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Using a new technique of amplitude analysis, the,eigenvalues and eigenenergies are analyzed

for finite and infinite linear harmonic chains with any periodic structures of two species. A new

phase function which is "additive" for each unit cell can be constructed. In terms of this phase

function, the eigenvalue equation is reduced to a low-order algebraic equation specified com-

pletely by the unit cell. Symmetry. properties among the "cyclicly" permuted unit cells, analytic

properties, vertex c)assification, diagram expansions, leading behavior, and reduction constraints
(relating structure of more complicated unit cell to less complicated ones) are developed. For
infinite systems, the density of states can be expressed in closed form as a single term. Eigen-

vectors also demonstrate collective behavior throughout the whole system.

I. INTRODUCTION

In recent years, considerable attention has been
focused on the excitation of linear systems composed
of two types of species (the binary linear systems). 4'
Properties of these systems have been analyzed both
analytically and numerically. These results are then
compared with computer experiments or experimen-
tally measured quantities of pseudolinear physical
systems.

In one extreme of an amorphous system, two
species of atoms may be distributed randomly among
each other. After the classical computer study of
Dean, 3 vast amounts of information are now avail-

able for the density of states of a randomly disor-
dered chain. ' In general the theoretical studies and
computer experiments are in excellent agreement
with each other. Starting from the earlier work of
Mott and Twose, 4 and Borland' most theoretical work
indicated that the eigenvectors in such systems are
essentially localized at least for regions near the tail

of the main energy band. ' However eigenvectors
are extremely difficult to calculate for a large disor-
dered system. Characteristics of eigenvectors are
therefore less well established than the characteristics
of eigenenergies.

In the other extreme, a binary linear system may
be completely ordered. For simple mixed linear sys-
tems, the properties of both the eigenenergies and
eigenvectors are simple and well known. '' ' They
are often used as elementary examples in the litera-
ture. ' However limited generalization can be ob-
tained for the general properties of binary systems.

In this paper, we attempt to analyze the binary
linear systems from a different approach. We shall

study finite and infinite systems with periodic struc-
tures. The structures of the unit cell are allowed to
be progressively more complicated.

Since the eigenvalue problem is intrinsicly a boun-

dary value problem, in our opinion it is most desir-
able to start with finite systems ~here the boundary
can be explicitly constructed. The characteristics of
the eigenvectors can then be analyzed without possi-
ble ambiguities arising from taking asymptotic limits.
Examples we worked out explicitly in this paper are
finite systems with quite complicated unit-cell struc-
tures. Fortunately many analytic properties can be
obtained for such systems. Limiting behavior can
then be obtained for properties of infinite systems.
Results obtained in this paper may be directly usable
for pseudolinear physical systems of complicated
periodic structures. ' Also by increasing the size of
the unit cell progressively, one may eventually use
this method for a complicated linear system as a sin-

gle cell.
. In order to study our systems, a pew technique is

introduced which allows us to examine analytically
many features of a finite periodic system. %'e shall
construct explicitly a "phase function" which is an
"additive" quantity for each unit cell. In terms of
this phase function, the eigenvalue problem of a fi-
nite system is reduced to finding the roots of a low-

order polynomial. The structure of the polynomial is

completely specified by the structure of the unit cell,
and is essentially independent of the size of the sys-
tem. Thus the explicit evaluation of the secular
equation for the eigenenergy is avoided. ' The phase
function constructed here is also the most natural
quantity for the density of states of an infinitely long
periodic system. There the density of states can be
expressed analytically in closed form as a single term
relating simply to the phase function. Extensive
usage of this phase function allows one to discuss the
symmetry in eigenenergy of "cyclicly" permuted
linear chains. Simple constraints can also be derived
relating higher-order cyclic chains (here we mean
chains with more complicated unit-cell structure) to
lower-order cyclic chains. A diagrammatic expansion
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can be derived for the evaluation of this phase func-
tion for an arbitrary structured unit cell. Eigenvec-
tors associated with the eigenvalues also demonstrate
collective behavior reflecting the unit-cell structure
throughout the whole chain.

The phase function discussed here possesses
features similar to the phase functions used by Bor-
land in the solutions of the one-dimensional
Schrodinger equations, 4 and the phases of the state
vectors first introduced by Schmidt. " They are how-
ever very different physical quantities. Since this
phase function is related to the overall phase change
of the "standing wave" over the entire unit cell, one
may loosely conceive it as complementary to the
phase functions of the state functions. However the
characteristics of the phase function is closely related
to the classical wave aspects of the system, and is dif-
ficult to interpret in terms of parrticle aspects in a
quantum-mechanical system. From now on, we shall

give it a name, and refer to it as the phase function
of the unit cell.

In Sec. II we discuss the Hamiltonian and formula-
tion of the eigenvalue equations suitable for the con-
struction of the phase function. In Sec. III, we dis-
cuss the definition of the phase function in connec-
tion with the eigenvalue equations. In Sec. IV, de-
tailed construction of the phase function of the unit
cell are presented. In Sec. V important properties of
the phase function are summarized. These properties
not only lead to explicit evaluation of the phase func-
tion, but also provide insights to the physical proper-
ties of the finite cyclic systems, In Sec. VI, we
demonstrate the evaluation of the phase function for
lower-order cyclic chains. Expressions for higher-
order chains (up to 6th order) are also summarized.
In Sec. VII, density of states of infinitely long cyclic
chains are worked out that can be compared analyti-
cally with the formulation obtained from other exist-
ing methods. " In Sec. VIII the phase function is ap-
plied to a binary system with 5% impurity. In Sec. IX
eigenvalues and eigenvectors corresponding to com-
plicated unit-cell structures are studied. Several nu-

merical examples are presented to demonstrate the
collective behavior of the eigenvectors in a linear
period system.

II. FORMULATION OF EIGENVALUE EQUATIONS

where m = m& or m& depending on whether the site n

is occupied by the species A or B. Corresponding to
fixed-ends boundary conditions

up= up+] =0

Eq. (1) can easily be rewritten as

a„u„=u„+~+u„~, 0«n «N+1

(2)

where

a„=2—w /w w„'= k/m„

where

Q = cos ' ( —,QH )

4) =0

and c~ is an arbitrary normalization factor. Since the
site m~ is occupied by an impurity atom, both the
amplitude c~ and the phase 4~ suffers a discontinu-
ous change in extending into the second interval.
This can be easily seen as follows

u +, = (a, —a„)u, + (a„u, —u, , )

= c~P sin(m~@) sing+ c~ sin(m~+ l)$
where

p=(a, —au)/sing .

(6)

Thus a„can be a„=2 —w'/w„' or as = 2 —w'/ws2

depending on whether the nth site is A or 8. In the
following we shall always refer to the species with
heavier mass as the host atoms (H) and the species
with lighter mass as the impurity atoms (I). This is

mainly for the convenience of identifying the main
energy band. The system we are considering are real-
ly mixed crystals where either species may be treated
as the host atoms.

Consider now a unit cell of the cyclic chain with s
impurity atoms. (Hereafter, we shall call it cyclic
chain of order s. ) The unit cell is naturally separated
by the impurity atom into s intervals (see Fig 1). .
Let the segment length of the intervals be m~,
m2, . . . , m, . The general expression for the ampli-
tudes within each interval can be easily derived.
Starting from the 0th site at one end, the amplitude
in the first interval is simply"

u„= uk"' ——c~ sin(kg+4, ), 0 k ~ m~, (4)

In many linear systems with nearest-neighbor in-

teractions the eigenvalue equations are equivalent in

formulation. %'e shall consider, as an example, only
a linear chain of particles of species A.and B interact-
ing with their nearest neighbors through ideal springs
of identical strength. Consider an eigenfrequency w.

The amplitudes u„satisfy

'm
1

l
END unit celt I

END

(m„w2 —2k)u„+k(u„~+u„+~) =0, 0~ n «N+1
(1) FIG. I. Unit-cell structure of an s-order cyclic chain.



23 EIGENENERGIES OF LINEAR SYSTEMS WITH PERIODIC. . . 2799

Comparing with

u = c~p sin(m~&) sin(0$) + c~ sin(m~p) (4')

+k u k [P s i n ( m
~ P ) s i n ( k P )

it is obvious that the amplitudes in the second inter-
val is the interference between the original wave and
a new wave ge.nerated by the discontinuity in the
mass. Thus

As a first step toward solving the eigenvalue prob-
lem formulated above, we shall relate the initial

phase 4~ of a unit cell k, with the initial phase 4~ of
the adjacent unit cell k +1. Let

yj = tank&

for the 4&& of the kth cell, Eq. (13) is rewritten as

(16)

III. PHASE FUNCTION IN EIGENVALUE EQUATION

+cousin(m~+k)$, O~k ~mq . (8)

The above equation can be rewritten as

uk =c2sin(kg+4&q), 0~k ~m,(2)

where

(I +ajp) + (p —aj)y,
'

where a& = tan(m&@). By repeating Eq. {17)s times,
we can get, in a straightforward (but tedious)
manner,

tan(m )$+ 4) )
tan+2 =

I +p tan(m )$+ 4&))
(10)

C +Dy)
ys+1 {18)

and

c2 sin(m~/+4, )

c, sin(42)

Equation (11) is equivalent to

= I+2psin(m~/+4&, ) cos(m, /+4, )
C1

+p'sin'(m~/+4, )

where A, B,C, D are exceedingly clumsy functions of
a~, a2, . . . , a, and P. Instead of evaluating these
functions directly, we shall only extract useful infor-
mation out of these functions (information that is
relevant to the eigenvalue conditions).

As we have indicated before, y, +~ is actually the in-

itial phase of the (k +1)th unit cell. At this point, it

is necessary to label explicitly the cells. Let

X„=y~(of the kth cell)

Equation (18) becomes more transparent as

This procedure can be generalized into the jth in-

terval. Defining the amplitude there to be
C +DXk 0«k «N
A +BXk

' (20)

u„~ =cj sin(kg+4&&), O~k ~ m,

we can easily show that

(12)
~here N is the total number of cells in the system.
In +rms of Xz, the boundary conditions are

and

tan(m, y+ e, )
tan+J+) = 0 ~j ~ s (13)

I +p tan(m, p+ 4;)

cj+] sin(d j+f) =c, sin(m, P+P, )

~g+i = I + 2P sin(m&$+4J) cos(m, $+4&)

(14)

+ p'sin'(m, $+4&) (14')

4&,+~(last unit cell) =0 (15)

From the definition of cyclic chain of order s, $,+~

is actually the starting phase of the first interval of
the second unit cell. The above procedure may
therefore be continued. For a finite cyclic chain of N

cycles, the displacement vector of the last atorp of
the last interval of the last unit cell is zero. We shall

then consider Eq. (13) with j = s as a formal defini-
tion of $,+~. The fixed-end boundary condition is

simply

Xi =X~+i =0 (21)

Z = (DXk —B)
(BC —AD)'

(22)

Equation {20) is translated into

1
ZK+1

IJI s Zk

In order to analyze Eqs. (20) and (21), we shall

now construct the phase function of the unit cell.
The phase function we are constructing here should
be an additive function of the cell, so that boundary
condition Eq. (21) can be Imposed easily. It also
turns out to be an extremely interesting and useful
function in analyzing the properties of the eigen-
values.

Notice that Eq. (20) is a bilinear transformation
similar to those of the addition of the tangent func-
tions. We shall first introduce several transformation
of variables. Let
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—(8+C)"'= (ac-~D)i12 (23)

is the matrix supporting the transformation yk yk+].
%'e shall further define matrix A~ as the supporting
matrix for the transformation y] yk

Here p,, is again a rather complicated function
(although not as complicated as A, B,C,D, individual-
ly) of P and cic, . . . , ci,. It is, however, independent
of the cell index k. Let

(24)

4fk

~A= yk=
ay+ bl y]

Notice that the quantities (ak, bk, ek, cik) are unique up
to an overall multiplying factor. This ambiguity is re-
moved by requiring

ZK cosmos + sln~s tan~K (25)

Equation (23) is finally reduced to the desired form

tangcr+1 = tan{5k+8, ) (26)

The boundary condition of Eq. (21) is now simply

tanNH, =0 . (27)

The eigenvalues of 4 are now grouped naturally as
solutions of the equations

8, =& =pm/N, @=0,1, 2, . . . , N —1 . (28)

with possible values of 8, all equally spaced. In the
following sections, we shall discuss the properties of
8, and p,„and how to evaluate them explicitly.

ek+i = (I +cik/1)ek+ (P —cik)crk

dk+) = (I +cikp)dk+ (p —eck )bk.
Equation (33) is summarized in matrix form as

~~+] =~U~~

As a consequence

~~+~ =~U~U-].

since A i= Ui. Comparing Eq. (34) with Eq. (18),
the previous A, B,C,D are just the matrix elements of
W+, . Thus

IV. FORMAL SOLUTIONS OF THE PHASE FUNCTION

The phase function 8, defined above is a rather
complicated function of cb. This is only natural, since
Eq. (28) implicitly contains all the solutions of the
eigenvalues. Instead of evaluating 8, immediately,
we shall first discuss several important properties of
H„which lead us to nontrivial insights of the eigen-
value equations. These properties constrain the pos-
sible form of p,, and 8, so severely, that expressions
of 8, can often be written down without ever evaluat-
ing the cumbersome transformations of Eq. (17).

In order to examine the properties of 8„ it is suffi-
cient to inspect closely the nature of the transforma-
tion in Eq. (17) for two successive transformations.

%'ith j = I

A'] + && +~]yt
y2=

(1+Pci&)+(P—cic)yl cri+bi3 c

p,, =2cose, =—Tr(A, |)/(DetA +1)'I'

[/2=-Tr(U U, , . . . , U, Q Det(U ) . {3S)

Equation (35) is the formal solution of the phase
function 8,. Notice that although the supporting ma-
trix defined in Eq. (32) is ambiguous up to an overall
factor, the final result of p,, is independent of this
ambiguity. The transformation reiationship (33) is,
ho~ever, the most useful expression, since the coef-
ficients multiplying P and cci, . . . , ci, are always in-

tegers in the final expansion of the Tr(U, . . . , Ui).
From this expression, solutions of p., corresponding
to lower-order cyclic chains can be written down
through inspection. %e get, for example,

p, , = —(2+a,p)/(I+a', )'"

where we formally define a 2 x 2 matrix U~'.

I +cgcil P —ci)

ccc I (30)

[2 —2cil ci2+ 2 (ci1 + ci2)P + cia ci2p2]
P2= [(1+ci') (1+ci') ]'i' {37)

I+P~k P ckk-
nk 1

(31)

as the matrix supporting the transformation yi y2.
Similarly

As for the higher-order cyclic chains, the explicit
expression for p., are still nontrivial, since no simple
mechanism is available for calculating the trace of
product of matrices. It is therefore necessary to ex-
amine more closely properties of p,, utilizing specific
properties of the matrices of Eq. (31).
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V. PROPERTIES OF THE PHASE FUNCTION so that

Although it is quite straightforward to evaluate ex-
plicitly the expression of p,, through Eq. (33), it is

quite tedious and not inspiring. After all, we are not
interested in the full supporting matrix, but only in
its traces and its determinants. %'e shall therefore
discuss briefly various properties of p,, which lead to
deeper insight of the contents of Eq. (35) and the
physical properties of the eigenvalue equations.

1nj fnq+j In pq+j

Thus

(40)

p, , (reduced) =2@,~ —I

In general if s =pq where p and q are integers, a
N-cycle sth order cyclic chain may be reduced to pth
order cyclic chain with gN cycles, by setting

cosg, (reduced) -cos(q8, ~, ) (4 I )

A. Symmetry properties

A symmetry property of the eigenvalue equation is

directly revealed by taking the trace of the matrix

product. As is well known, both the trace and the
determinant are independent of any cyclic permuta-
tion of ~U, ~U ~, . . . , UI. p, , is therefore the same
for s different kind of unit-cell structures obtained
through cyclic permutation of the segments within

the unit cell. In other words the eigenvalues ob-

tained for these systems are identical if a whole seg-
ment is moved from one end of a long chain to the
other end (see Fig. 2). Notice that the cyclic permu-

tation referred to here are applied to a whole segment
and not to the individual host atoms.

B. Reduction of higher-order cyclic chains

Consider an s-order cyclic chain with N unit cycles.
Segments of the intervals m ~, . . . , m, may be arbi-

trarily specified. The configurations of the unit cell

include special circumstances when the unit cell itself
possess cyclic properties. For example, if

s =2q

we may choose

Equation (4l) is a rather strong consistency relation-
ship between cyclic chairis of different orders. It can
be an effective tool in building up a higher-order
chain out of a given lower-order expression. We
shall utilize this to obtain explicit expressions of
higher-order chains in the following section.

C. Analytic properties

Notice that from Eq. (3l)

(detU&) '~'=(I+nj) ' =cos(m, @) (42)

It immediately follows that p,, is a polynomial of
cosm&P and sin(m&@) of degree s. It is also easy to
see from Eq. (33) that p, , is a polynomial of degree s
in P. However from the definition, P behaves as a

simple pole at @=0, while p, , should not diverge. A

power of P is therefore always accompanied by

sin(m&g) to a sufficient power to maintain the proper
behavior of p, at @=0. Under these constraints the
allowed expressions of the various terms in Eqs. (35)
and (36) are essentially unique. Only the constant
coef'ficients need to be determined. Equation (33)
can indeed be expressed as a polynomial of cos@ of
order (m

~
+ + in, ). Detailed evaluations shall

be discussed in the following section.
mj = mq+jp J 1J ~ ~ ~ p (38)

cosH~ = cos(28g/p) (39)

The s-order cyclic chain of N cycles is now reduced to
a (s/2) th order cyclic chain of 2W cycles. Since the
same eigenvalue equations should emerge from ei-
ther formulation of the phase function, it is necessary
that

D. Vertex classification

When the cyclic symmetry of V A is combined with

the polynomial properties of VC, a classification of
possible expressions contributing to Eq. (35) is possi-
ble. This classification is best illustrated in vertex di-

agrams. Corresponding to a s-order chain, the trace
in Eq. (35),

T, = Tr(~U, . . . , U~) (43)

I

I

END

I

Unit cell
I

I

KNO

FIG. 2. "Cyclic" permutation of cyclic chain in Fig. 1.

can be expressed in terms of polynomials in aj's
(with integer coefficients). In order to accomodate
the cyclic properties, we shall first draw a diagram
with ail possible vertices. (There are altogether s ver-
tices. ) Any specific polynomial of a~, . . . , a, is

represented by the corresponding selection of ver-



CHIA C. SHIH

FIG. 3. Typical vertex diagrams of a sixth-order chain,

Firstly for P = 0

Ug 1+a~i o.
y

(~U, . . . , Ui) p 0= (1 —Xaia2+ Xaia2asa4+ ) 1

+i (Xa).+ ) a.y,
and

T, (P=0) -2(1 —Xa(a2+ Xa(agasa, + ) . (49)

tices. For example, the diagram illustrated in Fig.
3(a) corresponds to the polynomial a~a2as of Eq.
(43) for a 6th-order cyclic chain. Since Eq. (43) is

cyclic vvith respect to the matrices ~U, . . . , U1,
ele20, 3 term is always accompanied by o,2a3a4 term.
The vertex diagram of Fig. 3(a) really corresponds to

0123 = CX1&20!3+ Ol2A3A4+ A3A4A5 + ~4~5~6 +~5o 6o

Vi = Ui/(detUi)'i'

One can then re@&rite

(SO)

(51)

For P & 0 we may continue our analysis by introduc-
ing

Thus all the third-order polynomials of o&'s contri-
buting to T6-can be grouped into several terms

T6 ' ' + l 1~123 + &2II124+ &3~135

where

II[2/ [CaK CX32+ CL2asas + GslX4A6 + ' ' ( l2 terms)

0135 A[A3CX5 + A2A4A6

V& =exp(im&Pa«)

V&, = —,P exp[imi(P —, n ) cr y—]
1 1

Vz = , Pex-p(lm&@a «)cr„.
Notice howsoever

exp(im Pay) a„-a„exp( im Pay-)

(52a)

(52c)

corresponding to Figs. 3(b) and 3(c), respectively.
Furthermore T6 is a polynomial in P. The most gen-
eral expression third-order polynomial of 0& is in the
form

3

T6= ' ' ' + x P (vk, &Ti2s+vk. 2Ti24+&k, sTiss)
k 0

(46)
where vk& are all integers. Notice that higher-order
polynomials in P are not allowed, since otherwise the
analytic property at / =0 is not satisfied.

E. Matrix representation and
diagram expansions

Alternatively Eq. (3S) may be treated thmugh Pau-
li matrices, l.e.,

Uy= (1+
~ a,P)1+ 2Pcr„+(n, —2P)i oy .(47)

In the full expansion of IM,„
p, =Tr[( V, + Vy + V, ) ( V)(+ V(2+ V(s) ]

(S3)

the o.„terms of VJ. may be permuted repeatedly and

eventually canceled in pairs, leaving only a sequential
reverse of signs of the exponents in the process. All
the other factors in Eq. (53) are exponents in ay.
The phases are then simply added together as a single
term, and the trace can be taken. In order to keep
track of the expansion in Eq. (53), a diagrammatic
expansion can be used. A typical diagram corre-
sponding to a term of sixth-order cyclic chain is
shown in Flg. 4. There —' —,—&& —, $—indicate
contribution from VJ, , V&, and V... respectively.

Diagram in Fig. 4 therefore leads to a contribution to
p,6.

@6= ' ' ' +(-P)sTrexp[1yl(m6+ms me ms —m2+mi)+la —,sr]
1

( —,
' p)'2 stn[g(m6+ ms —m~ —ms —m2+ m ) ) ]

Another example is for the P term. There

pg = Tg[exp(I Q'y@ Xfl1g)] = 2cos Xtltgp p +
1

(49')
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FIG. 4. A typical term in the diagram expansion of a
sixth-order chain.

Since jk, rk may be calculated easily for small k, the
leading terms of t, may be easily cakulated through
Eq. (60).

The above diagrammatic evaluation is particularly
suitable for computer analysis.

F, Leading behavior

Another nontrivial property of p,, deals with the
leading expansions of Eq. (35). We shall first con-
struct from Eq. (33)

VI. EXPLICIT EXPRESSIONS

pi = —(2+alp)/(I +a|)' ', (36')

In this section, we shall present explicit expressions
for the lower-order chains. These expressions al-
ready correspond to rather complicated mixed linear
crystals. The solution for first-order and second-
order cyclic chains are already given in Eqs. (36) and
(37):

and

fk 6k+Ck (55a) [1 —aia2+ (ai+a)) p+ —,a)a2p']
jLLp

= 2
[ ( I + a2) I/2( I +a2) I/2]

. (37')

rk dk + pck Ok

Equatiorls (33) then leads to

(55b)

/k+1 = akrk + (tcftlls tndcpcndcnt of ak)

rk+i =akprk —akrk+ (terms independentof ak)

a recursive relationship is obtained in the form

To the leadin. g order of ak, we therefore obtain an
identity

l
"i+I zrk+l ak (p z) rk-(p-z) 4

for any z. If we choose in particular z = 1/(P —z ),
1.e.,

z =z = —[p+(p' —4)'/']

%e shall first consider the third-order chain. Starting
from the reduction technique of Sec. V 8,

cos83(reduced) = cos381

—1 +.—a|P —3aziPz ——a3|P33 1

(1+a')'/'

(6i)

Prom the symmetry property of Sec. VC, the only
generalization available for Eq. (61) is

(62a)

Ak
rk+I zork+l ("k zork)

Zo

Repeated use of Eq. (57) may lead to

(r„—zor„) = "'
(rk zork)

(z )n-k

(57)

(58)

1P
= AiA2+ Ago!3+ A3CX42~

0!1
~ 0123 = 0!

~ 0/20!33~

Thus

p3 = 2 cos83

(62b)

To take advantage of Eqs. (57) and (58), we may
analytically continue p to ]p] ( 2. With

(59)

—2 + 2 IItz +3PII| +3PII|z3 —2P IIiz —P'II|zs
[ (1 + azi) ( I + n') (1 + a') ] '/'

the value of zo=e+-'" is now complex. However oth-
er terms in Eqs. (57) and (58) are still real. We may
now extract the trace i, as

fs b~+ck (a~, . . . , ak) fk
sin(s —k) rt

Sln'g

sin(s —k + 1)rt—fk
sing

(60)

(63)

Even with the techniques summarized in Sec. V, the
algebraic procedure becomes somewhat too lengthy to
be presented in detail, we shall therefore work out
the fourth-order chain explicitly in Appendix 8 and
only list the results up to sixth-order chain in Table I.
These results suggest, that perhaps it might not be
too optimistic, that an explicit expression of the
phase function would be obtainable for cyclic chain of
any order.
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TABLE f. Expressions for p,

1

X1234

X123456

2
—2

2
—2

X1

X12345

014
X1234

X1235

X1234

-X123456

5

3
4

—8

0
8

II135
X12345

~1235

~123456

X1234S

X123456

"'k is the power of P associated with the II or X terms.
%'3 % 3Xi2= Xg-1 Xk-t ~j~k 11&2 XJ-& &g~g+& ~"««s+1 = &&.

VII. DENSITY OF STATES OF INFINITELY
CYCLIC CHAINS

Consider the limiting situation when the number of
cycle N becomes large, eigenvalues 8~'s also become
dense over the whole region from 0 to m. Since S»
are equally spaced, the number of states in a given
interval is just

G(S~)h&~ =rip/N

so that

(64)

'fransforming back to the original variable @, e g«

G(|v') =g(&, ) -.f(N")Go(a") ~

d cosH dw'

(6S)

( 2) d cosH 1 G ( 2) 1 d(cosf)
d cosy' sinH n dw'

In the above equation Go(w2) is the density of states
of the homogeneous chain (in the absence of the im-

purity atoms) and. f (w') is the form factor associated
with the cyclic structure.

Since H, is an explicit function of cos@, the form
factor may be calculated in a straightforward manner,
and the density of states can be expressed in a closed
form.

To demonstrate, we shall work out two simple ex-
amples, where the analytic solutions may also be ob-
tained relatively easily from another independent
method (sequential Green's function). '4 In example
one, equal concentrations of the two species are con-
sidered. This corresponds to 8 =1, m1=2, as shown
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FIG. 5. (a) Alternative chain with concentration ratio 1:1.
(b) Second-order cyclic chain with concentration ratio 2:1.

To demonstrate our method, we shall select an ex-
ample that has been reported in the literature. '4 This
sytem consists of 38 heavy atoms (II) and two light
atoms (I) at sites 12 and 31. This corresponds to
s =2, m~ = 19, m2= 21 (see Fig. 6), and

cos82 = cos(40qh) +P sin(40@)

in Fig. 5(a). We get from Eq. (35)

cos8, = cos2$+ (ai —aH ) cos@= —aII a, —II

2 with

+
2
p2sin(21$) sin(19$) (70)

and

d COSHI = QI +Hag
d cos@

6( 2) I af +am
7T Ql aII ala&

(66)

1=
2 (al aH 2as aH) (67)

As a consequence

in agreement. with the results [Eq. (87)] obtained by
the sequential method (see Appendix 8).

The second nontrival example corresponds to a
mixed crystal with concentration ratio 2:1. The unit-
cell structure is therefore s = 2, m I

= 2, and m2 = 1 as
shown ln Fig. 5(b):

cos82 = cos34»+ P sin3 qh+ —,P' sin2@ sing

1 1 8'2
2

1

O'H2 W12 sin@ WH2

( I)
In general when the mass ratio is close to I, p is
small, 82 —40$. And the frequency spectrum of the
system is almost the same as that of the homogene-
ous chain. When the mass ratio MIr jMI )& I, P can
be large. In a large region of $, cos8, varies rapidly

beyond the region (0,1) and band gaps develop.
Oniy at the iong-wavelength limit, both $ and p tend

to zero. Figure 7 corresponds to a choice of
Ml/MH = 3. In order to compare the molecular
dynamics with electronic states, we have also calculat-
ed, in Fig. 8, the density of states of 40 atoms with

ayj = 1 —F., and aI = 2 —E
The same results can also be obtained through the

Green's-function technique of Ref. 20. It is interest-

ing to observe that various seemingly independent

(68)
DrS 1.0 1,5 2, D 2r5 5,0 Sr S l». j»

G ( a ') =— (aI'+ 2agaa —3),1 1

m 2cos82

in agreement with the results [Eq. (812)].

(69)

VIII. FREQUENCY SPECTRUM OF CHAIN OF 40
AT@MS WITH A 5% CONCENTRATION

OF LIGHT ATOMS

In practical applications, a binary system with dilute
impurities is sometimes studied with periodical-
boundary conditions. This is equivalent to an infinite
cyclic system with faiily complicated unit-cell struc-
tures. Numerical analysis is often necessary in order
to carry out the details of the frequency spectrum.

Lulls»][1 JI]II )IJ IJL Lll j.( IJL

b. 0 0 5 ».0 1.5 Z. D 2.5
(N/QZ)

$.0 5.5

FIG. 7. The relative density of state 6(t42)/60(I42).
60(~ ) is the density of states of the corresponding homo-
geneous chain. Here m& =3.0 m~, with configuration of
Fig. 6.
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60(E) is the density of states of the corresponding homo-
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tion of Fig. 6.
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ct0

FIG, 9. The intensity IJ =
C& for a chain of 40 segments,

with s 2, m~=3, my=5 and P=1/costtt, /=0. 80017.

terms of F. in the Green's-function technique can.
indeed be summed to a closed analytic form express-
ible as Eq. (65).

IX. EIGENFREQUENCY AN13 EIGENVECTORS
OF FINITE SYSTEMS

cos@=—,
' (Z+1/Z)

It follows from Eq. (49'), that

(ZM+ I/ZM)p0

(72)

For finite systems, one may either solve Eq. (28)
analytically or numericaliy. Since Eqs. (28) and (35)
contain all the information of thc eigenfrequencies,
the solutions can be expected to be rather complicat-
ed. Nevertheless one important feature of the solu-
tion may still be studied. %'e shall first introduce

Solution in the form of Eq. (76a) leads to

cosdl=cosp, , !cos@!~1

and the corresponding 8 2 is in the main band of the
host atoms. Solution in the form Eq. (76b) corre-
sponds to

cosg t (P&+ I/P&), !cosg!) I

and the corresponding W' being outside the main
band, is usually referred to as localized states. Since
p may possess W values, all N x I states are ac-
counted for.

In Figs. 9—I 1, several typical solutions are plot-
ted." As ~e can see eigcnvcctors of the second-
order cyclic chain are naturally separated into toro en-

+ (higher-order polynomial in P) (73)
10 15 20

where M = m ~
+m2+ . + m, . But all other terms

in p are in the form

stnrrt4' (Zm . Z —m)/(Z Z —l)
sing

Zm-l+Zm-2+. . . +Z-(m-tl {74)

Thus the explicit form of Eq. (28) is

Z2~+ ~ ~ +1 0

CC

g

ec

~ a
CO

%e can therefore find M pairs of solutions

Z =e-+'&j,J $&=real, j= I, . . . , M' 10 15 20
5EGHKNf

ll0

of
Z&=PJ, I/PJ, P =real, j=M'+1, . . . , M . (76b)

FKj. 10. The intensity IJ = Cz~ for a chain of 40 segments,
with s 2, m

~
=6, m 2

= 2 and i8 - 1/cos@, $ = 1.695 33.
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FIG. 1 1 . The intensity IJ = CJ2 for a chain of 60 segments
with s =3, A/1( 5, 012=3, t1f3=2, and P=I/cos@p

1.565 16.

equations. The phase function also allows us to dis
cuss the symmetry of the eigenvalue equation as well

8s thc reduction of 8 hlghef-order cyc11c chalA to
lower order. The density of states of aninfinitely cy
clic chain may also be expressed in close forms. In
general a diagram expansion can be constructed which

leads to the new lower-order eigenvalue equation
for an arbitrary periodic chain without using the tra
ditional secular equations, Eigenvectors correspond
ing to a finite system demonstrate interesting co llec
tive (global) properties. The above formulation can
be generalized to more than one dimensional and
with more than two atomic species with short-range
orderings (interaction in tridiagonai block forms). It
can be adopted for the electronic states of a system as
well as eigenvalues of Schrodinger equations in a
qU8Atum- fncchaA1cal systcfn. These aspects arc to bc
reported separately

velopes, while the third-order chain in general reveals
8 threefold envelope. Detailed study of the eigen
vectors shall be reported elsewhere in a separate pa
pcr.
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IA this work wc have analyzed thc c1gcAvalUcs and

cigenvectors of a finite and infinite linear cyclic sys
tems. By constructing a phase function of the unit

cell, the nature of the eigenvalues of the system can
be analyzed without explicitly solving the secular

APPENDIX A

Using the reduction technique, the phase function
of a fourth-order cyclic chain can be reduced to

cos4e, = Scos'e, - S cos'e, + I = [(I 6aj+—nt) + (Sai —S —ai) pl + ( I«f —2nt) p'+4nlp'+
2

a~p']~( I +a~)
(Al)

Using the properties of Scc. V D, the general expression of cos84 is

p4=2cost)4= X ~nkx(a&. nk)P + X B~(a&a3+a2a4)p
e ~even, k

where all the A„,k and p„are integers. 1t is clear that we need to replace

(Sn( —Sa3))P 2P Xa( —2P Xn(a2n3

4nip p Xniasa3 (A4)

2 aip 2 p nia2a3a4

(10nf —2at)p' ~ (3A 2 p+ B2a2 —a)n2a3n4) p2

(1 —6n f + af )po ~ 1 + (3A g, 2+ Bo)a2+ a in2n3a4

In order to determine separately 80, 82, A 0 2, A 2 2, we may use the reduction of the fourth-order chain to a
second-order chain and compare cose4 (reduced) to

cos28=2 coca, 1=2[1——a)a2+(a(+n2)P+ —,
' nlagP']'/[(1+a])(1+ap~)] —1

H«e the p term is

2(1 —n/a2) —(I +a/) = 1 —4n/n2+a/a2
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Letting a3 cx j a4 cxz in Eq. (A2), we get

1

4alaz (~l +a2) z
~ 0(al + ~2+ 4~1az)

+ -, p (a~)+ azz) . (A9)

and

1 (aH+ai) 4
G = 1~—(D)(+Dzz)=- 1=

m' QHQ( ' QHay

(87)
Thus

~0, 2= —2, Bo=o . (A10)
Corresponding to the second example of Section VII
[Fig. 5(b)], we get

The P term is

13a/az+2{a/+az) =
z Azz(a/+az+4a]az)

+—Bz(af+az)

1Xn= i? = ly ~ ~ ~ p4
an+1 Xn+1

an —1 3 n-1

(88)

(89)

Thus
322=3

B2=1

In summary
t

@4= 2 1 Xcx~cMz+ cx~cxzcx3a4 p
II

+4 Xai Xaiaza3 p

(A 1 1)

(A12)

with the boundary conditions

X4=X1

3'4 =3'1

Using the explicit values of an+1,

Xl =
QH X2 a( —x3

X3=

(810)

(811)

ai —x 1

(812)

+ 3 Xalaz+2(atnz+aza4) p'
I

+ 2 X'alaza3P + alaza3a4 P3 4 (A13)

%'e may get

a~ aH —2aI+ QH
X3=

2(a,air —1)
JX

2(aiaH —1)
(813)

Explicit expressions of the phase function up to the
sixth order are given in Table I.

aH JX
2 2(aiz —1)

(814)

APPENDIX 8

In this appendix we use the Green's-function
method to obtain results given in Eqs. (66) and (69).
%'e shall use the notation Ref. 14. Corresponding to
the first example in Sec. VII [Fig. 5(a)]

aI aH —aH iX
X 1 a (aiaH —1) 2(aiaH —1)

where

4 = (aI'aH —2ai —air)' —4

Comparing with Eq. (67), we notice that

(815)

(816)

Xl =
QH X2

X2=

so that
ag —Xl

'1
1

1 2 H 2 H

1/2
4

aHa

(81)

(82)

(83)

4sln 82

Since

32 X2 31 X3 P3 Xl

1 aiaH —1

ai —(x~+y~) JX

(817)

(818)

and

1 1x = —a] ——a(1—
QH QI

z

1/2
and

D33 =Dl 1

1 ai2 —1
D

ai (hz+32)—
(819)

(820)

%e therefore get

1

QH 2X1

1 1—
QH

1/2
4

aHai

Thus

G =—I (D)(+Dzz+D33)1

1 1 (ai~z+2aiae —3), if 5 ) 0

1

QH —2X2

1 1—
QH aHaI

-1/2

(86)
=0, if 6~0 (821)
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