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Absorption line shape of a dynamical Jahn-Teller Center. Strong-interaction limit
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The dynamic Jahn-Teller effect, induced in a localized center by light absorption and due to a

singlet-multiplet electronic transition, is studied in the strong-interaction limit (SIL) of the

electron-phonon interaction. The absorption line shape R (cv) is examined in the framework of
the linear-response theory and the role of the host crystal in fading the correlations among the

phonons associated to the electronic excitation is taken into account. R (~) is deduced by using

the Feynman-paths method and the most significant contribution from each path, when working

in the SIL, is identified. It is shown that the so-called semiclassical model (SCM) corresponds

to considering only the Markovian many-phonon processes in the motion of the crystal phonons

coupled to the Jahn-Teller excited electron. It is also shown why a refined version of the SCM

leads to an effective Hamiltonian, where the adiabatic potential energy is related only to a few

interaction modes and effective frequencies. In particular, the interaction modes are found to

be stochastic, and not dynamical, variables. A correction to the well-known SCM Toyozawa-

Inoue expression is found and discussed. Finally, the phonon quantum effects on R (ao) in the

SIL and beyond the SCM are introduced and commented on.

I. INTRODUCTION

A center is said to be a Jahn-Teller (JT) center
when its electronic state is degenerate, i.e., when the
solution of the pure electronic problem, without con-
sidering the electron-phonon (EP) interaction, is

given by a degenerate electronic state. When one
takes into account that the JT center is embedded in

a moving environment with which it interacts, one
can deduce very peculiar theoretical properties, which

may be eventually detected in the experiments. ' This
is what we usually mean by the JT effect.

One of the best-known experimental manifesta-
tions of the JT effect is the structure shown by the
light-absorption line shape of some phosphor centers
in crystals, such as Pb+, Sn+, Tl+, etc. , in alkali

halides. ' In that case one usually refers to a dynamic
JT effect, because the JT degenerate electronic state
is the final state involved in the optical transition.
Actually the optical properties of localized centers are
often related to the dynamic JT effect. In fact, if the
site symmetry of the centers is not too low, their ex-
cited states may be degenerate.

The recent increasing power of the optical tech-
niques and the related possibilities of measuring
time-dependent spectra at high intensity, has raised
some discussion on all the accepted models and on
the approximations used to explain the optical prop-
erties of the coupled electron-phonon systems, the
peculiarities related to the JT effect included. Among
them the semiclassical model3 (SCM) is particularly
important to interpret the absorption line shape,

where concepts like the configurational coordinate for
non-JT centers4 and the interaction modes (coordi-
nates)5 and the adiabatic potential surfaces5 6 (APES)
for JT centers are used. It seems therefore that a
discussion about the validity and the meaning of the
above concepts, deduced by first principles, is
worthwhile for JT centers.

The interpretation of the structure in the absorp-
tion bands of JT centers in the frame of the SCM
was first given by Toyozawa and Inoue, ' who ex-
plained several important features of the band; such
as its doublet or triplet structure and their tempera-
ture dependence. But a careful relationship between
the SCM and the Fermi golden rule has not yet been
proven.

On the other hand, the available numerical compu-
tations of the absorption band based on the Fermi
golden rule were done mainly by assuming the
molecular limit, i.e., a cluster model with only one
frequency as a representative of the lattice dynamics
of the host crystals. " More accurate models, ac-
counting for some frequency dispersion of the host
crystal, have been proposed. ' However they only
slightly modify the cluster model when numerical
evaluations of the band are required.

In the present work the use of the interaction coor-
dinates' in dealing with the SCM is justified and the
meaning of molecular or cluster models in terms of
elementary electron-phonon processes is discussed.
We study a JT center interacting with the phonons of
a dispersive crystal. We assume as usual that the
light-absorption process creates an excited electron
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around the JT center and a localized bunch of pho-
nons at the same time (the phonon cloud"'). The
dynamics of such complex excitation is given by cou-
pled equations of motion' for JT centers, whose
Hami'tonians are discussed in Sec. II.

In Sec. II E the important role of the thermal bath
(or reservoir) in determining the motion of this exci-
tation, is considered. Since we study a JT center em-
bedded in a crystal, the reservoir is supplied by the
thermal phonons of the crystal itself. We compare the
characteristic time for the electronic motion (i.e., the
correlation time r, of the JT excitation} with that of
the vibrational motion (given by the relaxation time

~q of the phonon cloud in the real crystal at a given
temperature). We examine the case rR « r„ac-
counting for the effects of the phonon processes in

the Markovian limit. " We then discuss the meaning
of "memory" in terms of phonon evolution and EP
interaction.

In Sec. III the expression for the absorption line
shape R (rp) in the strong-EP-interaction limit and/or
high-temperature limit (hereafter called SIL), by
starting from an expression obtained in a previous
work9 (hereafter called Paper I), is derived. We show
that in the SIL R (pp) is obtained by neglecting any
memory in the phonon evolution and ordering, i.e.,
by taking into account only the Markovian behavior
in the dynamics of the phonons coupled to the JT
electron.

In Sec. IV the equivalence between the SIL and the
SCM is shown and a modified version of the
Toyozawa-Inoue result is obtained. This expression
is found to depend only on few symmetry-adapted
coordinates and on few frequencies, obtained by
averaging over the crystal frequency distribution.
Such coordinates and frequencies are nothing but the
well-known interaction coordinates and their frequen-
cies, respectively. In other ~ords it is here shown
that one can use a molecular model in the study of
broad absorption bands, provided that the expression
for the line shape valid in the SIL, i.e., the well-

known Toyozawa-Inoue expression with the correc-
tion here suggested, is used.

In Sec. V, other models used in literature are com-
mented on, and the assumptions there involved are
discussed, looking for the extension of the SCM to a
more refined quantum treatment of R (cu).

II. PHYSICAL FRAME: THE JT CENTER
AND ITS SURROUNDINGS

In Sec. III we elaborate the expression of the ab-

sorption line shape that was deduced in Paper I by

using the linear-response theory and extending the
stochastic theory of the line shape suggested by Kubo

many years ago to JT case." This expression [Eqs.
(9} and (11) of Paper I) is given by the Fourier
transform of the thermal average of the time-
correlation function of the electronic transition dipole
moment. The use of the fluctuation-dissipation
theorem ensures that the thermal average (hereafter
indicated by ( ( }}&, where P = 1/kT ) depends
only on the characteristics of the crystal at its thermal
equilibrium, i.e., in absence of the external elec-
tromagnetic field.

These considerations are, however, meaningful
only after the thermal bath, over which the thermal
averages have to be performed, is defined. To this
end we separate the crystal in two regions. 'Fhe

former (microenvironment) is formed by the ions
which interact directly with the JT electron and
whose dynamics enters the motion of the JT excita-
tion. The latter (macroenvironment) is composed by
the rest of the crystal, and forms the thermal bath.

The microenvironment is here assumed to consist
of the nearest neighbor (NN) of the JT center.

The macroenvironment has two roles. First, it
determines vibrational frequencies of the ions in the
microenvironment, in particular to what extent reso-
nances and local modes may appear. Second, as a
thermodynamic system, it supplies the channels and
the energies necessary to thermalize any possible lo-

cal perturbation.
In the present section we introduce the Hamiltoni-

ans of the microenvironment and discuss the effects
of the dynamical and thermodynamical properties of
the macroenvironment.

A. Electronic excitation of the JT center

We conside~ that only the excitations of one elec-
tron are involved in the light-absorption process.
The electron-level structure consists of a nondegen-
erate ground state and of a degenerate excited state.
This model, which does not take into account any
other excited electronic states or their mixing, may
nevertheless work for a great variety of impurities in

polar crystals. We indicate by E~ the energy of the
excited degenerate state, by a; the creation operator
of the electron in the excited state ~i }(i = 1, . . . , v

where v is the degeneracy of the level), by ap the
annihilation operator of the electron in its ground
state ~g ), whose energy is Ep, and by H, the electron
Hamiltonian:

(v)

H, =E) Xa, a;+Epapap

The ground state of the JT center corresponds to the
electron in its ground state ~g ) at the thermal equili-
brium with the surrounding lattice. E = (E~ —Ep) is
the excitation energy of the center embedded in a
static unrelaxed environment.
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S. Lattice dynamics

The lattice dynamics is that of a nonconducting
crystal, perturbed by a iocalized center (assume that
only one center is present). The adiabatic approxi-
mation holds for perturbed crystals, and the motion
of the ions can be separated from the motion of the
electron if the electron is in a nondegenerate state. '
This corresponds to the ground electronic state in the
present case. %e can then assume that all the ions in
the crystal vibrate around thc equilibrium position
before the optical transition. If the lattice dynamics
is harmonic, the phonon Hamiltonian can be written

where I &, I & are the phonon operators and ao„ is
their frequency. (See Appendix for further details. )

The frequency spectrum of the imperfect crystal
forms a quasicontinuum. The spectrum which we
refer to in the following is the phonon-projected den-
sity of states pr(r»} [Eq. (AIO) in Appendix A ]
which is the one-phonon spectral density apt to
describe the harmonic dynamics of the microenviron-
ment interacting with the macroenvironment. In
fact, pr(co) takes into account both the one-phonon
frequency distribution of the perturbed crystal and
the site symmetry of the localized center inside the
crystal. pr(p») may be then considered the vibration-
al spectrum of the microenvironment.

In the present work, since we consider the line

shape in the strong-EP-interaction limit, pr(ra) is
found to enter the line shape only as a function
weighting integrated quantities. So we can omit here
the discussion about the details of its actual shape,
which are however very important in the weak-EP-
interaction limit. "'

Thc total Hamiltonian of the system is therefore

H = II, + H~ + HEp (4)

In Eq. (5) only the linear terms in u~ or in phonon
operators, have been written. They correspond to the
linear EP interaction, where the matrices7~ and h„
are the coupling coefficients.

If the symmetry properties of the rnicroenviron-
ment where the forces7~, are different from zero, are
considered, one obtains

l F& F']r

See appendixes for the relations among h„,7I, and
7r„." The irreducible representations I' contained in

Eq. (6), as well as the corresponding matrices- HF~,
can be deduced by symmetry considerations. They
arc for instance, listed in Englman's book' for a wide
class of JT degeneracy. The HF~ matrices do not
commute when I labels the so-called JT-active ir-
reducible representation.

fF are the I -symmetry coupling constants, indicat-
ing the strength of the EP interaction. f'F are usually
related to pr(pp) to give the so-called Huang-Rhys
factor Sp (Refs. 3, 4, and l4):

From Eqs. (3) and (4} one can see that in its excit-
ed state the center is a JT system. h can be expand-
ed either in a series of the lattice displacements u ]

(I labels the ions and a their Cartesian components)
or in a series of the phonon operators b„and b„[Eq.
(A4) of the Appendix A]

h=x7i, ai. + =Xha(bi +bi) + ' '

C. Electron-phonon interaction

Consider now the interaction between the JT elec-
tron and its surrounding, which arises when the elec-
tron is excited, leaving a hole in the ground state.
Since we arc interested in a singlet-multiplet optic
transition, the EP-interaction term is assumed to
have the following form:

S'.= XS.= X
F F

[see Eq. (88) in the Appendix 8]. (co ')r is the
averaged value of ro over pr(n&). Sp ( I corre-
sponds to a weak-, while So && 1 to a strong-EP in-
teraction.

D. Light-absorption process

where v is the dimension of the electronic multiplct.

b& are the components of a matrix (v x v) indicated
in the following by h.

Note that Aoo =0, owing to the assumption made
about the ground-state dynamics. Moreover, ho; = 0
because we assume that the phonon-forced electronic
excitations are negligible. '4

In the light-absorption process, the electron of the
localized JT center is excited. The photon-electron
interaction is turned on adiabatically and the final
electronic state is assumed to bc dipole allowed. The
dipole-moment operator of the allowed transition
from the ground state ~g) to the excited state ~i) is

d = X(Mp;a; p QM+~p p Q)a
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where Mp; is the transition matrix element

~0 = (glair alii) (9)

and 7 is the unit polarization vector of the light.
Notice that the electronic excited state in Eq. (9) is

that considered in Eq. (I), i.e., the unrelaxed excited
state. In fact, on the time scale of the ionic motion,
the time of the optic transition may be considered in-

stantaneous and the Condon approximation holds.
With respect to the equilibrium and relaxed confi-
guration in a vibrating lattice, this electronic excita-
tion (hereafter called JT excitation) consists of a re-
laxed excited electronic state entangled to a cloud of
unthermalized phonons, localized into the microen-
vironment. The number of the cloud phonons is Sp
and depends on the EP coupling according to Eq. (7).

E. Macroenvironment of the JT center:
The thermal bath

r f

1
exp =

&I des e'"'exp—
rR 2rR &2~ " 2a' (10)

By fixing the correlation time in the motion of the
phonon cloud inside the microenvironment, the ther-
modynamical behavior of the crystal is found as im-

portant as its vibrational spectrum in determining the
absorption line shape.

To separate the different processes taking place in

the microenvironment, a hierarchy is stated among
them on the basis of"their characteristic times, as was

suggested by Kubo himself. " The shortest time is

the time 7p of the light-absorption process. As al-

ready stated, the Condon approximation holds and a
bunch of entangled phonons out of thermal equilibri-
um is created at the JT center. 1 he microscopic
properties of this cloud are characterized by as many
one-phonon Green's functions as the number of the
phonons involved. The detailed quantum-mechanical
study of their coupled motion is however not signifi-
cant when the host crystal is at high temperature, be-
cause of the strong and quick influence of the mac-
roenvironment in destroying correlations among the
phonons.

On the other hand, also when Sp » 1 the
quantum-mechanical correlation in the motion of
each phonon has meaning only for very short times.
In this case, an estimate of the mean correlation time
can be deduced directly from the spectral representa-
tion of the whole cloud. Being formed by Sp pho-
nons, the cloud spectrum of frequency is given by a
convolution of the order of S'p of the one-phonon
spectra pr (cu).

We assume now that when Sp » 1 such a convo-
lution is a very smooth function. Without lacking
generality, we approximate this convolution with a
broad Gaussian whose variance 5 is proportional to
Sp.' 5 Spa). Its Fourier transform in time

is a very narrow Gaussian of variance vR = 6
—I/Sor»: a tlat So convolution corresponds to short-
time correlations in the motion of the phonon cloud.
This time ~& is the second time in our hierarchy. It
is not surprising that both the cases Sp » 1 and the
high-temperature regime of the thermal bath are
found to lead to the same result. In the following, by
strong-interaction limit (SIL) we refer to either case.

The last and longer time of hierarchy is the correla-
tion time v, of the electric-dipole moment of the op-
tical transition which appears in the fluctuation part
of the response function (see Sec. III). r, gives then
the correlation time of the electronic part of the JT
excitation, i.e., the lifetime of the excited JT electron.

In the case of color centers in alkali halides, such
J" centers ' and Tl+-like impurities ' whil h

strongly coupled to the phonons, typical values of
these characteristic times are: ~p —10 " s,
~q —10 ' s, and v, & 10 s; which confirm our
hierarchy.

Notice that, by taking the limit 7~ (& 7., one
neglects phonon correlations and then one introduces
a well-known hypothesis: only the Markovian pho-
non processes (the processes without memory) con-
tribute to the fluctuation of the JT excitation. "

The memory, and its relationship to the charac-
teristics of the phonon cloud and of the thermal bath,
is a point that has not been exploited in dealing with
JT properties. It can give instead the key to identify
the hypotheses hidden or implicitly taken in the vari-
ous approaches to the line shape problem.

In particular there is an aspect that has not been
considered: the JT-active interactions support
through their ordering processes that do not exist in
the quantum evolution of non-JT excitations. In
fact, two sequences of phonon processes, containing
the same JT forces7r~ in two different orderings may
give two different contributions to the line shape, "
just owing to the noncommutativity of the JT-active
matrices Hr„. Such a difference disappears in the
classical limit, when the JT-active matrices are al-
lowed to commute. It follows that memory means
both phonon evolution and composition (i.e., sym-
metry and order) of the phonon sequences and that
the Markovian limit of the line shape corresponds to
neglecting both of them in the evolution of the pho-
non cloud in the microenvironment.

III. ABSORPTION COEFFICIENT

A. Outline

Our problem is the evaluation of the absorption-
band line shape R (cu) of a center in a nonconducting
crystal, which absorbs light of frequency co and un-
dertakes a singlet-multiplet transition.

The absorption coefficient I (co) is related to the
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line-shape function R (r») by

I (r») = (4rr2cs/3Iten )R (r»)

where n is the refraction index at the frequency au

and c is the speed of light. For a dipole-allowed tran-
sition R (r») is given by the following Fermi golden
rule:

(v)
R (r») = X IMo;I'R;(t»)

=x'X((X)(x.x. lr xl;x', ))2

x 5(x —E, + x))) .x

n = {n„}and n' = {n„' } label the set of phonon occu-

pation numbers in the ground and excited state,
respectively. }g, X„) and {i,X' ) are the electronic-

vibrational wave functions, for the ground and the
excited state, respectively, solutions of the total
Hamiltonian (4), and E~„and E are their energies.

in

R (r») in the form given by Eq. (12) does not allow

for an interpretation of the elementary processes in-

volved and mainly cannot be evaluated when many
normal modes are involved. Equation (12) can be
further elaborated by using the linear-response-
function theory, without doing any restrictive as-

sumption on the phonon dispersion from the very

beginning. With this technique the Fourier
transform R; (t) of R;(t») is related to the equation
of motion of the dipole moment of the optical transi-

tion [Eq. (8)]. Owing to the assumed structure of
the model Hamiltonians of Eqs. (1) and (3), where

the EP interaction is zero in absence of excitations, it

is possible to write R;(f) simply as the correlation
function of the JT electronic excitation, times a phase
factor. t is then the correlation time of the electron-
ic excitation when all the EP-interaction-induced
processes occur. (See Paper 1.)

In Paper I the phonon processes have been visual-

ized by using diagram technique and it was shown

that all the electron-phonon processes induced by

HEp can be decomposed in powers of one
fundamental graph, corresponding to the simple pro-

pagator of a phonon between two times t~ and t2. At
the time t) the phonon )). is created (destroyed) by

the interaction h„(t)) and at t2 destroyed (created) by

the interaction h„(t2). Since the EP-active interac-

tions containing JT-active matrices do not commute,
different sequences of propagators and interactions
are found to give different contributions to R; (t).
The sequences may be different, either because of
the total number (or power) of HFp contained in the
sequence or, for sequences of the same po~er in

HFp, because of the order of the processes in the se-
quence. We use as already done in Paper I, the
time-ordering operator T { } first to collect all

the equa)-order graphs in one term, and then to sum
up all such terms. In this way all the graphs are col-
lected in a formal way in the following expression
[see Eq. (11) of Paper 1]:

) )

pt tr))t

R;(t) =e ' 'T exp — X J ds ds'fr (s)
2h- ~ 0 or~

&&Dr(s —s';p)fr (s')
), II

(13)
where the autocorrelator Dr(s —s';p) is given in Ap-

pendix A [Eq. (AS)] and the matrices7r„ in Eqs. (3)
and (6). E =F. , —Eo is in frequency units.

Equation (13) gives the evolution in time of the JT
excitation in interaction with the phonon cloud creat-
ed by the light-absorption process.

Yet this is a mere formal result, because the ex-
ponential function in (13) is still subject to the time-

ordering operator, and therefore it is meaningful only
when the exponential series is written in all its terms.

The perturbation theory can be used to sum exactly
some classes of graphs, when the argument of the
exponent in Eq. (13) is a small quantity, i.e., when

both the ucpoling, f arre small and the bath tempera-
ture is low. This corresponds to the weak-interaction
limit and to the case vo & v, discussed in Sec. II. The
most striking result in this limit is that the linear JT
interaction has the final effect to change pr(r») so
that a new vibronic density of state with possible new

structure can be found. "
Vice versa, in the SIL, when several phonons are

coupled to the JT excitation, one must consider the
series in all its terms. Then an approach completely
different from perturbation must be used. Following
Ref. 19, we transform Eq. (13) by recurring to the
Gaussian functionals introduced by Feynman. '
Equation (13) is then transformed in an integral over
the space of all the paths Pr„(t), associated with the
forces7r„, as it follows:

) x

hf

J +{yrq(t) }T exp — X „& ds ds "gz„(s)Dr ' (s —s';p)pq„(s')+i ds fr (s)]rr (s)
2t „„~o~o

, Ii

(14)

J)t is a normalization constant. Q{rfr„(t) } indicates an element in the functional space {yr„(t)}. Since 7r„and
Pr„(t) are matrices in the subspace spanned by the electron&c degenerate state, the time-ordering operator must be
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kept in front of the expression (14) and the depen-
dence of'Pr„(r) from the time t must be written
explicitly.

The quantity Dr ' is defined as follows:

Jl ds Ji ds'Dr ' (s —s';3)Dr(s' —s;P) =1 (15)

More care has to be taken in dealing with Eq. (14)
than with the usual Gaussian functionals, because of
the matrix character of 7r„and $'rv(r) ".However,
when the approximations corresponding to the SIL
here considered are introduced in Eq. (14), the ex-
pression so obtained becomes tractable also from a
mathematical point of view.

B. Limit ~~ && ~,

pr„(r) =yr, (0)78(r) . (16)

Each Feynman path 3i'r„(i) coalesces into one point,
structureless because it is proportional to the unit
matrix 1, The integral in Eq. (14) over all the paths

Prv(t) transforms consequently into an integral over
all the points ( yr„(0) ).

Under the assumption (16), the relationship
between Eqs. (13) and (14) can be written

R;(r) = e iZ(-1

~m/2

where

i

"J d (qrv) exp —X(qr'&T+itqrv&r„)
r~ i. SI

(17)

qr, = [2Dr(0;P)) 'i'yr, (0),
IIr&=( r( 'P})'i'Yr„/

(18)

(19)

R; (r) is therefore given by a m-dimensional in-
tegral (m is the number of the irreducible representa-

The only limitations of Eq. (14}are those con-
tained in the linear-response theory and in the model
Hamiltonian adopted, which is the usual description
of a dynamic JT center.

Now we introduce the assumption v~ && v, corre-
sponding to the SIL. Following the considerations
given in Sec. II D, we neglect in Eq. (14): (i) Any
correlation between the phonons, by taking the argu-
ment s =0 in the phonon propagator Dr(s;P). (ii)
The effect of the noncommutativity of the interac-
tions upon the Feynman paths'„(r), by disregarding
the time-ordering operator in front of Eq. (15). It
follows that every P'r„(t) in the integrand is: (i) in-

dependent by time, both as variable and as an order
index and (ii) a diagonal matrix in the electronic
space. One obtains the following structure for 'Pr„(t)
in the SIL:

tion involved} over all the possible positive and nega-
tive values of qr~. The integrand is the ith
(i 1, . . . , v) diagonal element of the exponential
of a matrix whose dimension v is that of the JT de-
generacy. Equation (17) cannot be compared yet in

the present form either with the Fermi golden rule or
with the Toyozawa-Inoue SCM expression. In the
next Sec. IV we shall calculate Eq. (17) for a tridi-
mensional JT case. The lowest-order evaluation of
(17) for this case at the limit i ~0 was already ob-
tained in Ref. 9 and a further computation of higher
order was given in Ref. 22.

The exact solution proposed in Sec. IV has several
useful properties, because: (i) it is simple; (ii) it can
be extended to every JT degeneracy, symmetry, and
number of neighbors involved in the EP interaction,
without substantial changes and approximations; and
(iii) it may be also used to study the light absorption
due to quasidegenerate electronic states, i.e., of
pseudo-JT centers. But the main importance of the
solution here proposed is twofold. First, it relates the
different models proposed in the literature. Second,
it illustrates the correctness of the use of the interac-
tion modes and of the APES inside a refined ap-
proach to the semiclassical line shape.

C. Semiclassical approximation and

the interaction modes

Equations (13), (14), and (16) are the fundamen-
tal relationships summarizing the physical framework
and the assumptions of the present paper, respective-
ly, Notice in particular:

(i) The Markovian-Feynman points [qr„) of Eq.
(17) are stochastieal variables which can assume all
the values with equal a priori probability. They do
not have, however, the same weight on the line
shape, because in Eq. (17) exp (—Xr„itqrvQ rv) is

measured with the Gaussian probability
exp( —Xr qr„), which strongly reduces the range of
the interesting values of (qr„). The values of (qr )

for a fixed label I y defines an "effective coordinate"
qr„and the set of the qr„spans a few-dimensional
space where the integrand of Eq. (17) has to be
evaluated. qr„are nothing but the well-known "in-
teraction modes" introduced by Toyozawa and
Inoue, 5 corresponding for non-JT centers to the even
more famous configurational coordinate. ' It is very
important to emphasize here that qr„are not dynami-
cal variables because they do not obey an equation of
motion, as do the coordinates ur~. '"

(ii} In Eq. (16) Pr„are proportional to the identity
matrix, whilerr„preserve their matrix character.
Equation (17) gives the line shape to a better approx-
imation than the result obtained by neglecting in Eq.
(13) the commutators of the JT-active matrices Hr„
In this case each of the qr„coordinates would be in-



ABSORPTION LINE SHAPE OF A DYNAMICAL JAHN-TELLER. . . 2775

dependent of the other and the classical Gaussian
shape for R (ru) is obtained. As will be shown in
Sec. IV, the ansatz (16) takes into account instead
that the JT potential-energy surfaces have a multival-
ley shape inside the multidimensional space [qr„].

(iii) The effect upon the Feynman paths )t rr(t)
coming from the kinetic energy is neglected, because
of the 8(t) factor in Eq. (16) which prevents any
time evolution. Equation (16) is equivalent to evalu
ate R (ru) in the static limit, which is a reasonable
result since the SIL has been assumed.

In conclusion, the structureless and short-time
character of Pr„(t) considered in Eq. (16) and corre-
sponding to the SIL, leads to the semiclassical ap-
proach, where (a) only few "coordinates" qr„are
needed; (b) the static limit of the potential energy is
involved; and (c) the t =0 value of the I -symmetry
autocorrelator Dr (t = 0;p) = ( (ur2„(0) ) )&

=(11/2M)(ru (2n+1))r is considerd for the vibra-
tional motion.

IV. R {co) IN THE MARKOVIAN LIMIT

A. t(T+E+A) case

In this section a solution of Eq. (17) is presented
for the so-called dynamic t 8 (7'+K+A ) JT case,
because this case has been so widely studied that the
models and the involved mathematics are very well

known.
The t 8 (T + F. + A ) case corresponds to a center

in an Oq point-symmetry site which undergoes an op-
tical transition from a ground electronic state of a]g
symmetry to an excited state of t'~„symmetry. By
t 8 (T+E+A ) one means that I/ap, defined in Eq.
(3), contains the displacements ur„of even sym-
metry A ]g, Fg, and T2g, since such irreducible
representations are contained in the symmetric prod-
uct (ti„&& ti„),. Among them, the T2g irreducible
representation is the "JT-active" one. ' When only
the NN displacements are considered, one finds that
the three irreducible representations are contained
once in the symmetry analysis of ui (I = NN). So
the interaction coordinates of Eq. (17) are six
(tn =6): tt»(y = I, 2, 3), qz„(y = 1, 2), and q&. The
matrix representation of Har in terms of7r„and ur„
can be found in the review of 3T problems. ' Here we
only point out that7~ =f„Tand that the matrices7er
and 7r„may be written

8= Rp+ Sy' (22a)

2 2

&ffte =~&fEDE (0 p) X ttE t)E tati X qE t)E

(22b)

3 3

gfPir = J2frD) (0;pl X ttr~t)rr =«X qr&ttr&

(22c)

Next we evaluate the factor [exp—(it III)];; Eq. (21).
Gantmacher's treatise on matrices suggests a way to
evaluate the function g (III) of a matrix 8, such as
the exponential function. Therein, g (8) is written
in terms of the roots, Ak of the characteristic polyno-
mial of 8, i.e., in our case of the determinant A(h. )
of the characteristic matrix (Al —8)

A(h, ) =[[A.T—m)[= (A. —h. , )(k —
A., )(A. —h., ) =0,

(23)

where, from Eqs. (22)

Xk = hk(qer, qr~)

g (8) is given by'"

(8—5.21)(8—$ 31)g($) = g(h. , ) +c.p.
(A. )

—h.2

(24)

(25)

Equation (25) is the solution for the case where
h(X) has not multiple roots. Since the case of muti-

ple roots dods not add any further physical informa-
tion to Eq. (21) (Ref. 25) it will not be discussed
here.

We use the property that 8 is a zero-trace matrix
2 ] 2

and that for symmetry reasons (8 );; = —, Tr($ ).
One finds

3

Tr(e I™)= X ek(), Z, ),)e
k ]

where

(26)

unity matrix 1 and obtain
t

R;(t) = e '~' d[qr, }exp —Xqr' e "(e I™)-
m'

r&
i

(21)
Here tra =J2 f'„D) z(0;p) and the matrix III is a
three-dimensional zero-trace matrix depending on the
five coordinates qE„and qr„[see Eqs. (17) and (19)]:

7 „=/ 7t „(y = 1, 2), 7r„=fr I)r„(y = 1, 2, 3 )

(20)

3lt2)t3+Tr($ )
d ) (XjÃ2Ã3)

(~& - It, ) (),- )t, )
(27)

where O~„and O~„are zero-trace matrices.
We now study the integrand in Eq. (17). First we

collect in the exponent the terms proportional to the

4 2( Jl i X2k3) and q 3( h. i h.2)t3) are obtained from Eq.
(27) by cyclic permutations. We insert now Eq. (26)
in Eqs. (21) and perform the Fourier transform of
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(28)

Eq. (21). Since the Fourier transform of each exponential in Eq. (26) is a 5 function 5(co —E —aq„—hk), one

obtains the following expression for R (ce) for unpolarized light

IMO| I'
X J d (qr„ I exp —Xer'„ek(I~|}t2&3)5(ao —E —

aqua
—lk)3$

where IMoi I'= X; IMO; I .
An explicit analyticai evaluation of Eq. (28) cannot

be obtained for every value of a, b, and e. The struc-
ture of the integrand is however such that the Monte
Carlo integration method, already used several times
to evaluate R (oj) in the SCM, '6 can be successfully
used for this and for other JT degeneracies. "

B. (t T) JT case

In order to support the discussion with an analyti-
cal expression, we analyze here a particular case, the

so-called pure t tN T JT case at high temperatures,
corresponding to a = b =0 and Dr{0;P)= Dr'(0;P)
=(kT/M)(ro ') r. If one neglects the term
(qr] lgr2lgr3 } in Eq. (23} one finds that its three roots
are simply A, ~= —eq, X2=0, and A3=eq, where
q2 = X qr~. The previous assumption corresponds
to considering that all the coordinates qr~ have so
small values, as their third-order powers are negligi-
ble with respect to q . Then 4k 1 for. all k and the
integrand is sphericaliy symmetric in the {qr„)
space. Equation (28) becomes then the well-known
Toyozawa-Inoue expression

R (a)) = IMO|l
&t2 3i2 J" Q'dQ e & ' [5(ra E) +5(tn ——F. —c'Q)+5(~ —E+e'Q)]

( 't

8 (tn —E)' (tn E)'—= IMO| I2 —5(to —E) + exp—
3 3n' ' e 2

t

n e e

(29a)

(29b)

where the change of coordinates Q„=42kTqr„has
been introduced in Eq. (29a), so that q = Q'/2kT
and e'=e/42kT = fr ((ca ') r/Mk'~)'t'. Notice in

particular in Eq. (29) the exponential term

exp( —Q'/2kT) =exp( —X qr'„) which is just the

Boltzmann factor, where U =Q~/2 is the harmonic
adiabatic potential energy in the classical limit without
JT interaction. By a coordinate transformation we

have then separated, in the integrand of Eq. (29), the
temperature-dependent term (the Boltzmann factor)
from the JT-interaction-dependent term (the argu-
ment of the 5 function). This separation may be also
done in Eq. (28) owing to the form of Eqs. (19) and
(22).

If we do not neglect the term qTiqT2qT3 & 0 in Eq.
(23), we find out, first that @„&Il and second that
the integrand does not display spherical symmetry.
The latter was already discussed by Toyozawa-Inoue. '
The former has never been explictly considered be-
fore in connection with the SCM, even in the pure
t 7'JT case.

Finally, if a 4 b A c &0, Eq. (28) can only be in-

tegrated numerically.

C. SEMICLASSICAL MODEL

change their form by varying the dimension of the
matrix R.

We now discuss the character of R (ru):
i. The line shape is given by the superposition of

as many terms as the order of the electronic degen-
eracy.

ii. Energy conservation. The excitation energies in
Eq. (28) are given in the 5 function, i.e., by the fre-
quencies co obtained by diagonalizing the matrix AtT.

2 3

tnT=ET+att„T+bxqE„HE +e Xqr„8r„ (30a)

=ET+AjT (30b)

Atr is defined by Eqs. (30). As one can see in the
SIL one has to diagonalize only an effective JT interac-
tion Hantiltonian Atr Atr has the same structure as h,
where the forces fr„are those of Eq. (6), but where
the dynamical variables ur„have been -replaced by
the stochastical coordinates I qr~ ). We may sum and
subtract in Eq. (30) the same "effective" harmonic
potential energy

& V=M X (tn )rDr(0'ig)Ore = 'Mwr2qr~„(31)—
r

We point out that the expression (28) of R (ru) has
the same form in all the JT-cases, because the rela-
tions (25} and (26) on which {28) is based do not

and obtain

tnT=FT+(Atr+ Vl) —VT . (32)
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This is just the excitation energy, used in the SCM
where (0»+ Vl ) is the potential energy of the excit-
ed state and V1 is that of the ground electronic state.
The energies obtained by diagonalizing (A1T+ VT) in

the multidimensional space [qr~), define a

potential-energy surface, the so-called APES in the
SCM, whe«[qr„[ play the role of the i ntera'ction

coordinates whose "effective frequency" is
~r' = 2(~'&rDr(o, P)

iii. Transition probabilities 4k. The factors

@k (k = l, . . . , v) in Eq. (28) were not considered
before in the SCM, even though their absence was

pointed out some years ago by Englman. " Their
physical meaning could be clarified if we apply a

linear transformation to X, Mpi[exp(ittfi))ijMpi in

Eq. (2l}, as foiiows:

X Mp; [cxP( it 8) 1;;Mp = X X IMp;S'k I' exP( —it)tk )

=(Mpt (l1pke (33)

ok= X (Mp, S(, ('/(Mp, [' .

Hcfc S ls a (v x v) unitary lllatf1x, sucll tllat S mS
is a diagonal matrix whose elements are the roots
(24) of (23), since

(S mS)ik )1kgik

Compare now Eqs. (33) with Eqs (26) and (27).
The unitary transformation which diagonalizes the
matrix 8 by rotating the initial frame inside the de-
generate electronic manifold, determines the factors
S;„weighting in Eq. (34) the dipole moments of the

g i transition. It also depends on the value of
[qrr j. @k is therefore the probability by which a
transition to each 1th APES at a given point in the
space [qr„j contributes to the absorption line shape
R (pi).

Kubo and Toyozawa pointed out many years ago
that, in order to take into account all the effects on
the line shape corning from the quadratic EP cou-
pling, the coordinate frame of the excited states must
be rotated with respect to that of the ground state. '8

It should not be surprising that a similar transforma-
tion is performed in JT problems. In fact, when the
linear JT interaction (30) is diagonalized in the de-
generate space, terms which are bilinear in the qr~
are found. They determine a change of curvature of
the APES and frame rotation.

In the Toyozawa and Inoue treatment of the
SCM5 the effect of the rotation of the frame was
taken into account to determine the shape of the
APES, but was not connected with a JT-induced
modification of the transition dipole moment. There

1 is taken. The effect induced by 4k cannot

however be neglected even in the pure t T case, as
it was sho~n in Sec. IVB. The influence of the terms

4& on the broad structure of the absorption line

shape depends on the relative intensities of the JT-
active coupling coefficients [i.e., fr in the t S (7'
+F. +A ) case[ with respect to all the other ones. "

The evaluation of the line-shape function R (tp)
will be the subject of a forthcoming paper. " Therein
the numericai computations of R (pi) for the Tl+-like
family are reported as a function of the linear cou-
pling coefficients j'~, previously deduced from Raman
intensities, ' and of temperature and are compared
with the corresponding Toyozawa and Inoue classical
result.

V. BEYOND THE MARKOVIAN LIMIT

We have shown that the SC expression of R (fp}
can be obtained in the SIL of the linear-response
theory extended to the JT centers when all the pho-
nons of the cloud are equivalent and completely un-
correlated. The theory can be improved by taking
into account the correlations of' some phonons. Con-
sider the particular case when the projected density of
states pr (Ql) sllows otic vcfy naffow peak of wld'tll

S~q. The peak may be due to a local or resonant
mode insIde the mircoenvironment or also due to the
fact that a particular phonon branch of the crystal
dynamics has no dispersion. The Sr-order convolu-
tion of pr(pi) [Sr given in Eq. (7)1 can still show a
well-defined peak, whose width is of the order of
SrgBr. Lct thc coffclatloll tllllc rr tt/Sr-5Br of' tll1s

structure be sufficiently long to allow us to call the
phonons involved "coherent. " %e can take into ac-
count separately the motion of the coherent phonons,
on the basis of the inequality: vq && vr & Tc and
split the evaluation of the line shape into two terms.
The first, semiclassical, given by the short-time
behavior of all the phonons but the coherent ones.
The second, quantum mechanical, supported by the
long-time correlated behavior of the coherent pho-
nons. The behavior of the coherent phonons ls
non-Markovian in the twofold meaning, as previously
explained: (i) One has to consider the time evolution
of the coherent phonons for times of the order of vr'.

R, (t) then contains long-time oscillating
terms and R (pi) shows structures. (ii) lf the
coherent phonons belong to a JT-active irreducible
representation one has to consider also the ordering
of the JT interactions in all the sequences of the
many-phonon processes. It may then follow a dif-
ferent renormalization of the energy for each peak in
R (pi): the structures of R (pi) are not regularly
spaced.

The cluster model corresponds to the case where
only the coherent phonons of the rnicroenvironment
are involved in the motion of the JT electronic exci-
tation. Therefore the influence of the rnacroenviron-
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ment is completely neglected and the JT center
behaves like a system with few degrees of freedom.
It is well known that such a system has only discrete
energy levels, among which it oscillates. The struc-
tured shape of R («t) evaluated in the cluster model
reflects this behavior.

Finally a comment on the independent ordering ap-
proximation (IOA). ts M 's In the IOA one takes into
account the dynamics of the phonons at all the times
but neglects the ordering of the JT interactions. This
is achieved by neglecting in Eq. (14) the time-
ordering operator and by considering the time depen-
dence as arising from the phonon propagator
D„(t;p) Since .IOA takes into account only one of
the two contributions to the memory in the coupled
electron-phonon processes, IOA seems then to be a
valid for short, or at most, intermediate times.
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APPENDIX A: LATTICE DYNAMICS

The harmonic potential energy of a crystal per-
turbed by the presence of a defect in the origin can
be written

one frequency.
The phonon Hamiltonian is

Kp = Xt«t„,b„b„
A.

(A3)

where b&, b„are the phonon operators and co„ is their
frequency. The formal relation between the opera-
tors b„and b& and ul is

ui = (u I la) = X (h, Iln)(bt, +b„) (A4)

NN NN

u,„(u Ir=y) = X(i~lry)(u II~)= X(iolr»ui. ,

(As)

where (A, I la) indicate the component on the atom 1,
direction e, of the A. -mode amplitude. '4 We recall
that in the case of a perfect crystal lt —= (q, s ) ( q
wave vector and s branch index) and (qs I in)

iq ~ R= (I/JN )e, e ' where e, (q) are the well-known
polarization vectors.

We find now the relation between the defect NN

displacements (1=NN) and the normal-mode ampli-

tudes, because in the text the interaction Hamiltonian
is assumed to be different from zero only in this re-
duced space.

We substitute the vectors ul of this localized per-
turbed space with their. symmetry-adapted combina-
tions ur~ (the so-called symmetry coordinates), ob-
tained by applying symmetry considerations. ' '
Here 1 label the irreducible representations of the
point group of the defect and y the partners inside a
degenerate irreducible representation I"." ury are
then related to u l by

lU=Up+-~A r ul u r r
2 + lal a a l a (A 1)

where the following relations of orthogonality and
completeness into the subspace must hold for the
coefficients ( 1 a I

I'y )
where 1 and 1' label the ions of the crystal; ul are
their displacements ( u Cartesian component) from
the equilibrium position R l . A, , is the force-

lal a
constant matrix, which can be decomposed in a per-
fect lattice contribution A, ,

and in a perturbationlal a
5A, , induced by the center in its ground state.lal a
The perturbed lattice frequencies eo& are the roots of
the determinant

Ill- —~.'II=0 . (A2)

where L is the so-called dynamical matrix whose ele-
ments are given by L I = Ml ' A M '; Ml

are the masses. Note that A. is a quasicontinuum in-

dex, which is identical to the quasirnomentum q
when the crystal is perfect. co& belongs to a spectrum
which goes from zero to a maximum value AM. Con-
versely, A. is a discrete index if we are dealing with a
molecule and in particular, X= 1 for a diatomic
molecule, which has only one normal mode and only

X (ry I I ~) ( I a
I
r'y') = 5,„,5, ,

la
rr

X(inIry)(ryII'a') =s„,s
ry

(A6a)

(A6b)

one finds

( (ut Y(r)u, , (0) ) )@

b. . (A7)

d«t pr(«t)D(«t, r, P)5 „—is
2M "o o) rr

= Dr(t;p)5 5rr (Ag)

In the text we use the following time-dependent
correlation function ((ur„(r)u„, i(0)) )tt. If onery
remembers that in harmonic approximation the evo-
lution of the free-phonon operators b& and b& is sim-

ply given by
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Here

D(al t'p) = (n +1)e (A9)

is the time-dependent propagator of a free phonon of
frequency ru, at temperature P= I/kT, where
n = (e&"—1) '. pr(ro) is the so-called I'-symmetry-

projected phonon density of states defined by'

and to the X-normal-mode components A&

1/2 NN

1

r 1/2

2M ')q
(83)

pr(ro) =20lpr(cu')

(A10)

"(rylIm(L, —z) 'lry) (z =~'+ig)

pr(cu) is the same for all the y inside the same ir-

reducible representation I . co& and L are given by

Eqs. (4) and (5). The spectral analysis of the NN

displacement autocorrelation function given by Eq.
(A8) is then related, to the complete phonon disper-
sion pr(ol), where also the possible perturbation in-

duced by the defect on the dynamical matrix L can
be taken into account through SA, ,

Only in the
lal a '

case of the diatomic molecule pr(0l) =5(rs —cur).
In the text the following average, taken over the

distribution pr(a&), is used:

dal pr(cal)D(cv, 0;P)
aJ p oj

f cg)
dot —pr(ol) coth

OJ 2kT

fl +XA—
, ,

i (, , =0
1a

(84)

Equation (84) is a purely static condition since it has
been deduced at final equilibrium configuration and
does not give any description of the relaxation pro-
cess during which the kinetic energy and the dissipa-
tive terms must be also considered.

When only the relaxations (l of the NN ions are
considered, we can again apply the symmetry con-
siderations and obtain

The irreducible representations I' contained in (8 1)
as well as the matrix character of fr~, depends on the
symmetry I', and degeneracy of the electronic state,
since I e(I', S I', )„where by ( ), we mean the
symmetric product. Driven by the forces fl the ions
relax from the previous equilibrium position R1 into
new positions R l

= R lo + gl, around which they os-
cillate with amplitude ul' . In order to find gl = ut
—u1' we apply purely static considerations. " The
dynamical aspect is discussed in the text. We impose
that when the ions have reached the new equilibrium
positions, any linear term in u1' is absent in the po-
tential energy. One finds

= —coth r = Dr(0;P) . (Al la)1 ko) 2M
o) 2kT 4r, =~r 'fr, (BS)

At high temperature (kT ))&Olr), Dr(0;p) defined
in Eq. (Al la) takes the classical value Drc' (0, P)

raM

Dr'(0;P) = „' d~, pr(~)= (co ')r .
M "o o)2

(Al lb)

Here ( f (co))r indicate the average of f (Ol) over the
I'-symmetry distribution Pr(ol). M is the NN mass.

APPENDIX B: STATIC RELAXATION

Here AI. ' is the quadratic invariant of I symmetry"

NN

&r ' = (ryl~ 'lry) X (I'yl ln)A ', , ( I'a'lry)

(86a)
From Eqs. (A2) and (A10) and by using the
Kramers-Kronig (or dispersion) relations between the
real and imaginary parts of a function of the complex
variable z, one obtains

Consider now the static relaxation undergone by

the ions around the impurity when a localized energy
term of the form

NN

h = Xflout~ = Xfr„ur~ = Xh„(h„+hl, ) (Bl)
1 I'q

is added to the potential energy (Al). 1 labels as

usual NN, f1 are time-independent forces, related,
as it follows to the symmetry componentsf~'r,

= M '(ry lL 'lr»--
= llm (ryl«(L —z) 'lry]

g~0
I'"M d~ pr(~)

dp M

where z = co'+i vj Therefore Eq. (.85a) becomes

(86b)

fr„= (ryl. f) = X (ry. lln). f,.
la

(82) gr„=M ' fr„(~ z)r (BS')
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Assume now that we stretch a linear oscillator of
mass M and frequency co out of its equilibrium posi-
tion of a displacement g. It will gain an energy
—,Mco'g' equal to Stre in quantum terms. S, the

number of phonons excited over the oscillator, is

therefore given by

S = ( M ro/2g ) g' . (B7)

In a similar way one obtains the number Sr of all the
phonons, excited over the oscillators of I symmetry
ur~, when they are submitted to the forcesYr~ of Eq.
(6). By using Eq. (BS'), one finds

Sr= 2&Mfr Jo d~pr(~) =
2&Mfr ( )r.

dr 2 )M

(Bg)

drfr = Tr(X Yr„) follows from the chosen norm of
Hr„(Trt) = I), where dr is the dimension of the ir-

reducible representation I .
So= X„Sr is the so-called zero-temperature

Huang-Rhys factor when the forces fq~ are those in-

duced on the neighbors of the absorbing center by
the absorption process.

Temperature effects can be taken into account in a
similar way, by considering that the oscillator mean-
square amplitude at temperature T is proportional to
(2n + I). The energy t)tat it acquires when stretched

of g is 2M' 2)2(2n +I). Equation (Bg) becomes:

d. f2
Sr(T) = J d~ pr(~)~ 'coth, (B9)

2AM o 2kT

and S(T) = X„Sr(T)
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