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Investigation of exciton fine structure in Cu,O
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The even-parity excitons in Cu,O show, in contrast to the well known P-exciton series: (1) strong deviations from a
hydrogenlike behavior, (2) a fine structure for n & 3, and (3) an unusual n dependence of the exchange splitting. All

the properties of the even-parity-exciton series are explained by the presence of a strong H~ term and a strong

exchange interaction. We have calculated the even- and odd-exciton members of the yellow and green series within

the formalism of Baldereschi and Lipari. An excellent agreement with the experimental results is obtained in the

spherical limit. The theory predicts for n = 3 a splitting of the S and D states into five components. All the five

components are observed by two-photon absorption in a magnetic field of 7 T.

INTRODUCTION

After the first measurements by Hayashi and
Katsuki' the excitons in Cu,O were studied extensive-
ly by different groups for 30years. Main contribu-
tions in this field in the following years were done by
Gross and his co-workers in Leningrad and
Nikitine and his group in Strasbourg. For litera-
ture we refer to a recent review article by Agek-
yan and the paper by Washington et al. on reso-
nant Raman scattering in Cu2O. From symmetry
considerations Elliotte concluded that the upper
valence band is of I'& and the lower of I'8 symme-
try. In a later band calculation of Dahl and
Sw&tendxck, the order of the spin-orbit components
I'; and I'8 of the I", state (Cu M) was reversed. A

very recent band calculation by Kleinman and
Mednicks confirms I"7 as the uppermost valence
band. With a I'8 conduction band, both assign-
ments correspond in one-photon absorption to the
yellow and green P-exciton series which are very
well resolved up to m=3.0. Because of the perfect
I/n dependence, the assignment of tluantum num-

bers for the P states is unambiguous. As dis-
cussed in detail by Washington et al. ~ and lately by
Frohlich et al. , the interpretation of the parity-
forbidden S and D excitons is much more contro-
versial. The spectrum of the even-parity excitons
deviates drastically from a hydrogenic series.
This fact led to contradicting assignments of quan-
tum numbers. In addition there is a pronounced
fine structure observed for n ~ 3, mhich has to be
explained. Another problem is the large differ-
ence between the rydberg of the yellow and green
series. In a naive analysis this would yield a
factor of 1.5 between the reduced masses of the
green and yellow series which can not be under-
stood considering the rather small spin-orbit in-
teraction. We will show that all these open ques-
tions can be answered by taking nondiagonal terms
of the hole kinetic energy and exchange interaction

into account. As shomn by I uttinger and Kohn'0

and by Baldereschi and Lipari, ' the inclusion of
nondiagonal terms in the effective-mass HamiLton-
ian is of considerable importance for the J= 2

(18 in cubic symmetry) component of the spin-
orbit doublet. This was recently demonstrated
for the P excitons in ZnSe by Sondergeld and
Stafford and for CuBr by Mattausch and Uihlein.
In Cu2O we have to consider the coupling between
the 8= 2 (I", yellow series) and J =-', (1"8 green
series) in order to explain the fine structure. This
coupling is appreciable in the special case of
Cu2G because the 1S green exciton happens to be
almost degenerate with the higher excitons of the
yellow series (tl = 2, 3). Our model Hamiltonian,
which includes the spherical H& term and exchange
interaction, describes quantitatively all experi-
mental findings. Additional Lines in a magnetic
field of 7 T are also explained.

EXPERIMENT

The first two-photon absorption measurements
on CuzO were done by Pradere et al. '4 Using a
laser-induced flash or a flashlamp as a tunable
source these authors mere not able to resolve the
fine structure. As discussed in detail by Frohlich
and Sondergeld, '5 the combination of a tunable
low-power laser and a fixed-frequency high-power
laser should yield a good signal-to-noise ratio
and high resolution. The schematic diagram of
our present setup is presented in Fig. 1, This
setup differs from the standard setup as described
before'~ in the following points:

(a) To account for hlgller repetition rates (5-10
pulses per second) we have included a specially
designed microprocessor for a preaveraging of
data, then to be handled by the desk-top calcula-
tor.

(b) Instead of a flashlamp and monochromator
as a tunable source we use a tunable dye Laser
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which is pumped by a krypton-ion laser. The fol-
lowing dyes are used for the different spectral re-
gions: HITC (Hexacyanin 2) from 855-920 nm,
two-photon energy (high-power laser 0.6496 eV)
of 2.0-2.1 eV; Oxazine 750 from 750-855 nm,
two-photon energy of 2.1-2.3 eV.

The dye-laser output is chopped by an electro-
optic modulator (contrast ratio better than 1:1000)
which yields pulses of about 5 p, sec synchronized
properly to the high-power-laser pulse. As a
high-power laser we use a Raman-shifted (H2 gas
at 40 bars) Nd-doped YAG laser (yttrium-alumi-
num-garnet) which yields pulses of about 5 MW at
0.6496 eV. For the magneto-optical Ineasure-
ments we used a superconducting magnet with a

50-mm bore allowing measurements in Fa.raday
and Voigt configuration. The measurements were
performed on highly pure, arc-image-grown Cu20
crystals t6

THEORY

In the theoretical part we present an effective
mass Hamiltonian for weak spin-orbit interaction
which describes (in the spherical approximation)
the excitonic eigenstates of a crystal, having
(without electron spin) a threefold-degenerate va-
lence band and a simple conduction band. Though
we are finally interested in calculating the yellow
and green exciton series in Cu20, the Hamiltonian
is of such a general type that it can be app1. ied to
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any system with similar band structure. Adopting
the formalism of Luttinger'o and of Baldereschi
and Lipari, we treat in the following the three-
fold-degenerate valence band as having an effec-
tive spin 1. This allows us to introduce the quasi-
spin operator I, the magnetic quantum numbers of
I (m, = +1,0) referring to the different degenerate
valence-band states without electron spin. To take
into account the electron spin we introduce in ad-
dition the operators o, and cr„ for the electron and
hole spin, respectively.

The Hamiltonian, which gives the exciton eigen-
states, has to contain full information of the com-
plex valence-band structure in the vicinity of the
I point, the Coulomb interaction between electron
and hole, and the electron-hole exchange interac-
tion, which is large in the case of Cu20. Thus
the Hamiltonian consists of the following terms:

H =H, +H,.+H, +H

122
H, =—

2 p ———Vo()(r),

H„= ~Z(1+ I ~ ()'q) .

H,„„=70(-,' (r, o„-)5(r) .
The terms are given in reduced units Ro and Qp

with zero energy at the band gap (I', to I';). The
parameters are defined as follows:

4 2e mo he, y,
g2m

oyer

0

6ya+ 4yg, m()
y y i ='Yi +

Qf Blg

VO — 4 JO
Vo —

3 &
+=

& Jp=
soap Ro Ro~o

0 is the volume of the unit cell, and Jo is the ex-
change integral and V, the central-cell potential.
The parameters y&, y2, and y3 are the dimension-
less Luttinger parameters associated with the I'8
vaLence band. In the limit of weak spin-orbit in-
teraction, the parameter y& determines the in-
verse effective mass of the I 7 band also.

H, is the usual hydrogenlike effective mass
Hamiltonian for excitons in spite of a central-cell
correction term. This term is introduced to ac-
count for all short-range deviations from a, simple
Coulomb potential, exciton-phonon interaction in-
cluded. There exist other more sophisticated
methods of treating the exciton-phonon interac-
tion, '~ but they cannot be applied to the case of
Cu20 where one has two optical-phonon branches.
%e have therefore chosen the simplest type of
short-range correction with the intention to fit

Vo to the experimentally determined 18 exciton
binding energy.
H„ is an effective spin-orbit interaction term,
giving rise to a splitting of the 3~2-fold-degen-
erate valence band (I'& in Cu20} into a twofold-
degenerate I', and a fourfold-degenerate I'8 com-
ponent. The dif ferent valence-band components
can be assigned by the quantum numbers of the
effective hole spin J=I+0„, which commutes with
H„. The two possible quantum numbers of J,
J= —,

' and J=-'„refer to the I', and I 8 valence
band, respectively.
The sum of H, and H„describes two distinct, non-
interacting, exciton series originating from the
conduction band and the two spin-orbit split va-
lence-band states (yellow and green series in
Cu20). The different exciton states can be classi-
fied by the quantum number J of the effective hole
spin and the angular momentum L associated with
the envelope function. %e adopt in the following
the atomic notation2 'L, where L refers to the
symmetry of the envelope function (S,P,D, . . .}
and the superscript to the multiplicity of the va-
lence band, thus distinguishing the two excitonic
series.

The H& term given in the notation of Baldereschi
and Lipari'~ contains the nondiagonal d-like parts
of the effective mass Hamiltonian in spherical ap-
proximation. The magnitude of this term is given
by the dimensionless parameter p which weighs
the ratio between the g-like and s-like parts of
the kinetic energy. Neither J nor L commute with
H& and as a consequence the effective hole spin J
is now coupled to the angular momentum of the
relative motion, thus giving rise to a fine-struc-
ture splitting for angular momentum states with
L & 0. In the case of weak spin-orbit interaction
the two excitonic series are in addition strongly
mixed by the H& term. L and J are therefore no

longer good quantum numbers. The excitonic
states have to be assigned instead by the quantum
numbers of the angula. r momentum operator
F =L +J, which comm utes with H „in spherical
approximation. Nevertheless it is useful to keep
track of the approximate quantum numbers L and
J which can be used to classify the states in addi-
tion, by regarding the limit p. -0. Following the
conventions for atomic states we therefore denote
the excitons by 'L&, the subscript referring to
the total angular 'momentum of the exciton without
conduction-band spin. The Hamiltonian given by
the sum of H, +H„+H„ is essentially the same as
the one used by Baldereschi and Lipari. " In the
case of Cu20 one has to include in addition the ex-
change interaction between electron and hole. The
exchange interaction, its magnitude being deter-
mined by the exchange integral Jo, gives rise to a



CH. UIHLEIN, D. FROHLICH, AND R. KENKLIES

splitting of S excitons in ortho and para compo-
nents. The radial dependence is approximated in
H,„~ by a 6 function, thus taking care of the fact
that exchange depends on the probability of finding
electron and hole within the same unit cell. The
term is for this reason only nonzero for states
having a component with angular momentum L =0
(S-like envelope). The fact that neither J nor E
commutes with H,„,„has two consequences: (1)
the two exciton series (yellow and green series in
Cu20) are mixed in addition by the exchange inter-
action, and (2) F is in general no longer a good
quantum number. From the latter it follows that
states have to be assigned now by the quantum
numbers of F„,= F+a„whenever a component
with angular momentum L =0 cannot be excluded
by symmetry. The only states which can have an
8-like admixture are states with angular momen-
tum F = —,

' (I"7) and E = —(I'8). Inclusion of the ex-
change interaction in the case F =-,' gives rise to a
splitting into the para component E„,=0 (I'2) and
the ortho component E„,= I (I",'). For F =-', one
obtains the ortho- and para-exciton states F„,= 1
(I', ) and E„,=2 (I'3, I'4). In all other cases (odd-
parity states and even-parity states with F & -', ),
F and M~ remain good quantum numbers. We can
therefore distinguish two classes of excitons; i.e. ,
ortho and para excitons which are denoted by an
integer spin (F„,) and a second class of excitons
which can be still classified by the half-integer
spin F, because the electron spin is not coupled
to the total angular momentum of envelope and
hole.

The most general wave function which can be
classified by the integer spin F„, is a linear com-
bination of the type

Z gr, zz(&)
~

LJFFt ot/lf )
L, Z, F

where g»z(~) are radial wave functions and

~L JFF „,M) are angular and spin-dependent parts
in the (I,g„;J), (L,J;E)(E,o, ;F„,) coupling scheme.
As is shown in the Appendix, an ansatz of this
type leads to a set of coupled differential equations
for the radial wave functions. These eigenvalue
equations determine the binding energies of all
excitons (ground and excited states) which are as-
signed by the same quantum number F„,. Because
of the selection rules for the spherical case, only
a finite number of angular momentum parts con-
tribute to a state with a given F„,. The exciton
binding energies are therefore completely deter-
mined by the finite sets of coupled differential
equations listed in the Appendix. We solve these
coupled eigenvalue equations by means of the
finite-element method which is explained in detail
in Ref. 13.

The treatment of the half-integer spin states
(E} is even more simple, since E is still a good
quantum number. We use in this case an ansatz
of the type

(3)

Because of selection rules the number of angular
momentum states 'L+ contributing to a state
with a given F is restricted in this case to a maxi-
mum of three. The coupled wave equations are
again listed in the Appendix.

Odd-parity states containing a P-envelope con-
tribution are expected to be electric dipole al-
lowed. From group theory it follows that only the
odd-parity states F = —,

' and F = —,
' contain the polar

vector representation 1"4 when the conduction band
of I"6 symmetry is taken into account. One expects
therefore one yellow series ( P3/2) and two green
series ( P3/2 and 'P, /, ) to be electric dipole al-
lowed. Experimentally only one green series is
observed. This discrepancy might indicate that
interference effects with the contiriuum states of
the yellow series give rise to a transfer of oscil-
lator strength. As will be discussed in the next
section (Table II}, the experimental values are
well explained by our calculation if we assume
that the P3~2 and 'P»2 excitons present the yellow
and green series observed by one-photon absorp-
tion.

The spherical approximation accounts very well
for the situation in Cu20. We will therefore dis-
cuss the influence of the cubic term only qualita-
tively. Coupling of the envelope angular momen-
tum and the effective hole spin (I",, I'8) yields even-
and odd-parity states transforming according to
I 8 I 7, and I'8 ~ Exchange inte ract ion affects only
the even-parity states I", and I'8. Coupling with
the electron spin (I'6) yields in turn the ortho ex-
citons I'5 and the para excitons I'2 and (I'3, r4),
the latter ones being degenerate in the spherical
approximation of the exchange interaction. In the
extreme cubic limit one can therefore only distin-
guish between odd-parity states I'6, I"„and I"„
even-parity states I,', ortho excitons I'„and
para excitons r2 and (r&, 14). In the case of a
small cubic contribution, however, one can treat
the cubic term as a weak perturbation of the
spherical case. The cubic term affects then the
exciton members stemming from the I'8 valence
band (J=—', ) and the I", valence b'and (J=-;) in a
different way. The contribution of the cubic II&

term relative to the spherical one depends in the
first case on the ratio 5: p. , in the latter one on
5:p, . This follows from the fact that the H,
terms contribute to the J=-', exciton series in first
order (intraband terms) and to the J= —, exciton
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FIG. 2. One- and two-photon spectra of Cu20. (a) One-photon data at 4.2 K from Ref. 20; (b) two-photon data at
4.5 K. The yellow 1S exciton line was measured at 20 K. The arrows indicate the calculated exciton energies.

series in second order (interband terms). The
J= —, exciton series (yellow series in Cu20) is
therefore much better described within a spherical
model than the J=-', exciton series (green series
in Cu20).

EXPERIMENTAL RESULTS AND DISCUSSION

In this section we will present the experimental.
findings for Cu20 as obtained by one-photon (OPA}
and two-photon (TPA} absorption. The experimen-
tal results are compared to energy values calcu-
lated within the preceding model with a best set of
parameters. Figure 2 shows the spectrum of the
even-parity excitons up to n = 5 as measured by
TPA. For comparison the odd-parity excitons up
to n=6 as measured by the Strasbourg group' by
OPA (one-photon absorption) are also reproduced.
As discussed by us in detail in the preceding let-
ter, the controversy concerning the assignment
of the main quantum numbers n for the even-parity
excitons is now settled. One of the main reasons
why this controversy lasted so long is the fact that
the "2$" line is found on the high-energy side of
the 2P line, whereas one would expect it to be
shifted to lower energies.

We have calculated all the even- and odd-parity
states of the yellow and green series up to E„,
=2, E=-'„and n=5 using the following set of pa-
rameters:

Rp ——0.087 eV; p, =0.47; E„,=2.1720 eV;

&=0 1338 eV ' Vp:0 53 ' Jp =0 58 o

The results of our calculation are listed in Tables
I and II. As one can see, the agreement between
experiment and theory is excellent. In the case
of the even-parity states we have listed in addi-
tion the composition of the wave functions. The
assignment of the different states refers always
to the limit p, -0 and Jp-0. This has to be con-
sidered when one compares the composition of
the 1S-green and 2S-yellow excitons.

It was demonstrated in the preceding letter that
only the ortho excitons (E„,= 1) are observed in a
two-photon absorption experiment (I", states are
direct two-photon allowed). The spherical model
explains the occurence of ortho-exciton doublets
for n ~ 3. Our theory predicts for n = 3 (yellow
series) a total of five different exciton states, the
remaining ones being the para-exciton states
E„,=0 (12) and E„,=2 (I'3, I'4), and the half-
integer spin state Dg(2. TPA measurements in a
magnetic field (up to 8.5 T) yield these additional
lines as is shown in Fig. 3. The magnetic field
measurements were done in Faraday configuration
with magnetic field parallel to a [100] direction.
Contrary to one-photon experiments, TPA in
Faraday configuration will yield for this orienta-
tion only states with M =0. The three additional
lines become allowed by magnetic field interaction
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TABLE I. Excitation energies and decomposition into relevant basis states of even-parity
excitons in Cu20.

E~~eV)b E~,(ev)' 2
Si/2

4D«2 4
S3/2

2
D3/2

4
D3/2

E~,=1 ortho excitons

Si/2
1 S3/2

4

Si/2
2

3 Ds/2
2

4 Si/2

5 Si/2
2

5 D3/2
2

2.0330
2.1378
2.1544
2.1603
2.1630
2.1653
2.1666
2.1678
2.1685

2.0330
2.1388
2.1552
2.1600
2.1632
2.1654
2.1668
2.1679
2.1686

0.91
0.88
0.35
0.72
0.18
0.83
0.15
0.85
0.14

0.06
0.02
0.00
0.01
0.00
0.00
0.00
0.00
0.00

0.03
0.08
0.32
0.03
0.06
0.01
0.02
0.01
0.01

0.00
0.02
0.32
0.24
0.76
0.16
0.83
0.14
0.85

0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00

E)Q) 0 par a excitons

1 Si/2
2

2

3 Si/2
2

2

2

2.0212d

2.1589

2.0212
2.1395
2.1589
2.1651
2.1677

0.93
0.98
0.99
1.00
1.OO

0.07
0.02
0.01
0.00
0.00

1 S3/2
4

3 D3/2
2

4 D3/2
2

5 D3/2
2

2.1269'
2.1624f

EgQg 2 para excitons

2.1305
2.1621
2.1664
2.1684

0.78
0.01
0.00
0.00

0.20
0.99
1.00
1.00

0.02
0.00
0.00
0.00

3 D5/2
4 D g/'2

2

5 Dg]2
2

E=- excitons
2

2.1619~ 2.1618
2.1662
2.1683

2
D5/2

1.00
1.00
1.00

4D g/2

0.00
0.00
0.00

G g/2

0.00
0.00
0.00

a Symmetry assignment referring to the limit p-0 and Jo-o.
Energies as obtained by TPA.' Energies calculated within our model.

~ Triplet exciton energy according to Ref. 21.
Triplet exciton energy according to Ref. 22.
Energies as obtained by TPA magneto-optic experiments.

State~ E~g(eV)" E~ (eV)

2P Y
3P Y
4P Y
5P Y

2PG
3P G
4P G
5PG

2.1473
2.1609
2.1657
2.1680

2.2679
2.2889
2.2963
2.2997

2.1473
2.1610
2.1659
2.1681

2.2677
2.2887
2.2960
2.2995

Symmetry assignment; Y and G refer to the yellow
and green series, respectively.

"Energies of I'4 excitons as obtained by one-photon
absorption according to Ref. 5 and literature cited

therein.' Energies calculated as shown in the text.

TABLE II. Excitation energies of the odd-parity ex-
citons P3/2 and P3/2 in Cu20.

with the ortho-exciton components. As indicated
in Fig. 3, most of the experimental lines are
shifted to higher energies as compared to the the-
oretical results. This can be qualitatively ex-
plained by the diamagnetic shift of the M =0 states
which was not taken into account in our calcula-
tion. The splitting pattern for n =3, as induced
by the different terms of the Hamiltonian, is
schematically depicted in Fig. 4. A detailed anal-
ysis of the field dependence of the lines as well as
additional measurements in Voigt configuration
and possibly other crystalline orientations, should
yield further information on the magnetic proper-
ties of the even-parity excitons.

Our model explains for the first time all the in-
teresting features of the even-parity-exciton
states in Cumo; i.e. , (1) the non-hydrogen-like
behavior of the exciton series, (2) the fine-struc-
ture splitting for n ~ 3; (3) the puzzling n depen-
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FIG. 4. Schematic representation of the fine-structure
splitting of the n =3 state (yellow series).

(I'3 I 4) and into an ortho component 1 5. In the ex-
treme cubic limit one would therefore expect to
observe three two-photon-allowed I"~ states for
n= 3 instead of only two lines, and within a mag-
netic field seven lines instead of only five lines.

APPENDIX

energy {eV)

FIG. 3. Two-photon spectra of the n =3 exciton fine
structure at 4.5 K of Cu20. (a) H=7 T; (b) H=0 T. The

spectra were obtained with both beams being circularly
polarized with the same helicity. The dotted lines indi-
cate the calculated exciton energies. The quantum num-
bers are used as in Table I with E&„=0„1,or 2 given in

brackets.

dence of the exchange splitting which has prevented
the assignment of exciton states for such a long

time. Our results demonstrate in addition that

the cubic contribution is weak. A large cubic H„
term would split the 85&2 exciton state into a I,
and I"8 component, the I"8 component strongly in-
teracting with the S3/, (I'8} state. Exchange inter-
action would in turn split the D~/2 (I'8) component

by its S,&2 admixture into a para component

We now list the differential equations for the
radial wave functions. In deriving these equations
we follow very closely the procedure of Balder-
eschi and I.ipari (BL)." The binding energy of an
exciton state is given with respect to the I"& —I'6

band gap by the equation Hg = -F.g where

gl. 'z'z (r) IL 'J'F 'Ft„M) .
L', /', F'

Multiplying from the left with lL JFE„,M) and in-
tegration over angular and spin-dependent parts
yields

LJEEt,tJI/f H L 'J E'E„,M gL ~ F r
L, Z', F'

+~Zz, zz(&) =0 ~ (Al)

The matrix elements of H can be calculated by the
reduced-matrix-element technique. ' One obtains
for the different parts of the Hamiltonian the re-
sults

1, 2' d2 2 d L(L +1) 2l'
LJFF„,M ~P -- L'J'F'Fg, tM =&I,z, '&~z &zI"' —

2
— + 2dr rdr r r~

(A2)

(LJEEt, tM l(P' ' 'I' ')lL 'J'E E„tM) =0~„(-1) ' ' ' ' "~[(2J+1}(2J'+1)]~/

(I lff'" llr)(L llP"'llL )
12L' I2I
J'EJ Jo J'

(A3)
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(I,JFF'„,M ~I 'O'„IL JF Et,tM) =52,I, 6~~ 5rr 3 [J'(J'+ 1) -I(I+ 1) —t/„(t/„+ 1)] (A4)

(LJFFtotM lt/, a„6(r)IL JE Et,tM)

, ( 1)+t te+2E'+2k+2'+/+ee ett[(2E p 1)(2E + 1)]t/2
E&E' J r J'

(2J+ 1}{2J+1)]'/'. . . , (,~f, ff,)(,
gEtot~ E LF J iJ (A5)

The reduced matrix element of the 5 function is zero for L c 0. For L =0 we use in the following the ab-
breviation 5(r). This reduced matrix element is defined by the relation

r
4v r 5(r)f (r) dr =f(0) . (A6)

A,

A representation of 5(r) is the step function which is 1/Q within a sphere of volume 0 and zero elsewhere.
The distribution 5(r} is approached in the limit 0 -0, but for actual calculations one can choose 0 to be
the volume of the unit cell. The 6j symbols occurring in Eqs. (A3) and (A5) are tabulated by Rotenberg"
and the reduced matrix elements (I ffI'" ffI) and (L ffP'" ff L') are listed in the paper of BL." The reduced
matrix element of the spin operator is

(c if~ if&) =[o(c+1)(2o+1)]'"=&3l2.
Considering the matrix elements (A2) to (A5) we deduce immediately the following properties:

(1)H, contributes only diagonal terms.
(2) He (spherical approximation) is diagonal with respect to E. Because of parity and the triangle condi-

tion of angular momentum coupling, we have in addition M =0, +2.
(3) H., contributes only diagonal terms.
(4) H,„,„ is diagonal with respect to L. Because of the 5 function only S states have to be considered.

We now list the most general wave functions and the differential equations for the odd-parity states E =2,
E = 2, and E = —,'. For convenience, we introduce P» as an abbreviation for differential operators asso-
ciated with the reduced matrix elements of the kinetic energy terms. PLL is defined by the equations

L -2,I d~2

d 2 d L(L+1)
L,L (A7)

d 2L+1 d L(L+2)
L+23L dy2 ~ d~ ~2

E e1
P ~

e=«(r)'Pt /2+&2( ) 'Pt/2

2 gii «(r)
(A8}

2
(1 + P)P3 3

+ n E
~ g2(r)

=0,

F ——'3
P ~

«(r) P3/2 +g2(r) P3/2 +A 3(r) F3/2 (A9)

2P +—-F.f1
3 «(r}

3—
5 p.P$3 g3(r)

-3—~lP33 3—
5 p.P3f (1+-',ft)P33+- —Z-Z g3(r)
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5
2 0

0 =g1(r) 'P5/2+gs(r) 'P5/2+gs(r) P5/2,
(A10)

(1+—', P, )P11+——b -Er ~5&Pss

2P +—-833 r

—~56 P,P13

2—~/Pss

g1(r)

g(r) =0.
——,'&651P»

2 2
pP33 (.I —

5 p, )P33+——Z -E gs(r)v'5 r
We next list the differential equations for the even-parity excitons. We start with the para-exciton states
F„,=0(I"2) and E„,=2(I",I"):

—&2@,Pps g 1(r)

—&2/, Psp
2(1+P, )P22+ —.—Z E-gs(r)

g1(r) ~1/2 g2(r) D1/2,

2
Ppp + + V55(r) —Er =0,

(All)

P4.4 =2(P = 3):

g1( ) 3/2 +g2( ) 'D 3/2 +g 3(r ) 'D 3/2,

A

P»+ —+ V55(r) -/S, -E -P,PP2 g1(r) '

(A12)

%25

—P,P2P

2
&22+ —-&

2
~P22 +22 + r

gs(r)

gs(r)

The differential equations for the ortho excitons are the same as for the para excitons besides the addi-
tional exchange term. The E„,=1 matrix (5&&5) can thus be deduced from the E„,=0 and E„,=2 ma-
trices by adding the exchange matrix

g1(r) ~1/2 gs(r) D1/2+gs(r) Ss/2 g4(r) D3/2 g5(r) D3/2

——3,J56(r) 0 J56(r) 0 0

(A13)

0 0 0 0 0

+tot

+ Z, 5(r) 0 ——,'J55(r) 0 0

0 0 0 0 0

0 0 0 0 0

From the even-parity states which can be denoted by half-integer spin, we are only interested in the E = —,

states:

52'

g(r1) Dp/2+gs(r) D5/2+gs(r) Gp/2,
'

2
P22+ —-Fr -2 &P„

7 g1(r)
(A14)

-2 ' —PP42,W3

7
—

&
V 6PP42

5 2—PP22 (I ——P)P22+ ——/3, -E
7 7 r gs(r) =o.

g (r)

——W6P.P247

5 2
(I + —p)P +- —b, E-

44



CH. UIHLKIN, D. FROHLICH, AND R. KKNKLIKS

+Present address: Hochfeldmagnetlabor MPIF, 166x,
F-38042 Grenoble Codex, France.

~M. Hayashi and K. Katsuki, J. Phys. Soc. Jpn. 5, 380
(1950); 7, 599 (1952).

2E. F. Gross, Usp. Fiz. Nauk 76, 433 (1962) I'Sov.

Phys. -Usp. 5, 195 (1962)), and references cited.
S. ¹ikitine, Prog. Semicond. 6, 235 (1962); in Optical
Pyope&ies of So&ids, edited by S. Nudelman and S, S.
Mitra (Plenum, New York, 1969), p. 197; J. C. Merle,
C. %ecker, A. Daunois, J.L. Deiss, .and S. Nikitine,
Surf. Sci. 37, 347 (1973).

V. T. Agekyan, Phys. Status Solidi A 43, 11 (1977).
~M. A. Washington, A. Z. Genack, H. Z. Cummins,

R. H. Bruce, A. Compaan, and R. A. Forman, Phys.
Rev. B 15, 2145 (1977).

6R. J. EBiott, Phys. Rev. 124, 340 (1961).
~J. P. Dahl and A. C. Switendick, J. Phys. Chem. Sol-

ids, 27, 931 (1966).
8L. Kleinman and K. Mednick, Phys. Rev. B 21, 1549

(1979).
9D. Frohlich, H. Kenklies, Ch. Uihlein, and C. Schwab,

Phys. Rev. Lett. 43, 1260 (1979).
~OJ. M. Luttinger and W. Kohn, Phys. Rev. 97, 869

(1955).
~~A. Baldereschi and N. G. Lipari, Phys. Rev. B 8,

2697 (1973); ¹ G. Lipari and A. Baldereachi, Solid
State Commun. 25, 665 (1978).

~2M. Sondergeld and R. G. Stafford, Phys. Rev. Lett. 35,

1529 (1975); M. Sondex'geld, Phys. Status Solidi B
81, 253 {1977);81, 451 (1977).

~ H. J. Mattauseh and Ch. Uihlein, Phys. Status Solidi
B 96, 189 (1979).

~4F. Pradbre, B.Sacks, and A. Mysyrowicz, Gpt. Com-
mun. 1, 234 (1969); F. Pradhre, A. Mysyrowicz, K. C.
Bustagi, and D, Trivich, Phys. Hev. 8 4, 3570 (1971};
K. C. Hustagi, F. Pradere, and A. Mysyrowicz, ibid.
8, 2721 (1973}.

~GD. Frohlich and M. Sondergeld, J. Phys. E 10, 761
(1977).

~6The crystals were kindly supplied by Dr. C. Schwab,
Universitd Louis Pasteur, Strasbourg, France.

~~H. -R. Trebin, Phys. Status Solidi B 92, 601 (1979).
J.B.Grun and S. Nikitine, J. Phys. (Paris) 23, 159
(1962); S. Nikitine, J.B. Grun, and M. Certier, Phys.
Kondens. Matex'. 1, 214 (1963).

~9A. R. Edmonds, Angular Momentum in Quanhcm Meeh-
uwgcs (Princeton Univexsity Press, Princeton, New
Jersey, 1960); A. Messiah, Quuetum Meehueies
(North-Holland, Amsterdam, 1961).
M. Rotenberg, R. Bivins, N. Metropolis, and J.K.
Wooten, The 8-j and 6-j Symbols (MIT Presa,
Cambridge, Mass. , 1959).

+P. D. Block and C. Schwab, Phys. Rev. Lett. 41, 514
(1978).
V. T. Agekyan and Yu. A. Stepanov, Piz. Tverd. Tela
17, 1592 (1975) I'Sov. Phys. -Solid State 17, 1041 (1975}J.


