infinite
partly filled regular stacks, nor for magnetic excita-
tions in infinite half filled regular stacks. It is
straightforward" in principle to consider the overall
spectrum as involving a Boltzmann average over the
k, S, cr manifolds. These factors for small finite sys-
tems are, however, quite irrelevant as splittings of
the order of 4~t (/W are inevitably found. The lowest
k = 0, cr = + transitions in the S = 0 and 1 manifolds
in Table II are equally representative. They demon-
strate that the complicated composite spectrum for
thermally accessible excited states should, in fact, be
largely temperature independent due to the close su-
perposition of transitions from low-lying levels. Oth-
er low-lying states yield"" similar results. The A

absorption becomes relatively more intense with in-

creasing S, since the B peak disappears in the fer-
romagnetic limit of all parallel spins. The lack of
strong temperature dependences in the CT spectra of
organic ion-radical salts, except possibly at phase
transitions where the model parameters must change,
provide strong qualitative support for our numerical
results indicating similar CT spectra from various
low-lying states. This is fortunate, as the exact
analysis of larger systems rapidly becomes prohibi-
tive.

Representative absorption spectra for N, =4, N = 7
rings are shown in Fig. 5, using (34) for the lowest
S =0 and S =1 transitions. All broadening parame-
ters I were assigned the same value, as indicated.
The line spectra in Fig. 5 show the exact individual
energies and intensities of the CT bands. Such calcu-
lated results can be compared to the experimental
data in Table I by identifying various processes,
thereby associating an observed energy with dimen-
sionless variable E/v 2~t ~

in Fig. 5. Such compari-
sons are pursued in the next section.

The N, = 4, N = 7 ring has no transition around
U —2 V. The N, =4, N = 6 chain does have such a
transition, as indicated by (b) in Fig. 3. The diagonal
energies V of chains are cyclized by considering sites
1 and 6 to be neighbors. Thus chains differ from
rings in having no electron transfer, or t term 'in Eq.
(I), between the end sites. This spoils the rotational

quantum number k. The VB basis functions are now
classified"" by their parity, g and u for even and
odd, respectively. Dipole transitions" conserve S and
change parity. Finite chains, without the k quantum
number, have additional transitions of the intraband

type involving covalent VB diagrams with identical V
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FIG. 5. Stick diagram and band spectra for the exact os-
cillator strengths, Eq. (33), of CT transitions for 4/7 rings
with (a) U/U2lrl = l0, V/J2lrl =3 and (b) U/J2lr l =7,
V/J2lrl =2. Transitions from the lowest S =0 and S = I

subspaces are shown as solid and dashed lines, respectively.
The resulting absorption curves, Eq. (36) have I /42l r l

= 1.0
and a doubled intensity,

contributions. The analysis of Sec. II shows that
these are artifacts of the small system, rather than
features of infinite chains. The number of transitions
without changing the minimal V is ascertained from
the VB diagrams, as is the number of transitions at
V, U —2V, U —V, U, etc. The lowest S =0, g sub-
space of the N, = 4, N = 6 chain, for example, has
four possible transitions at V, 3 at U —2 V, and 6 at
U —V, as shown in Table III for several values of
za= U/J2lt l and z~ = V/alt l. Even when both V

and U —2 V transitions are collected into F&, the
overall intensities F& and F& are quite comparable for
the (O,g ) ground state. However, the lowest S = l, g
manifold and the lowest S =0, u manifold yield
strong transitions that favor F& over F&, as summa-
rized in Table III. The energy spreads of A and 8
transitions of N, =4, N =6 chains are quite similar to
those of N, =4, N =7 rings, while the F„/Fs ratio is
smaller for chains than rings.

The small sizes of chains and rings accessible to
complete analysis restricts us to qualitative conclu-
sions. We have mentioned various numerical pro-
cedures in excluding intraband trarisitions. As found
previously, "' partly filled rings with N, =4 actually
have triplet absolute ground states. The restrictions'"
imposed by the Pauli principle and the high rotational
symmetry of regular rings also change the U
limit. Most prominently, splittings on the order of
l r l persist for y ( I rings. Partly filled chains are
consequently better realizations" of the magnetic
properties of the infinite system, while the inclusion
of the wave vector k suggests that rings are prefer-
able for optical properties. The closely similar CT en-
ergies found for y = 4/7 rings and y = 4/6 chains sup-
ports the conclusion (29) that the A transitions
depend weakly on y. The approximately similar in-
tensity ratio F„/Frr -2—3 for chains and rings is a
new result. These N, = 4 computations via diagram-

TABLE III. Total oscillator strengths of CT transitions of N, =4, N =6 chains for the two

lowest peaks.

Correlations
U/J2lr I V/&2lr I

Ground states'"

Spin Parity

Oscillator strength" /Transitions

Fz (No, )c F~ (No. )c

6 0,0448 (7)
0,2571 (11)
0.0307 (12)
0.3320 (11)

0.0411 (6)
0.1126 {6)
0.0278 (6)
0.0623 (6)

10 0.0351 (7)
0.2262 (11)
0.0163 (12)
0.3148 (11)

0.0537 (6)
0.1066 (6)
0.0277 (6)
0.1013 (6)

'In increasing order of energy. bEquations (33) and (35). 'Number of individual transitions.
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IV. DISCUSSION

The TTF halides in Table I provide the most con-
venient comparison of theory and experiment. First,
their molecular excitations' start above 2 eV, thus
leaving a larger ~indow for CT processes and a more
resolved 8 peak. Second, the occurrence'5 of
(TTF+ )q dimers in TTF-Cl fixes'~ the CT band at
1.5 eV as the normal dimer transition around U —V.

This transition is virtually unshifted in the mixed-
valence salts TTF-X„and is the 8 peak in Table I.
The closely similar CT spectra of TTF-Clp Sp, TTF-
Brp 79 and TTF-Ip 7] in Fig. 6 were obtained in Ref.
14. The indicated powder absorptions are consistent
with single-crystal reflectivity data and with dimer
transitions in solution. Intramolecular transitions,
which dominate above 2 eV, are not shown. The
similar optical properties of complex TCNQ salts in

Table I encompass a variety of stacking patterns and
of conductivities. The occurrence of several ~t ~

's in

dirnerized, trimerized, or tetrarnerized stacks has not

if,

l—&—T TF-Cl0.80——TTF-Br0.?9

l
—~ TTF-ip ri

U=l.30eY,~

~Y=0.37eY,
t=O.)3eV

~t
~ ~

J ~
0

U=i.4eV, V=0.42eV,
t=O. IOeY

I

Energy (ev)
2

FIG. 6, Comparison of experimental absorption curves
for mixed-valence TTF halides from Ref. 14 with extended
Hubbard-model calculations for 4/7 rings. The theoretical
curves are from Fig. 5 with the indicated parameter values,
Their absolute intensity is discussed in the text.

matic VB methods" are the first direct solutions of
partly filled extended Hubbard models in the inter-
mediate regime U & V & ~

t
~ and, as shown for y = 1

CT transitions, "afford important improvements over
dimer (N, =2) results.

been included. Differences in ~t ~ that are small com-
pared to V do not affect the optical spectra.

The assignment of numerical values to U, V, and
~t ~

converts the reduced coordinates in Fig. 5 to actu-
al energies. Furthermore, multiplying p in Eq. (31)
by ea, where a is the lattice spacing, gives the abso-
lute absorption intensity (37). The adjustable
broadening parameter 1' in Eq. (36) does not alter
the area under the curve. Both theoretical curves in

Fig. 6 are related to those in Fig. 5 for y =4/7 rings.
The better fit is found for ~t ~

=0.10 eV, U = 1.40 eV,
and V =0.42 eV, with the S =0 ground-state intensi-
ties scaled by a factor of 6 as discussed below. The
observed A peak around 0.6 eV is calculated at 0.79
eV while the observed 8 peak around 1.5 eV is found
at 1.33 eV. The observed separation between the two

CT bands consistently exceeds the calculated values.
The poorer theoretical fit in Fig. 6 is based on
)t[ =0.13 eV, U=1.3 eV, and V=0.38 eV. The cal-

culated A peak is at still higher energy, while the cal-
culated 8 peak is at lower energy. We emphasize
that the calculated curves are based on exact compu-
tations of extended Hubbard models and Lorentzian
absorptions. We have deliberately omitted various
vibronic, relaxation, and screening considerations
that would undoubtedly improve the fit. Quite aside
from introducing additional parameters, such
processes require going beyond extended Hubbard
models whose accurate solutions have been sought by
VB methods. The restriction to rather small systems
is, in this sense, the principal limitation.

The calculated absolute absorption coefficients lead
in Eq. (37) to A peaks of the order of 500—800
1/molcm for the S =0 or S =1 ground state of either
N, =4 or N =7 rings or N, =4 or N =6 chains. The
next higher manifolds of chains have an order of
magnitude larger F& and F~, as shown in Table III.
The sum rule [Eq. (35)] for a restricted basis thus
depends, as expected, on the initial state. Partly
filled molecular conductors have many thermally ac-
cessible states. While the CT transitions from low-

lying manifolds are similar, their intensities vary by
an order of magnitude. The calculated absorption
coefficient of 500—5000 1/molcm for the 3 peak thus
span the observed'~ value of 3000 1/molcm. The rela-
tive intensities of the A and 8 peaks in Fig. 6 are
slightly underestimated by our finite-ring results for
y=4/7=0. 57. The similar CT energies of 4/7 rings

and 4/6 chains, as well as the weak y dependence of
Ek+ Ek in Eq. (29), lea—d us to rationalize
discrepancies in terms of finite-size effects rather
than the higher y of TTF halides. Approximate VB
treatments of larger systems may allow testing this
hypothesis.

The second point about the fit in Fig. 6 involves
the magnitude of ~it ~

in TTF halides. The better fit
has (t ~

=0.10 eV and a bandwidth of 4(it ) =0.40 eV;
the poorer yields (r [ =0.13 eV and 4[r (

=0.52 eV.
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Still smaller It I would undoubtedly improve the fit to
the optical data, but would nevertheless be inap-

propriate. The static susceptibilities'6 X( T) of TTF
salts are generally smaller than that of TTF-TCNQ,
even when the latter is corrected for having two part-

ly filled stacks. Our previous analysis" of X(T) for
N, =4, N =7 chains led to a lower bound of
It I

—0.15 eV in TTF-TCNQ. While such an average
for both stacks does not rule out a smaller It I for the
TTF stack, the lower X(T) of TTF salts actually sug-

gests that It I should be larger. We are consequently
reluctant to improve the optical fit by choosing
Ir I ( 0.10 eV. It should be noted that other proper-
ties, like the sign of the thermopower, ' are con-
sistent with a smaller I t I for TTF+~ stacks than for
TCNQ stacks. Typical estimates' '"'~ of ItI are in

the range 0.10—0.30 eV for either regular TCNQ " or
TTF+~ stacks, and we cannot improve these from fit-

ting optical spectra. Optical spectra involving vertical
transitions may, or course, involve different values of
It I than adiabatic contributions to the susceptibility.
An explicit treatment of electron-phonon coupling
would be needed to pursue this point.

The last comment about Fig. 6 involves the relative
values of U and V. Our choice of U = 3 V agrees
with theoretical values based on including screen-
ing, but for somewhat smaller absolute values of
U = 1.4 eV, V =0.42 eV for the It I

=0.10 eV fit and
U = 1.3 eV, V =0.37 eV for the It I

=0.13 eV fit.
Such values are consistent with previous analyses of
optical properties. The U —2 V transitions then con-
tribute to the broad and generally asymmetric A peak
in TTF and TCNQ salts. A representative CT pro-
cess around U —2 V, such as (b) of Fig. 3, invoives
three occupied sites next to an empty one. Such con-
figurations increase for y & 0.5, while configurations
for V transitions decrease, in qualitative support for
the weak y dependence of A transitions. Rather
larger finite rings and chains will have to be analyzed,
however, to test this hypothesis about the intensities
of the overlapping V and U —2 V transitions.

The next-higher-energy CT band, the C peak
around U in Table II, has a substantially lower overall
oscillator strength. The weak band may further be
masked by intramolecular excitations. Yakushi, Ku-
saka, and Kuroda' have recently reported the low-

temperature polarized reflectance spectrum of K-

TCNQ, a y =1 segregated stack that is not regular but
has several types of TCNQ overlaps. 39 In addition to
the principal CT peak around 1.0 eV, they find a

weak low-temperature band around 1.4 eV. The
strong (8) peak is around U —V in the dimer model
and is shifted' to somewhat lower energies in ex-
tended systems. The weak feature (C peak) at 1.4
eV may then be associated with the weak transition at
U. An estimate of V —0.4 eV is quite consistent
with our more detailed fit of the A and 8 peaks of
TTF halides. A similar explanation for K-TCNQ has

been proposed by Lyo, who considers the U —V

band to be a local CT state below the upper Hubbard
band at U. We consider instead the upper Hubbard
subband to start around U —V for half filled (y = 1)
systems. The small admixture of . A 'A A

neighbors in the A A A ground state
then allows indirect CT transitions around U, as indi-
cated in (g) of Fig. 3. Strong CT absorptions around
U —V and weak ones around U are clearly shown by
previous VB calculations" on half filled mixed or
segregated regular stacks and by the present results
for partly filled regular segregated stacks.

Band formation, as shown in Fig. 5, of CT transi-
tions demonstrates that the broadening parameter I
in Eq. (36) cannot be routinely interpreted as an
excited-state lifetime. Such a lifetime broadening re-
flects Drude or Drude-Lorentz fits of l(co) in Eq.
(37) for a single transition. For multiple transitions
in infinite ion-radical stacks, however, there is a no a
priori need for any lifetime broadening. The ob-
served widths of CT transitions may reflect both
band and lifetime contributions, as well as vibronic
effects. The point is that I values obtained from
such fits may be quite unreliable for lifetimes.

We have already taken advantage of the exact wave
functions in computing oscillator strengths for VB
transitions. The ground state in any exact subspace
of S, k, cr can be expanded" " in terms of VB di-

agrams. The situation U & V & Ir I is expected to
favor configurations with no doubly occupied sites
and as few adjacent electrons as possible. Such di-

agrams describe the exact ground state for I t I
= 0 and

are closely related to Wigner lattice. " The main
difference is that additional interactions V~, V3, . . . ,

are needed in Wigner lattices. In their absence, we

naturally find similar weights for diagrams with

equal V and different numbers of second or third
neighbors. We denote VB diagrams with the
minimum possible number of adjacent electrons as
belonging to class I. All other covalent VB diagrams
are in class II, while any VB diagram with one or
more doubly occupied site is in class III, The decom-
positions of various ground states for fixed U, V, It I,
are listed in Table IV, which yields a quantitative as-
sessment of CI in partly filled regular systems.

The rather low contribution of doubly occupied
(class III) diagrams for the parameters in Table IV
supports their exclusion, as done in Sec. II, in ap-
proximate treatments of extended Hubbard models.
It is nevertheless just these class III diagrams that
result in a non-Curie susceptibility. Somewhat larger
values of I t I are suggested by X( T) data, as already
mentioned, thereby increasing slightly the weight of
doubly occupied sites. The point remains that small
admixtures of doubly occupied sites suffice for the
ground state, which is indeed close to the atomic lirn-

it for reasonable values of U, V, and It I.
The effects of finite V in partitioning between class
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TABLE IV. Decomposition of lowest S =0 and S =1 VB states for N, =4, N =7 rings.

Correlations
Ui+2ir ( V/+2lr [

Total spin
5

Types of &8 diagrams
0k class II 0/o class III

10

10

43.13
39.09
44.66
42.17
70.44
64.88
71.57
67.04
80.73
77.62
81.17
78.58

54.69
55.56
54.43
55.58
26.23
27.87
26.10
27.73
17.71
18.88
17.64
17.97

2.18
5.35
0.91
2.25
3.33
7.25
2.33
5.23
1.56
3.50
1.19
2.70

I and class II diagrams are illustrated in Table IV by
comparing U/J2[t I =6 results for N, =4, N =7
rings. Only 43'k of the ground state is in class I for
V =0, as expected when class I is not favored. The
class I contribution rises to 70'/0 for V/v 2 I r I

= 2.
The remaining class II contributions in Table IV for
V —4~r ~ demonstrate sizable. admixtures of config-
urations with additional interactions V. This is ex-
pected, since V ) 4~r ~ is needed to stabilize the state
with minimum numbers of adjacent electrons. Typi-
cal values of V thus cannot be adequately described
in the ~ r (

=0 Hmit of only class I configurations.
For completeness, we mention several contrasting

approaches to optical properties. Tanaka et al."asso-
ciate the 8 peak of TCNQ salts with an intramolecu-
lar absorption. The higher intramolecular excitations
of TTF halides does not fit such a picture, since their
8 peak remains around 1.5 eV. A common theoreti-
cal approach to the CT spectra of partly filled regular
stacks is certainly more attractive, as least as an initial

hypothesis. Rice et al. 4' have recently assigned the A

peak in MEM (TCNQ) 2, a semiconducting complex
salt below 335 K, to small site-energy differences and
couplings to molecular vibrations within (TCNQ)2
dimers. They do not comment on the 8 peak. Any
isolated (TCNQ)2 dimer has an allowed transition at
2~r ~

between the bonding and antibonding MO, and
differences of 28 in the site energies yield an A peak
at 2(r2+82)'~2 for truly isolated dimers. It is not ob-
vious, without independent evidence, that the dimer
approximation with such widely varying transfer in-
tegrals (r;„„,= 0.2 eV, t;„„„=0) is a reasonable start-
ing point. The MEM(TCNQ)2 absorptions are typical
of the complex TCNQ salts in Table I, and we would
assign them similarly, though transition energies and
oscillator strengths could be expected to be modified
sl ght y by d ffer nces n ~intra an ~inter& st e nerg
etc. The final possibility, that phonon-assisted intra-

band transitions produce the A peak, instead of
nearest-neighbor interactions, would require very
strong electron-phonon coupling. Duke42 and Rice
et al."3 have obtained smaller electron-phonon cou-
pling constants in various TCNQ insulators and semi-
conductors. Such strong coupling, furthermore,
would dominate the dc transport in all organic con-
ductors even at high temperature. Epstein et al.~
have reported conductivity gaps in several disordered
TCNQ salts and in a TCNQ aHoy with variable fiHing.
The small gapa ( & 1000 K) at the Fermi energy are
evidently sensitive to both the structure and the fill-

ing, in marked contrast to the low-energy CT peak
around 5000 K in Table I, The peak resulting from V
persists in coitductors with regular chains and in-
volves a gap at EF only in the special case y =0.5.
The interpretation of small additional gaps suggested
by transport studies is still open.

The magnetic properties of partly filled extended
Hubbard models are qualitatively similar to those"
with V =0. Exact results are lost for V A 0. Strong
antiferromagnetic exchange interactions J are again
found. For y = I and (U —V) )) ~t ~, we have
J =2r~/(U —V), which simply involves an effective
on-site correlation U —V. The situation is more
complicated for y & 1, where there are, several orbital
manifolds" with splitting of order ~t ) even in the
U ~ limit. Finite 'V produces additional shifts.
Any VB computation with V 0 can readily be done
for V %0. The resulting X(T) for partly filled chains
are qualitatively quite similar.

All Hubbard models are unrealistic in neglecting
long-range Coulomb interactions. The low density of
conduction electrons (y per molecule) and smaH
bandwidth 4~r ) of organic solids leads, at least for
highly idealized models, to rather low plasma fre-
quencies~' that are only slightly higher than the 8
peak. The direct observation of a plasmon, including
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its dispersion, has been reported~6 in TTF-TCNQ and
is in qualitative agreement with theory. Such experi-
ments in other organic conductor's would test the re-
quired density (or y) dependence of plasmons. Both
CT transitions discussed above are, by contrast,
largely independent of y for y & 1. Indeed, the in-
sensitivity to filling led us to postulate the nearest-
neighbor Vfor the A peak.

Low-lying plasmons, on the other hand, may imply
frequency-dependent parameters U, V, and ~t ~

due to
screening. We have neglected this possibility, whose
detailed analysis certainly merits further attention,
although the parameter values of Hubbard models
can always be defined to include screening. The
point is that a single value of U, V, and ~t ~

is taken
for all CT transitions, as well as for thermal excita-
tions contributing to transport and magnetic proper-
ties. Neglecting the likely frequency dependence for
the parameters may then spoil comparison with ex-
periment. Franck-Condon factors for optical transi-
tions are another source for parameter differences
between optical and thermal properties. As pointed
out above, the X( T) and CT transitions of organic
conductors point to slightly different values of

~
t ~.

There are several candidates for improving the
theory, but unfortunately none of them permit quan-

titative results.
In summary, nearest-neighbor interactions V pro-

duce a new low-energy CT band around V in partly
filled extended Hubbard models and split the ususal
CT band around U. The low-energy CT absorptions
of TTF halides and of complex TCNQ salts have
been associated with the V and U —2 V transitions,
while the usual CT band is assigned to U —V. Exact
diagrammatic VB methods for four electrons on finite
rings and chains yield both the position and intensi-
ties of CT transitions for U —3 V. These initial appli-
cations to partly filled infinite stacks are in fair agree-
ment with experiment for typical values of
~t ~

—0.10—0.15 eV. The resulting CI picture of in-
termediate correlations, with U —3Vand V —3~t~,
does not qualitatively alter the magnetism or con-
ductivity of partly filled (0.5 ~ y ~ 1.0) Hubbard
models.
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