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Using a new technique of amplitude analysis, the eigenvalues and eigenenergies are analyzed
for finite and infinite linear harmonic chains with-any periodic structures of two species. A new
phase function which is ‘*additive’” for each unit cell can be constructed. In terms of this phase
function, the eigenvalue equation is reduced to a low-order algebraic equation specified com-
pletely by the unit cell. Symmetry. properties among the “‘cyclicly”” permuted unit cells, analytic
properties, vertex classification, diagram expansions, leading behavior, and reduction constraints
(relating structure of more complicated unit cell to less complicated ones) are developed. For
infinite systems, the density of states can be expressed in closed form as a single term. Eigen-
vectors also demonstrate collective behavior throughout the whole system.

I. INTRODUCTION

In recent years, considerable attention has been
focused on the excitation of linear systems composed
of two types of species (the binary linear systems)."?
Properties of these systems have been analyzed both
analytically and numerically. These results are then
compared with computer experiments or experimen-
tally measured quantities of pseudolinear physical
systems.

In one extreme of an amorphous system, two
species of atoms may be distributed randomly among
each other. After the classical computer study of
Dean,? vast amounts of information are now avail-
able for the density of states of a randomly disor-
dered chain.'”® In general the theoretical studies and
computer experiments are in excellent agreement
with each other. Starting from the earlier work of
Mott and Twose,* and Borland® most theoretical work
indicated that the eigenvectors in such systems are
essentially localized at least for regions near the tail
of the main energy band.'~® However eigenvectors
are extremely difficult to calculate for a large disor-
dered system. Characteristics of eigenvectors are
therefore less well established than the characteristics
of eigenenergies.’

In the other extreme, a binary linear system may
be completely ordered. For simple mixed linear sys-
tems, the properties of both the eigenenergies and
eigenvectors are simple and well known.”!°"1¢ They
are often used as elementary examples in the litera-
ture.'® However limited generalization can be ob-
tained for the general properties of binary systems.

In this paper, we attempt to analyze the binary
linear systems from a different approach. We shall
study finite and infinite systems with periodic struc-
tures. The structures of the unit cell are allowed to
be progressively more complicated.

Since the eigenvalue problem is intrinsicly a boun-

2

dary value problem, in our opinion it is most desir-
able to start with finite systems where the boundary
can be explicitly constructed. The characteristics of
the eigenvectors can then be analyzed without possi-
ble ambiguities arising from taking asymptotic limits.
Examples we worked out explicitly in this paper are
finite systems with quite complicated unit-cell struc-
tures. Fortunately many analytic properties can be
obtained for such systems. Limiting behavior can
then be obtained for properties of infinite systems.
Results obtained in this paper may be directly usable
for pseudolinear physical systems of complicated
periodic structures.!® Also by increasing the size of
the unit cell progressively, one may eventually use
this method for a complicated linear system as a sin-
gle cell.

 In order to study our systems, a new technique is
introduced which allows us to examine analytically
many features of a finite periodic system.” We shall
construct explicitly a ‘‘phase function’’ which is an
‘“additive’” quantity for each unit cell. In terms of
this phase function, the eigenvalue problem of a fi-
nite system is reduced to finding the roots of a low-
order polynomial. The structure of the polynomial is
completely specified by the structure of the unit cell,
and is essentially independent of the size of the sys-
tem. Thus the explicit evaluation of the secular
equation for the eigenenergy is avoided.!” The phase
function constructed here is also the most natural
quantity for the density of states of an infinitely long
periodic system. There the density of states can be
expressed analytically in closed form as a single term
relating simply to the phase function. Extensive
usage of this phase function allows one to discuss the
symmetry in eigenenergy of ‘‘cyclicly’’ permuted
linear chains. Simple constraints can also be derived
relating higher-order cyclic chains (here we mean
chains with more complicated unit-cell structure) to
lower-order cyclic chains. A diagrammatic expansion
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can be derived for the evaluation of this phase func-
tion for an arbitrary structured unit cell. Eigenvec-
tors associated with the eigenvalues also demonstrate
collective behavior reflecting the unit-cell structure
throughout the whole chain.

The phase function discussed here possesses
features similar to the phase functions used by Bor-
land in the solutions of the one-dimensional
Schrédinger equations,* and the phases of the state
vectors first introduced by Schmidt.!®* They are how-
ever very different physical quantities. Since this
phase function is related to the overall phase change
of the ‘‘standing wave’’ over the entire unit cell, one
may loosely conceive it as complementary to the
phase functions of the state functions. However the
characteristics of the phase function is closely related
to the classical wave aspects of the system, and is dif-
ficult to interpret in terms of particle aspects in a
quantum-mechanical system. From now on, we shall
give it a name, and refer to it as the phase function
of the unit cell.

In Sec. Il we discuss the Hamiltonian and formula-
tion of the eigenvalue equations suitable for the con-
struction of the phase function. In Sec. III, we dis-
cuss the definition of the phase function in connec-
tion with the eigenvalue equations. In Sec. IV, de-
tailed construction of the phase function of the unit
cell are presented. In Sec. V important properties of
the phase function are summarized. These properties
not only lead to explicit evaluation of the phase func-
tion, but also provide insights to the physical proper-
ties of the finite cyclic systems. In Sec. VI, we
demonstrate the evaluation of the phase function for
lower-order cyclic chains. Expressions for higher-
order chains (up to 6th order) are also summarized.
In Sec. VII, density of states of infinitely long cyclic
chains are worked out that can be compared analyti-
cally with the formulation obtained from other exist-
ing methods.!' In Sec. VIII the phase function is ap-
plied to a binary system with 5% impurity. In Sec. IX
eigenvalues and eigenvectors corresponding to com-
plicated unit-cell structures are studied. Several nu-
merical examples are presented to demonstrate the
collective behavior of the eigenvectors in a linear
period system.

II. FORMULATION OF EIGENVALUE EQUATIONS

In many linear systems with nearest-neighbor in-
teractions the eigenvalue equations are equivalent in
formulation. We shall consider, as an example, only
a linear chain of particles of species 4 and B interact-
ing with their nearest neighbors through ideal springs
of identical strength. Consider an eigenfrequency w.
The amplitudes u, satisfy

(maw? =2k uy +kQuy_y+upyy) =0, 0S<n<N+1,
(1)

where m =m, or mg depending on whether the site »
is occupied by the species 4 or B. Corresponding to
fixed-ends boundary conditions

Ug=tn4 =0 )
Eq. (1) can easily be rewritten as

Quiy=Ups1F Uy, 0OS<n<N+1 , 3)
where

a,=2—ww?2, wl=k/m,

Thus a, can be a, =2—w?/w} or ag=2—w?/w}
depending on whether the nth site is 4 or B. In the
following we shall always refer to the species with
heavier mass as the host atoms (H) and the species
with lighter mass as the impurity atoms (/). This is
mainly for the convenience of identifying the main
energy band. The system we are considering are real-
ly mixed crystals where either species may be treated
as the host atoms.

Consider now a unit cell of the cyclic chain with s
impurity atoms. (Hereafter, we shall call it cyclic
chain of order s.) The unit cell is naturally separated
by the impurity atom into s intervals (see Fig. 1).
Let the segment length of the intervals be m,

m,, . .., ms. The general expression for the ampli-
tudes within each interval can be easily derived.
Starting from the Oth site at one end, the amplitude
in the first interval is simply*® !

u=uV=csinlkdp+®,), 0<k=<m , (4)
where

¢=cos™!(say) .

¢, =0, (%)

and c; is an arbitrary normalization factor. Since the
site m, is occupied by an impurity atom, both the
amplitude ¢, and the phase @, suffers a discontinu-
ous change in extending into the second interval.
This can be easily seen as follows

Up |41 = (al_aH)uml + (aHuml _“ml-—l)

=c,Bsin(m¢) sing +c;sin(m,+1)¢ , 6)
where
B=(a,—ay)/sing . @)
! ] i 1
! 1 ] 1
* X % * *
1 I 1 |
my oime mg! ,ﬂs__”
1 | ! 1
Enp | unit cell ! ene
FIG. 1. Unit-cell structure of an s-order cyclic chain.
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Comparing with
u,,,l=c,ﬁsin(m|¢)sin(0¢)+c1sin(m1¢) , 4"

it is obvious that the amplitudes in the second inter-
val is the interference between the original wave and
a new wave generated by the discontinuity in the
mass. Thus

u,,,‘+k5uk‘2’=c|ﬁsin(m1¢)sin(k¢)
+cysin(m+k)p, 0sk<m, . (8)

The above equation can be rewritten as

wP =cysinlkp+®,), 0<k=<m, , 9)
where
tan(m ¢ +P,)
&, = 1
tan®; 1+Btan(m ¢ +P)) (10)
and
¢, sin(mo+o))
L _MimeT g 1
Cy Sin(q)z) (an
Equation (11) is equivalent to
2
l%] =1+2Bsin(m ¢ +P,) cos(m¢p +P,)
|
+stin2(mld)+<b|) . (11’)

This procedure can be generalized into the jth in-
terval. Defining the amplitude there to be

u =csin(kp+®;), 0sk<m, , (12)

we can easily show that

and
¢ 8in(Dy4p) =¢;sin(mdp + @) (14)
Gl

2
. ] =1+28sin(m;¢ +®;) cos(m;¢ + ;)
J

+B2Sin2(mj¢+¢),) . (14')

From the definition of cyclic chain of order s, ¢;4;
is actually the starting phase of the first interval of
the second unit cell. The above procedure may
therefore be continued. For a finite cyclic chain of N
cycles, the displacement vector of the last atom of
the last interval of the last unit cell is zero. We shall
then consider Eq. (13) with j =s as a formal defini-
tion of ¢,4+;. The fixed-end boundary condition is
simply

@, (last unit cell) =0 . 15)

III. PHASE FUNCTION IN EIGENVALUE EQUATION

As a first step toward solving the eigenvalue prob-
lem formulated above, we shall relate the initial
phase @ of a unit cell k, with the initial phase &, of
the adjacent unit cell K +1. Let

y;=tan®; (16)
for the ®; of the k th cell, Eq. (13) is rewritten as

a; +yj
(1.+ajB) + (B—aj)y,-

Yi+1= Cl=sj=ss , (U7)
where a; =tan(m;¢). By repeating Eq. (17) s times,
we can get, in a straightforward (but tedious)
manner,

C+Dy|

—_—, 18
A+By| ( )

Ys+1 =

where 4,B,C,D are exceedingly clumsy functions of
ap, a3, . .. ,as and B. Instead of evaluating these
functions directly, we shall only extract useful infor-
mation out of these functions (information that is
relevant to the eigenvalue conditions).

As we have indicated before, y;4; is actually the in-
itial phase of the (k +1)th unit cell. At this point, it
is necessary to label explicitly the cells. Let

X,=yi(of the kth cell) . (19)

Equation (18) becomes more transparent as

=———— 0<k=<N , (20)

where N is the total number of cells in the system.
In terms of X,, the boundary conditions are

X1=XN+|=O . (21)

In order to analyze Egs. (20) and (21), we shall
now construct the phase function of the unit cell.
The phase function we are constructing here should
be an additive function of the cell, so that boundary
condition Eq. (21) can be imposed easily. It also
turns out to be an extremely interesting and useful
function in analyzing the properties of the eigen-
values.

Notice that Eq. (20) is a bilinear transformation
similar to those of the addition of the tangent func-
tions. We shall first introduce several transformation
of variables. Let

k

(BC-4D) .

Equation (20) is translated into
1

Zgp=——>5" ,
s — Zg
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where
__—=(B+0)
“s = BC—AD)T @

Here u; is again a father complicated function
(although not as complicated as 4,B,C, D, individual-

ly) of Band ay, . . ., a,. Itis, however, independent
of the cell index k. Let

s =2 cosb (4)
and

Zy =cosf, +sinf, tandy . (25)

Equation (23) is finally reduced to the desired form
tandy 4y =tan(8; +6,) . (26)

The boundary condition of Eq. (21) is now simply
tanN 9, =0 . X))

The eigenvalues of ® are now grouped naturally as
solutions of the equations

0,=9,=pw/N, p=0,1,2,... ,N—=1 . (28)

with possible values of 8, all equally spaced. In the
following sections, we shall discuss the properties of
0, and u,, and how to evaluate them explicitly.

IV. FORMAL SOLUTIONS OF THE PHASE FUNCTION

The phase function 8, defined above is a rather
complicated function of ¢. This is only natural, since
Eq. (28) implicitly contains all the solutions of the
eigenvalues. Instead of evaluating 9, immediately,
we shall first discuss several important properties of
@5, which lead us to nontrivial insights of the eigen-
value equations. These properties constrain the pos-
sible form of u, and 8, so severely, that expressions
of 65 can often be written down without ever evaluat-
ing the cumbersome transformations of Eq. (17).

In order to examine the properties of 6, it is suffi-
cient to inspect closely the nature of the transforma-
tion in Eq. (17) for two successive transformations.

With j =1

ay+y; _cptdy 9)

’

Y= (1 +Ba|)+(ﬁ—al)y1 - 01+b1y|
where we formally define a 2 X 2 matrix U;:

1+ Ba B—aq]

[+ 3] 1

30)

U=

as the matrix supporting the transformation y, —y,.
Similarly

3D

1+ Bay B—ay
=k

(2773 1

is the matrix supporting the transformation y, — yy 4.
We shall further define matrix 4; as the supporting
matrix for the transformation y; — y,

32)

A, = € d"l _ atdy
ST a b Y ay + by,

Notice that the quantities (ay, by, cx,di) are unique up
to an overall multiplying factor. This ambiguity is re-
moved by requiring

gy = axC, tag

by =apdy + by,

=1+ Bl +(B—ay)ay ,

depi=0+a Bl +(B—ay )by . (33)
Equation (33) is summarized in matrix form as

Apr1=Uedx . (339
As a consequence

An=UU,, ..., U, , (34)

since 4,=U,. Comparing Eq. (34) with Eq. (18),
the previous 4,B,C,D are just the matrix elements of
45.{.[. ThuS

s =2cos0; =—Tr(As4)/(Detd, ;)2

k=1

s 12
=—Tr(g_,ys_1,...,QI/HDet(Qk)] . (35)

Equation (35) is the formal solution of the phase
function 6. Notice that although the supporting ma-
trix defined in Eq. (32) is ambiguous up to an overall
factor, the final result of u, is independent of this -
ambiguity. The transformation relationship (33) is,
however, the most useful expression, since the coef-
ficients multiplying 8 and «, . . ., a are always in-
tegers in the final expansion of the Tr(U,, . .., U;).
From this expression, solutions of u, corresponding
to lower-order cyclic chains can be written down
fhrough inspection. We get, for example,

pr=—2+a8)/(1+a})'? (36)
and
- [2—-2ala2+2(a1+a2)B+a1a2B2] (37)
H2 [(T+ad) (I +ad) 7

As for the higher-order cyclic chains, the explicit
expression for u, are still nontrivial, since no simple
mechanism is available for calculating the trace of
product of matrices. It is therefore necessary to ex-
amine more closely properties of u, utilizing specific
properties of the matrices of Eq. (31).
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V. PROPERTIES OF THE PHASE FUNCTION

Although it is quite straightforward to evaluate ex-
plicitly the expression of u through Eq. (33), it is
quite tedious and not inspiring. After all, we are not
interested in the full supporting matrix, but only in
its traces and its determinants. We shall therefore
discuss briefly various properties of us; which lead to
deeper insight of the contents of Eq. (35) and the
physical properties of the eigenvalue equations.

A. Symmetry properties

A symmetry property of the eigenvalue equation is
directly revealed by taking the trace of the matrix
product. As is well known, both the trace and the
determinant are independent of any cyclic permuta-
tion of Uy, Us—y, . . ., U;. u, is therefore the same
for s different kind of unit-cell structures obtained
through cyclic permutation of the segments within
the unit cell. In other words the eigenvalues ob-
tained for these systems are identical if a whole seg-
ment is moved from one end of a long chain to the
other end (see Fig. 2). Notice that the cyclic permu-
tation referred to here are applied to a whole segment
and not to the individual host atoms.

B. Reduction of higher-order cyclic chains

Consider an s-order cyclic chain with N unit cycles.
Segments of the intervals m, . . . , m; may be arbi-
trarily specified. The configurations of the unit cell
include special circumstances when the unit cell itself
possess cyclic properties. For example, if

s=2q
we may choose
mj=mq+j, J=1,,q . (38)

The s-order cyclic chain of N cycles is now reduced to
a (s/2)th order cyclic chain of 2N cycles. Since the
same eigenvalue equations should emerge from ei-
ther formulation of the phase function, it is necessary
that

cosf, = cos(26;,) (39)
[} 1 I ]
[} i 1 I
:‘(— 1 1 *
2 ] BLLLILL o,

1 ]

: 1 unijt cell 1 :
END 1

| END

FIG. 2. ‘“‘Cyclic”” permutation of cyclic chain in Fig. 1.

so that
ws (reduced) =2p2 -1

In general if s =pg where p and g are integers, a
N-cycle sth order cyclic chain may be reduced to pth
order cyclic chain with gN cycles, by setting

M=M= Mogay= " . (40)
Thus
cosf; (reduced) = cos(q 8,/,) . 41)

Equation (41) is a rather strong consistency relation-
ship between cyclic chains of different orders. It can
be an effective tool in building up a higher-order
chain out of a given lower-order expression. We
shall utilize this to obtain explicit expressions of
higher-order chains in the following section.

C. Analytic properties

Notice that from Eq. (31)

(detU )™= (1+a})""?=cos(m;¢) . (42)
j j

It immediately follows that u, is a polynomial of
cosm;¢ and sin(m;¢) of degree s. It is also easy to
see from Eq. (33) that u, is a polynomial of degree s
in 8. However from the definition, 8 behaves as a
simple pole at ¢ =0, while u; should not diverge. A
power of B is therefore always accompanied by
sin(m;¢) to a sufficient power to maintain the proper
behavior of us at ¢ =0. Under these constraints the
allowed expressions of the various terms in Egs. (35)
and (36) are essentially unique. Only the constant
coefficients need to be determined. Equation (33)
can indeed be expressed as a polynomial of cos¢ of
order (m,+ + -+ +my). Detailed evaluations shall
be discussed in the following section.

D. Vertex classification

When the cyclic symmetry of V A is combined with
the polynomial properties of V C, a classification of
possible expressions contributing to Eq. (35) is possi-
ble. This classification is best illustrated in vertex di-
agrams. Corresponding to a s-order chain, the trace
in Eq. (35),

To=Tr (U, ..., U) , 43)

can be expressed in terms of polynomials in a;’s
(with integer coefficients). In order to accomodate
the cyclic properties, we shall first draw a diagram
with all possible vertices. (There are altogether s ver-
tices.) Any specific polynomial of a, . . . , a; is
represented by the corresponding selection of ver-
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5 4

FIG. 3. Typical vertex diagrams of a sixth-order chain.

tices. For example, the diagram illustrated in Fig.
3(a) corresponds to the polynomial a;a,a;3 of Eq.
(43) for a 6th-order cyclic chain. Since Eq. (43) is
cyclic with respect to the matrices Us, . . ., Uy,

oo a3 term is always accompanied by ajazay term.
The vertex diagram of Fig. 3(a) really corresponds to

My = ayaja3 + azosas + azasas + aua506 + asaga

(44)

Thus all the third-order polynomials of «;’s contri-
buting to Ts can be grouped into several terms

T6= « e +le‘23+V2H]24+V3Hl35 4 (45)
where

4= a3 + ayazas + azagag+ - - - (12 terms)
I35 = ajazas + araqa

corresponding to Figs. 3(b) and 3(c), respectively.
Furthermore T is a polynomial in 8. The most gen-
eral expression third-order polynomial of «; is in the
form

3
Te= -+ 3 B*i 1 Tis +viaTiaa+vi 3 Thss)
k=0
(46)
where vy, are all integers. Notice that higher-order
polynomials in B8 are not allowed, since otherwise the
analytic property at ¢ =0 is not satisfied.

E. Matrix representation and
diagram expansions

Alternatively Eq. (35) may be treated through Pau-
li matrices, i.e.,

U;=(U+3a8)1+380, +(a;—3B)ig, .(47)
1]

Firstly for 8=0

Uj=1+aig, ,

(Us, ... Ugeo=(1=Zajoy + Sajarazagt -+ -)1
+i(Sar+ -+ g, , (48)

and

T,(B=0)=2(1-3ajo;+Sajazazas t - -+ ) . (49)

For 8 # 0 we may continue our analysis by introduc-
ing

Y;=U,/(detU ) . (50)
One can then rewrite

Y,;=¥Y;+¥Y,+¥, . (51)
where

Z,l=exp(imj¢g'y) , (52a)

Y,,=5Bexplim(p—5ma,] , (52b)

Z,3=—;~Bexp(imj¢gy)gx . (52¢)

Notice however
exp(impa,) g, =axexp(—imdg,) . (52d)
In the full expansion of u,,
ps=Trl (K + ¥, + V) -« (Ku+Vu+Vi)l,
(53)

the o, terms of V J, may be permuted repeatedly and

eventually canceled in pairs, leaving only a sequential
reverse of signs of the exponents in the process. All
the other factors in Eq. (53) are exponents in g,.
The phases are then simply added together as a single
term, and the trace can be taken. In order to keep
track of the expansion in Eq. (53), a diagrammatic
expansion can be used. A typical diagram corre-
sponding to a term of sixth-order cyclic chain is
shown in Fig. 4. There ——, —x—, —4— indicate
contribution from L’,l, _lf,z, and Z,}, respectively.
Diagram in Fig. 4 therefore leads to a contribution to
M6t

me= " +(%B)3Trexp[igy¢(m6+m5-—m4—m3—m2+m1)+Ig_-y%1r]

= (%3)32sin[¢(»m(,+m5—-m4—m3—m2+m,)] . (54)

Another example is for the 8° term. There

us=Tlexplig,d 3,m)] = Zcosli mé
1 1

304....

(49)
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—s—r 4—

FIG. 4. A typical term in the diagram expansion of a
sixth-order chain.

g J

The above diagrammatic evaluation is particularly
suitable for computer analysis.

F. Leading behavior

Another nontrivial property of us deals with the
leading expansions of Eq. (35). We shall first con-
struct from Eq. (33)

te = by + ¢ (55a)
and
rk=dk +Bcx—a; . (55b)

Equations (33) then leads to
tes1 = airy + (terms independent of ay) ,
Fi+1 = o Bri — il + (terms independentof ;) .

To the leading order of a;, we therefore obtain an
identity

fesi — 2 =0, (B—2)

re— i
k (B_Z) k
for any z. If we choose in particular z=1/(8—2z),
i.e.,
z=z9=3[B2(B2-4)2] | (56)

a recursive relationship is obtained in the form
A
rk+1——z'01k+|=-'-z——(rk——zotk) . (57)
0

Repeated use of Eq. (57) may lead to

Ap, . . o, O
(ry—zoty) = —2 -

Gk (re —zote) . (58)
0

To take advantage of Eqgs. (57) and (58), we may
analytically continue 8 to |8| < 2. With

B=2cosn (59)

the value of z0=ei"" is now complex. However oth-
er terms in Eqgs. (57) and (58) are still real. We may
now extract the trace f, as

ts=b+co=C(ay, ..., rk-s—m(ﬁ_:q—k—)—ﬂ

_, sin(s—k+1n
k siny '

(60)

Since #, r, may be calculated easily for small k, the

leading terms of ¢, may be easily calculated through
Eq. (60).

VI. EXPLICIT EXPRESSIONS

In this section, we shall present explicit expressions
for the lower-order chains. These expressions al-
ready correspond to rather complicated mixed linear
crystals. The solution for first-order and second-
order cyclic chains are already given in Egs. (36) and
37N:

pi=—Q2+a;8)/(1+a})'? | (36"

[l —a|a2+(a| +az)B+%ala2B2]
[(1+aD)'2(1+a})'2]

M2 = . (37’)

We shall first consider the third-order chain. Starting
from the reduction technique of Sec. VB,

cosf;(reduced) =cos39, ,

—1+FaB~3alp - Jalp’
- (1+a})¥?

(61)

From the symmetry property of Sec. V C, the only
generalization available for Eq. (61) is

Ja,— Il =a;tay+aj , (62a)
.3a%'—'1'[12=a|a2+a2a3+a3a4 R (62b)
al =Tl =ajma; . (62¢)
Thus
3 =2cosfs

=2+ 211y, + 3811, + 3811, — 28711, — B}y,
[A+ad)Q+ad) (A +ad ]2

(63)

Even with the techniques summarized in Sec. V, the
algebraic procedure becomes somewhat too lengthy to
be presented in detail, we shall therefore work out
the fourth-order chain explicitly in Appendix B and
only list the results up to sixth-order chain in Table I.
These results suggest, that perhaps it might not be
too optimistic, that an explicit expression of the
phase function would be obtainable for cyclic chain of
any order.
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TABLE L. Expressions for u;.

'S /st 1 2 3 4 ) 6
0 1 2 2 2 2 2 2
3 -2 2 -2 - - -2
21234 2 2 2
2123456 -2 -2

1 5, 1 2 3 4 5 6
313 -3 -4 -5 -6
212345 5 6

2 5 1 2 3 4 5
I 1 2 3

My 4

2234 —4 -6 -8

2235 1
21234 0
2123456 8

3 2 1 2 3 4
L IP9 1 2

35 4
212345 -5 _8

4 21234 1 2 3
535 1

534 1

23456 -6

5 212345 1 2
6 2123456 1

4k is the power of 8 associated with the II or X terms.

3 3
b2|2= zj-l Zk-‘ a0y, 1'112= Ej-l ajaj.H, where Qg4 = Q.

VII. DENSITY OF STATES OF INFINITELY
CYCLIC CHAINS

Consider the limiting situation when the number of
cycle N becomes large, eigenvalues 9,’s also become
dense over the whole region from 0 to m. Since 9,
are equally spaced, the number of states in a given

interval is just
G(9,)A8,=Ap/N
so that
G(8,)=1/m .
Transforming back to the original variable ¢, we get

—d6 _dcosé _ r(,2)Go(w?) ,

dcosd® dw?

(64)

G(w?)=¢g(8,)
(65)

where
2y_ dcosh 1 Go(w?) =-L d(cos¢)
AR d cos¢ sind ’ oW T dw?

In the above equation Go(w?) is the density of states
of the homogeneous chain (in the absence of the im-
purity atoms) and f(w?) is the form factor associated
with the cyclic structure.

Since 6, is an explicit function of cos¢, the form
factor may be calculated in a straightforward manner,
and the density of states can be expressed in a closed
form.

To demonstrate, we shall work out two simple ex-
amples, where the analytic solutions may also be ob-
tained relatively easily from another independent
method (sequential Green’s function).!* In example
one, equal concentrations of the two species are con-
sidered. This corresponds to s =1, m; =2, as shown
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(a)

- e -
K

unit cell

(b)

unit cell

FIG. 5. (a) Alternative chain with concentration ratio 1:1.
(b) Second-order cyclic chain with concentration ratio 2:1.

in Fig. 5(a). We get from Eq. (35)

cos; =cos2¢ + (a; — ay) cosp = %a,,a, -1

and
dC0891 —a +a
d cos¢ s
Thus
—-1/2
+
Gwh=L 2 Tqu) 4 ] (66)
m aay aQ;ay

in agreement with the results [Eq. (B7)] obtained by
the sequential method (see Appendix B).

The second nontrival example corresponds to a
mixed crystal with concentration ratio 2:1. The unit-
cell structure is therefore s =2, m;=2, and my=1 as
shown in Fig. 5(b):

cosf,=cos3¢ +Bsin3¢ + %BZ sin2¢ sin¢g
*—=%(a,2ay—2a,-—a”) . 67)

As a consequence

d cosf
—(};—Sj=a,2+2a,aﬂ—3 (68)
and
G(w2)=L 1 (af+2a,ay-3) , (69)
w 2co0s6,

in agreement with the results [Eq. (B12)].

VIII. FREQUENCY SPECTRUM OF CHAIN OF 40
ATOMS WITH A 5% CONCENTRATION
OF LIGHT ATOMS

In practical applications, a binary system with dilute
impurities is sometimes studied with periodical-
boundary conditions. This is equivalent to an infinite
cyclic system with fairly complicated unit-cell struc-
tures. Numerical analysis is often necessary in order
to carry out the details of the frequency spectrum.

1
|
)'@.

M-
Ll

- =% -
x

unit cell

FIG. 6. A unit structure with impurity concentration of
5%, impurity site at 19 and 21.

To demonstrate our method, we shall select an ex-
ample that has been reported in the literature.'* This
sytem consists of 38 heavy atoms (H) and two light
atoms (/) at sites 12 and 31. This corresponds to
s=2,m=19, my=21 (see Fig. 6), and

cosf, =cos(40¢) + Bsin(40¢)

+2B%sin(214) sin(194) (70)
with
SN 1 N U LAY 0 WS U PO
ﬂ [ ng le Sin¢ 2[ W,} W,Z tan 2 ¢ .

an

In general when the mass ratio is close to 1, B is
small, 8, ~40¢. And the frequency spectrum of the
system is almost the same as that of the homogene-
ous chain. When the mass ratio My/M; >> 1, B8 can
be large. In a large region of ¢, cos@, varies rapidly
beyond the region (0,1) and band gaps develop.
Only at the long-wavelength limit, both ¢ and 8 tend
to zero. Figure 7 corresponds to a choice of
M;/My=3. In order to compare the molecular
dynamics with electronic states, we have also calculat-
ed, in Fig. 8, the density of states of 40 atoms with
ay=1—E,and a;=2—FE.

The same results can also be obtained through the
Green’s-function technique of Ref. 20. It is interest-
ing to observe that various seemingly independent

up
1] 0

P
[

G (W) /GZ (W)

2P

L@MMWMWﬁ@"

%o g

* twsuzr

FIG. 7. The relative density of state G (w2)/Gy(w?).
Gyl w?) is the density of states of the corresponding homo-
geneous chain. Here mj =3.0 m,;, with configuration of
Fig. 6.
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FIG. 8. The relative density of state G(E)/Gy(E).
G, (E) is the density of states of the corresponding homo-
geneous chain. Here ay =1—E, a; =2— E, with configura-
tion of Fig. 6.

terms of E in the Green’s-function technique can
indeed be summed to a closed analytic form express-
ible as Eq. (65).

IX. EIGENFREQUENCY AND EIGENVECTORS
OF FINITE SYSTEMS

For finite systems, one may either solve Eq. (28)
analytically or numerically. Since Egs. (28) and (35)
contain all the information of the eigenfrequencies,
the solutions can be expected to be rather complicat-
ed. Nevertheless one important feature of the solu-
tion may still be studied. We shall first introduce

cosp==(Z+1/Z) . (72)
It follows from Eq. (49'), that
ws=(ZM+1/ZM)B°
+ (higher-order polynomial in 8) , (73)

where M =m+m,+ - - - +m,. But all other terms

in B are in the form
Z™/(Z2-27Y)
+2Z=m=D(74)

sinm¢ _ (zm—
sing
=Zm—l,+_Zm—2+ ..
Thus the explicit form of Eq. (28) is
ZMy o +1=0 . (75)
We can therefore find M pairs of solutions

Z,=et%j ¢,=real, j=1,..., M (76a)
or
Z;=P,1/P, P,=real, j=M'+1,...,M . (76b)

o0 5 10 15 20 25 30 35 0o
B =
° o
+1 ts

Z° ~

£ o X

e

K]

o =

— o e

Ll

z

w

=

zZ ., ©
= F=
® ™
i Fs
° °
b s 18 15 20 25 30 35 w®

SEGMENT

FIG. 9. The intensity Ij = Cf for a chain of 40 segments,
with s =2, m;=3, my=5 and B=1/cosp, ¢ =0.80017.

Solution in the form of Eq. (76a) leads to
cos¢ =cos¢;, |cosp| =<1

and the corresponding W? is in the main band of the
host atoms. Solution in the form Eq. (76b) corre-
sponds to

cos¢=%(1’,~+ 1/P;), lcosp| > 1

and the corresponding W? being outside the main
band, is usually referred to as localized states. Since
B, may possess N values, all N X M states are ac-
counted for.

In Figs. 9—11, several typical solutions are plot-
ted.?! As we can see eigenvectors of the second-
order cyclic chain are naturally separated into two en-

40.0

2u.0 32.0
16.0 240 3

INTENSITY (arb units)

8.0
8.0

o
b)) s 10 15 20 25 30 35 u
SEGMENT

FIG. 10. The mtensnty C for a chain of 40 segments,
with s =2, m; =6, m2=2 dnd ﬁ‘— 1/cos, ¢ =1.69533.
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FIG. 11. The intensity /; =Cj2 for a chain of 60 segments.

with s =3, m; =5, my=3, m3=2, and B=1/cosd,
¢ =1.56516.

velopes, while the third-order chain in general reveals
a threefold envelope. Detailed study of the eigen-
vectors shall be reported elsewhere in a separate pa-
per.

X. CONCLUSION

In this work we have analyzed the eigenvalues and
eigenvectors of a finite and infinite linear cyclic sys-
tems. By constructing a phase function of the unit
cell, the nature of the eigenvalues of the system can
be analyzed without explicitly solving the secular

J

equations. The phase function also allows us to dis-
cuss the symmetry of the eigenvalue equation as well
as the reduction of a higher-order cyclic chain to
lower order. The density of states of an infinitely cy-
clic chain may also be expressed in close forms. In
general a diagram expansion can be constructed which
leads to the new lower-order eigenvalue equation

for an arbitrary periodic chain without using the tra-
ditional secular equations. Eigenvectors correspond-
ing to a finite system demonstrate interesting collec-
tive (global) properties. The above formulation can
be generalized to more than one dimensional and
with more than two atomic species with short-range
orderings (interaction in tridiagonal block forms). It
can be adopted for the electronic states of a system as
well as eigenvalues of Schrodinger equations in a
quantum-mechanical system. These aspects are to be
reported separately.
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APPENDIX A

Using the reduction technique, the phase function
of a fourth-order cyclic chain can be reduced to

cos40, =8 cos*9; —8cos?6, +1=[(1 —6al+a}) + (8a;—8—ai)B;+ (10a}— 2a?)B2+4a{[33+%a?ﬂ41/(1 +ai)? .

Using the properties of Sec. V D, the general expression of cos, is "y
a=2cC0s0,= 42 ApeZ(ay, .., o )B"+ i B, (aja3+ ayay) 8", (A2)
n=cven,k nmeven
where all the 4,, and B8, are integers. It is clear that we need to replace
(8a;—8ai)B— 283 a1 —28 3 a3 , (A3)
4aipi—p3 Ealazoq , (A4)
-;-a‘fﬁ4"‘%[34a1a2a3a4 s (A5)
(100} —2a)B* = (34, + Bya’ — ayaya304) B (A6)
(1=6af+at)B’—1 +(34 02+ Bo)al+ ajazazay . (A7)
In order to determine separately By, B,, A 3, A2 2, we may use the reduction of the fourth-order chain to a
second-order chain and compare cos, (reduced) to
0820 =2c0s20; — 1=2[1—aja; + (o, +a2)B+-;-a,az,82]2/[(1 +ad)(1+ad)]1-1 . (A8)

Here the 8° term is

2(l— )= (1+a}) =1—4ajay +ala} .
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Letting a3 = a;, as=a;, in Eq. (A2), we get
—dajay— (al+a}) = %A olal+al+4aa;)
+-;*Bo(af+a§) . (A9)
Thus
Ao,=—2 , Bo=0 . (A10)
The B2 term is
3ajar+2(af+ad) = %A nlat+aj+dajar)

+%Bz(a%+a%) .

Thus
A2=3, (All1)
B,=1 . (A12)
In summary

Ha= 2(1 - Yoo+ 0110!2&30!4]30
+4[2¢11 - zalazaglﬁl
+ [3 Zalaz +2(ajay + azm)]BZ
+ [2 S ajaa3f’+ 0!1012013014][34 . (A13)
Explicit expressions of the phase function up to the

sixth order are given in Table 1.

APPENDIX B

In this appendix we use the Green’s-function
method to obtain results given in Egs. (66) and (69).
We shall use the notation Ref. 14. Corresponding to
the first example in Sec. VII [Fig. 5(a)]

X = 1 , (B1)
ay — X3
xgm—t (B2)
a;— X
so that
1 1 4 2
xi=5ay—au|l— anar (B3)
and
12
X2=7al"%“l[ - a:all . (B4)

We theréfore get

—-1/2
D..————I—=L[1— 4 ] , (BS)

aH—2x1 ay

N S
aH—2x2 ay

-1/2
Dy= -4 ] , (B6)

and

1 _1 (ay+a))
G—"l,,,(D“+D22) T ana

4 ]—I/Z

ayap

(B7)

Corresponding to the second example of Section VII
[Fig. 5(b)1, we get

Xgm— =1, .4, (BS)
Ap+1~ Xn+i

In= I , (Bg)
Ap—1 — Yn—-1

with the boundary conditions
X4=Xy , (BIO)
Yi=yi . (B11)

Using the explicit values of a,4,,
1 1 1

X = X= »  X3=
ay — X, a;—X3 a;—x,
(B12)
We may get
2
afay—2a;+ay VA
= - s B13
uE 2(a,a,.,-l) 2(0/0”"1) ( )
ay VA
=_——— B14
X 2 2(a12—1) ( )
and
2
afay—ay VA
= - s B15S
x a(ajay—1) 2(ajay—1) (B15)
where
A=(a,2aH—-2a,-—aH)2-—4 . (Bl6)
Comparing with Eq. (67), we notice that
A =—4sin%, .
Since
Y2=X2 , N1=X3, Y3i=Xxi , (B17)
we get
1 ajay—1
D, = = ) B18
1 a,—(x1+y|) \/K ( )
Dy=Dy, , (B19)
and
1 af—1
D, = = . B20
24— (x+yy) VA (B20)
Thus
G=‘1ll.’_lm(D“+D22+D33)
=L 1 (a4 2aa,-3), ifA>0
T A

=0, ifA=<0 . (B21)
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