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The umklapp fraction, 4, for electron-electron scattering in the alkali metals has been calculated using first-
principles pseudopotentials. Both Coulomb scattering and phonon-exchange scattering have been included. For a
given pseudopotential and a given approximation to the effective electron-electron interaction, our results for the
Coulomb scattering contribution to 4 are up to a factor of ~ 100 smaller than those of an earlier calculation. The
sources of this discrepancy have been analyzed. On the basis of these calculations we suggest that the scattering
amplitude for umklapp electron-electron scattering in the alkali metals is dominated by the phonon-exchange
contribution. The improved treatment of the Coulomb contribution to the scattering amplitude and the inclusion of
the phonon-exchange contribution combine to yield a coefficient of T2 in the low-T electrical resistivity which is
larger than earlier theoretical values for Li and Na, about the same size for K, and smaller for Rb and Cs.

I. INTRODUCTION

It has long been recognized1 that the ideal elec-
trical resistivity of metals, p,(7'), should be dom-
inated at sufficiently low temperatures by a term
proportional to T? due to electron-electron scat-

tering:
P, (T)=A,T*. (1)

The existence of such a term in p,(7) in transition
metals, where p,, frequently dominates p; up to
~20 K, is well established.? For simple metals
the situation has been less clear.*! However,
recent advances in high-precision techniques have
made possible convincing observations of T? vari-
ations in the electrical resistivities of Al (Refs.
5,6), Cu (Ref. 7), and Ag (Ref. 8). Similar vari-
tions have been reported for K but in this case the
experimental situation is not yet completely
clear.”!! It has usually been assumed that only
Coulomb electron-electron scattering need be
considered in evaluating 4,, (Ref. 12); in this arti-
cle we report calculations of A,, for the alkali
metals which include both Coulomb and phonon-
exchange scattering mechanisms. We find that,
even though the Coulomb interaction dominates
for normal scattering events, A,, is determined
almost solely by the phonon-exchange scattering
process.

The work presented here is in part a refinement
of earlier work by Lawrence and Wilkins.> These
authors have presented an accurate but approxi-
mate solution of the appropriate Boltzmann equa-
tion which expresses A_, in terms of a factor which
is proportional to the electron-electron scattering
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rate on the Fermi surface and a factor A which
they call the “fractional umklapp scattering.” A
is a measure of the average depletion of current
in an electron-electron scattering event. Law-
rence and Wilkins have evaluated A by assuming
that the quasiparticle wave functions for Fermi-
surface electrons can be determined by solving a
Schrédinger equation with a local pseudopotential
and that the transition probabilities for electron-
electron scattering events can be approximated by
treating a Thomas-Fermi screened Coulomb inter-
action in the Born approximation.

In Sec. II we adopt these approximations and,
at the expense of obtaining results numerically
rather thar analytically, are able to evaluate A
without further significant approximations. For
a given pseudopotential our results for A are up
to a factor of ~100 smaller than those obtained by
Lawrence and Wilkins, and the sources of this
discrepancy are discussed. In Sec. III we attempt
to improve on these calculations by using reliable
but highly nonlocal first-principles pseudopoten-
tials (see below). In addition we consider many-
body effects on the electron-ion interaction and
their influence on A. In particular a frequently
quoted conclusion of previous workers,'? that the
scattering potential determining the shape of the
Fermi surface is identical with that appearing in
the electron-phonon scattering amplitude, is ex-
amined. Finally in Sec. IV we combine the re-
sults for A obtained in Sec. III with a recently
suggested approximation for the electron-electron
scattering'* rate in order to obtain 4,,. The dis-
cussion in Secs. II-IV is all based on the usual
assumption that phonon-exchange scattering pro-
cess can be ignored in evaluating A_,. In Sec. V
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this latter process is included in evaluating A,
and is found to be totally dominant. The values
obtained for A,, are compared with available ex-
perimental data and predictions are made con-

cerning the observability of electron-electron
scattering coefficients in the electrical resistivi-
ties of all alkali metals. Finally, in Sec. VI we
present our conclusions.

II. THE UMKLAPP FRACTION IN THE LOCAL PSEUDOPOTENTIAL APPROXIMATION

According to Lawrence and Wilkins®

2mim*a

A,=733m
e ke, T

(2)

for simple metals in the impurity-dominated limit. In Eq. (2), 75! is proportional to the electron- electron

scattering rate at the Fermi surface and

(f Hdk 5(e;, -

i=1

where V, is the quasiparticle group velocity at k,
and w(k;, ky; k3, k) is the average over spin states
of the trans1t1on probabilities for initial states

k1 and kz and final states k3 and k4 Here we will

follow Lawrence and Wilkins in writing

ESsE ‘VTF| EI’E2>
(ko Kg| VTR, KD %), (4)

where

elexp(—|F=TF'|krg) 5)

VTF('f_'fI)
[F-%'

is the Thomas-Fermi screened Coulomb interac-

tion and {|k,)} are the quasiparticle wave functions.

Note that we adopt this approximation in evaluating
A, which is the ratio of two quantities averaged
with respect to w, but not in evaluating 7;!. For

the moment we also assume that the core-ortho-
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i=1

(3)

gonalization components of the wave function can
be ignored in evaluating Eq. (1) so that

= T c@expli+E) 7], ®
i
where
’Z”E_’_a!lZGh’-{-V(Iai—a”)]cl(ﬁ)=€;cl(iz) (7)

and V(|G, - G,|) are the Fourier components of a
local pseudopotential. Atomic units with Ry for
energy have been used and it is understood that
the lowest eigenvalue and eigenfunction of Eq. (7)
are the solutions of interest. From Eqgs. (6) and
(7) it follows that

Vi=Vie;= Z‘: |C.®) |22k +G,) (8)

while from Eqs. (5) and (7) it follows that

(9)

> -D 1
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i

n mom'

where »' satisfies G o= G ~+G G G

We note from Eq. (9) that w(kl, kz, ks, k4) is non-
zero only when k; + &, + G, k3 +k, and G, is some
reciprocal-lattice vector. This is a consequence
of the translational symmetry of the lattice and
not an artifact of our simple approximation for w.
If in addition we approximate €, by k%/m* in evalu-
ating Eq. (3), we need consider only integrals of
the form

ks =y + G, = G, |2+ Ehe

-
(Fy= (%)4 J (ﬁ dk,6(k - k§,)>

XG(El +E2+a‘ "'Eg - E4)
X (l)(ED Ez; i;:;, E4)F(i;1_, Ez; Eg, E,;) s (10)

which can be accurately evaluated numerically
(see Appendix). In terms of these integrals A
1=1 A; where
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ith shell

all shells

) (19,4 ,-T,- 3/ o > I7.0%),

(11)

and as shown in the Appendix, in the case of the
alkali metals (F,) is nonzero only for reciprocal-
lattice vectors contained in the first four shells.
We have evaluated A from these equations for a
number of local pseudopotentials for each of the
alkali metals. The sums over reciprocal-lattice

vectors were truncated after the 19 G’s in the

first three shells. A total of ~2x10* {K,} points
were used in calculating (F;) and these numerical
results were found to be well converged. The re-
sults of this calculation are listed in Table I and
the pseudopotentials used are in Table II.
We discuss our results in terms of the approxi-
mate expression given by Lawrence and Wilkins,

which for the alkali metals is

Vi)
~ 110
A~2.3 <V0) ’

(12)

where Vyy, is a Fourier component of the pseudo-
potential for the first shell of reciprocal-lattice
vectors and V= -2¢,, is the average value of the

pseudopotential. This estimate is based on-the

expectation that A~A; and from Table I we note
our results are in accord on this point. However,
comparing Tables I and II we see that our result
for A is on average a factor of ~25 smaller than
what would be predicted by Eq. (12). Moreover,
Ay/(Vy10/ Vo) was found to vary significantly from
pseudopotential to pseudopotential and from metal
to metal. Three possible sources of this varia-
tion come to mind. First of all, it is clear from
Tables I and II that a nonzero value for V), es-
pecially if |Vy|>|Vyy|, can have a significant
impact on the value of A;. Secondly, even with
V=0, we see from Eq. (9) that A; can depend
on 7, at constant (Vy,/V;) through the density de-
pendence of the screening wave vector (Ie-n:/k,,)2
~0.667,, where 7, is the usual conduction-electron
density parameter. This rather weak dependence
is illustrated in Fig. 1. Finally, while A; should
be proportional to V%, to leading order in the
pseudopotential, it is possible that higher-order
corrections are entering even for the relatively
small V,;, values of the alkali metals. As shown
in Fig. 2 we find this to be so.

Because of the weak density dependence of
A/(Vi10/Vo)? we can, however, give a result for A
in the linear-response limit which is approxi-
mately valid over the entire alkali density regime.

TABLE I. Results for the fractional umklapp scattering A in the alkali metals, A, is the
normal scattering contribution. 4y, 4A,, and A; give the umklapp contributions. The pseudo-

potentials used are listed in Table II.

Metal Potential Ay A A, Ay A
Li RT 4 x10% 1.8 x1073 3 x107 8 %10 2.2 x107
Li CH 6 x10™% 2.2x1073 1 x107° 5x 100 2.8 x107°
Li HA 7 x10% 2.8 x103 2 x107° 2x103 3.5 x10°°
Li S 3 x10% 1.9x1073 4 x10°° 1x107 2.2 x107
Li AL 6 x10% 3.0 x107° 6 x107° 3x10% 3.7 x10°3
Na RT 1 %107 3.8x10% 2 x107 2x10%0 4.1 x10%
Na CH 3 x10% 2.6 x10™ 3 x10% 2x10%  26x10™
Na HA 5 x107 9.1x10™ 2 x107 2x10%  g9.6x10%
Na S 2 x1078 6.2 x10*% 8 x107 4x10% g5 x10%
Na AL 2 x10¢ 1.8 x10% 1.2x107 gx10t  1.9x10
Na A 9 x1078 4.4 x10% 8 x10% 6x10% 4.4 x10*
K RT 2 x107% 5.0 X107 1.6 X107 7x10%  6.6x107°
K CcH 7 %1077 1.4 x10% 1.4 x 104
K HA 4 %1078 3.7 x107% 3.7 x10-°
K s 6 x107" 1.2 x10%4 1.2 x 104
K AL 2 x10-¢ 3.3 x104 3.3x 10
K A 9 x107 1.5x10° 1.6 x 107
Rb RT 1x10°  17x102 3 x10% 7 %107 1.8 x1072
Rb CH 2 x10% 2.7 x10°° 2.9 x107°
Rb HA 3 x107° 1.1x1073 1.1 x10°3
Rb AL 1 x10%

Cs RT 3 x10 3.5 x107% 3.8 x107?
Cs CH 8 x10% 6.7 x1073 7.5 x107
Cs HA 1x103 1.1x102 1.2 x1072
Cs AL 1 %1073 1.1x10%2 1.2 x 107
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TABLE II. Pseudopotentials used to obtain the results listed in Table I, For nonlocal
pseudopotentials we have used the back-scattering matrix elements in these calculations,
The pseudopotentials are given in units of —2€5/3,

Metal Potential Vito Vago Vaur Vo Vato
Li RT? 0.323 0.253 0.114 0.016 —0.034
Li CHP 0.325
Li HA® 0.428 0.269
Li sd 0.308 0.257
Li AL® 0.436 0.376
Na RT? 0.097 0.120 0.070 0.027 —0.002
Na CH® 0.063
Na HA® 0.138 0.057
Na sd 0.113 0.088
Na AL® 0.057 0.094
Na Ace 0.084
K RT 2 -0.,013 —0.087 —=0.149 —0.154 -0.127
K CH® -0.038
K HA® -0.019 —-0.048
K sd 0.038 —-0.019
K AL® —0.048 -0.163
K As 0.165
Rb RTH -0.153 ~0.268 —0.282 -0.214 —0.121
Rb CH? —0.143
Rb HA® -0.088 —-0.088
Rb AL® —0.121 —0.198
Cs RT! -0.277 —0.357 -0.223 —0.054 0.053
Cs CH® —0.21
Cs HA°© -0.23 -0.13
Cs AL® -0.21 —0.26

2Reference 30,
 Reference 41,
¢Reference 42,
dReference 43.
¢ Reference 44.
f Reference 31.
&Reference 45,
hReference 34.

T T
Vuo =0.165

0.1 —

0.0 |
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FIG. 1. Contributions to A from zeroth and first
shells of reciprocal-lattice vectors as a function of »,
for a local pseudopotential with Vg=0 only for the first
shell of reciprocal-lattice vectors. The calculation was
performed for Vyyo/V,=0.165 corresponding to the Ash-
croft pseudopotential in K. The dashed curve is
Do/ (V110/V )t while the solid curve is Ay/(Vy1/Vo)?.
The low-density (74 —«) limits are Ag/(V110/V)!=0.14
and Ay/(Vy19/V )2 =0.16.

0.0 |

-0.2 -0.1

0.0 0.1 0.2
Viio/ Vo

FIG. 2. As in Fig. 1 but as a function of Vy,,/V, for
7s =4.86 corresponding to K. Note that A tends to be
larger at a given (Vy,,/V;) magnitude if Vy;o/E is
positive.
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From Fig. 2,
~o 1 (Yuo\? Vit

A O'I(Vo)[l+O(Vo)] . (13)
The coefficients of V2, in Eqs. (12) and (13) differ
by a factor of ~25 and we have attempted to iden-
tify the sources of this discrepancy. First of all
we note that in evaluating {|V;+V, = V; -V, |3,
Lawrence and Wilkins have included only G;=0
and 5‘ =i§, in the reciprocal-lattice sums. When
we make the corresponding reduction in the num-
ber of plane waves in the pseudo-wave-function
expansion, we find our estimate of A increases
by a factor of ~3. This increase can be under-
stood by examining Eq. (9). A typical term ap-
pearing in the sum of Eq. (9) when evaluating
(Fy) is

(k)
fﬁs“ﬁi |2+k?rF ’

(14)

C?(Es)’C:(E4)Co(E1)Co(E2) N
[k; - K |* + ke

where the subscript “0” is to be associated with
G=0 and for weak pseudopotentials CO(E,) =1, If
the number of plane waves included in Eqg. (6) is
increased, the coefficient of the original G=#0
plane waves tends to decrease. Thus the magni-
tude of the terms in Eq. (9) tends to decrease and
while there will be more nonzero terms in the
sum, they tend not to add coherently so that the
typical matrix element is reduced. We believe
that most of the remaining discrepancy is due to
inaccuracy in their estimate of the phase space
available for umklapp scattering. We make the
comparison in terms of the quantity 7,/ [see
their Egs. (3.11)] which reflects the reduction in
umklapp scattering due to phase-space restriction
and the decrease in V *¥(g) = 4me?/(q* + ki) with
increasing ¢q. (The typical q is larger for the
umklapp events.) They have estimated that 7,/v
~§— for the alkali metals. Comparing their Eq.
(3.11) with Eqs. (A3) we see that when kgl —~©
(i.e., r4~),7,/y=2Pg,,,, where from Eq. (A5)

Pg, ,=V2[(4n/3)"/* +3(4n/3)7/*] -1
~0.1623 .

Moreover, from Fig. 1 we note that when », de-
creases from « to the alkali-metal-density re-
gime, 7 /y should decrease by a factor of ~3 to 4
due to the increasing q dependence of VTF(q) for
q~kp. Thus we expect that a better estimate of
¥,/v for the alkali-metal-density regime would be
Yu/7~0.1.

The combined influence of the various improve-
ments to the calculation of Lawrence and Wilkins®
is to lead to a much smaller prediction for the

Coulomb electron-electron scattering contribution
to the resistivity of the alkali metals. Before
giving detailed predictions, however, in the next
section we repeat these calculations using accu-
rate nonlocal model potentials and by carefully
considering many-body effects on the quasiparti-
cle velocities and wave functions.

III. NONLOCALITY AND MANY-BODY INFLUENCES
ON A

We first consider many-body influences on the
quasiparticle energies and wave functions. To
avoid complicating the discussion we assume that
the applied potential [the pseudopotentials V,(q)
located on the lattice sites] is local. The quasi-
particle energies and wave functions can be de-
termined from the Green’s function in the presence
of the applied potential which obeys the Dyson
equation'® 1

G,,(k, w) =8, ,GY(k, w)

+3 8,63k, W)[5,, ,Z,(&,w)

Irm
+ V:ﬂ(al - an)]ij(E’ w) ’

(15)

where K is in the first Brillouin zone (BZ),
G%(k, w) [Z(k, w)] is the noninteracting uniform-
system Green’s function (uniform-system‘ self-
energy) evaluated at wave vector k+ ajzk,, and
Vialg) =AMk, )V, @)/ €lq) (16)
In Eq. (16), A is the irreducible vertex function
and e(q) the dielectric function of the homogeneous
system. We have anticipated our interest in solv-
ing for only the quasiparticle part of the full
Green’s function in ignoring the energy dependence
of A.'® The position-space representation of the
Green’s function is related to the double-wave-
vector representation of Eq. (15) by

- - 1 - . >
G(f, 7' w)= a *Eaz E‘ exp(ik, - T)G,,(k, w)
ke ¥

x exp( -‘-ii;, .7 . (17)
In matrix notation Eq. (15) may be rewritten
as
(6K, W)} =[w= |[k+G, |* = 2y, W],
+Vig(G,-G) . (18)
In keeping with the approximations of Sec. II, we

wish to solve Eq. (18) for |k|=Fk,. Thus we may
consider only terms to leading order in w - u?
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where ' is the quasiparticle energy at |E| =kg in
the absence of the perturbation. For this case
Eq. (18) may be rewritten as

Gk, )i =Z2 o= 10~ Z[Z (kp, 1) + 2
= Zolkp, 1) = & ]}51:1
+Z Vi (G, -G, (19)

(recall that (-Z‘:O =0), where Z is the uniform-system
quasiparticle renormalization factor. Thus the
effective interaction determining the Fermi sur-
face has a contribution from the Edependence of
the homogeneous system self-energy in addition
to the usual effective interaction used in calculat-
ing transport properties. In their consideration
of the influence of a pseudopotential on quasiparti-
cle energies and wave functions, Heine ef al. have
treated only the case in which G™! can be truncated
to wave vectors satisfying k; ~k;~kp. In this
case the additional contribution vanishes. How-
ever, a general Epomt on the Ferm1 surface is
not capable of satisfying |k+G,| =k, so that
their analysis has little bearmg on the Fermi
surface of a simple metal. Thus the identity of
scattering potential determining the shape of the
Fermi surface and the electron-ion interaction
form factor frequently claimed in the literature’
does not in general hold. Nevertheless, as is
noted below, this identification may be an adequate
approximation in many instances.

It follows from Egs. (19) and (17) that for w
near 1 and % near krs

6 R, w) = 29T (20)

k

where E, is the eigenvalue of (w- Z"'G™!) [Eq.
(19)] near u? and {C } is the associated eigenvec-
tor. Thus E, is the quasiparticle energy and the
quampartmle wave function is related to {C,} as
in Eq. (6). We have solved the eigenvalue equa-
tion by standard matrix techniques. T and Z
were taken from the calculations of MacDonald
et al.!® The RT pseudopotentlals (see Table II),
including their nonlocality, were used. For A

whose dependence on E, is not well known, we

have substituted the Fermi surface to Fermi-sur-
face values suggested by Rasolt.!® With this ap-
proximation the potential in Eq. (19) is identical
to the potential appearing in transport theory. We
note that for |k, ~kg|<k, the diagonal self-energy
term in Eq. (19) satisfies

Z[Z (kg 1) + RS = Dolkg, 1) = KE] = (k1 = RE)/mi*
(21)

(We have not adopted this approximation here.)
If both the approximation for A and Eq. (21) are
adopted, the resulting quasiparticle energies and
wave functions will be identical, aside from an
effective-mass correction to the unperturbed
energies, to those calculated using the transport
theory form factors. Thus the identification of
these two effective potentials while not exact is a
reasonable approximation.

The values of A obtained from Eq. (19) are
listed in Table III. We note that the values of A,
show a tendency to increase with nonlocality.
This can be understood partly in terms of the ex-
pression for the quasiparticle velocity corre-
sponding to Eq. (19):

2>
v,=z).C [(2k,.+5f(ki,u°))5‘,,
ir4

+9; Vig(G, - é,)]c ;- (22)

4y is a measure of the anisotropy of IV;[ over
the Fermi surface. For a local effective potential
Vig(G,~G) =0, but as indicated in Fig. 3, the
effective potential is highly nonlocal for all the
alkali metals except Na. This extra contribution
to V; adds to the anisotropy of |V;| and increases
Ay. The changes in A; on including nonlocality
depend on the metal. The a.pprox1mat1on of Sec.
II amounts to replacmg in V,,(G G,) by its
value when £,-k,=~1. From Fig. 3 we see that,
except for the case of Na, this replacement en-
tirely misrepresents the matrix elements of the
effective potential. For Li, A, is increased even
though the mean value of Vi, is reduced. This

TABLE II. Results for the fractional umklapp scattering A in the alkali metals with nonlo-
cality effects included (see text). These results were obtained using the RT pseudopotentials

(see Table II).

Metal AN A%y 4, Ag A(%)
1i 2.4 X103 1.3 x10-3 4 x10-6 1 x10-? 0.37
Na 1 x10° 5 x10% 2 x107 3 x10-10 0.05
K 7 x10-8 7 x10% 2 x10-¢ 6 x10-11 0.07
Rb 1.3 x10°3 7 x104 1 x10% 6 x 1071 0.20
Cs 777 %1073 8 x104 3 x10-% 6 x10-10 0.85
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FIG. 3. Screened pseudopotential form factors
(ﬁ +6‘| WlT{) for the alkali metals as a function of
cosf= K+ G)- (k)/|k+G|. For alocal pseudopotential
the form factors are independent of cosf. The back-
scattering matrix element corresponds to cosf= ~1
so that approximation of Sec. II amounts to replacing
each of these curves by a horizontal line with the same
position at the left axis.

is because for some 15, . IE,, Vi1 enters the larger
A,/V?,, region of hegative Vy;, values (see Fig.
2). For K the backscattering value of Vyy is
anomalously small and its use in Sec. II has
strongly underestimated the strength of the elec-
tron-ion interaction. For Rb and Cs much of the
decrease in A; when nonlocality is included can
be attributed to V,;, being positive for most values
of k, -k, (see Fig. 2). In addition it appears that
the change in sign of Vi, as a function of ;- &,
causes some cancellation to occur in the evalua-
tion of matrix elements via Eq. (9). The total
values for A listed in Table III range from less
than 0.1% in the most jelliumlike of the alkali

metals Na and K, to nearly 1% in the metal with
the largest crystalline effects, Cs. In the next
section these values for A are combined with esti-
mates of 7;' to obtain the A,, which would be ex-
pected on the basis of Coulomb scattering only.

IV. ELECTRON-ELECTRON SCATTERING
RESISTIVITY FOR COULOMB
SCATTERING ONLY

The electron-electron scattering coefficients
obtained by combining the values of A listed in
Table III with the approximations of Ref. 14 for
the Coulomb-only electron-electron scattering
rate, 75!, are listed in Table IV (7;'«c4,,/A). The
accuracy of the method of Ref. 14 for calculating
7;! has been firmly established by comparison of
theoretical and experimental values for the Lor-
enz function of the alkali metals above ©,.%° For
the purpose of comparison we have also listed in
Table IV the values obtained for A,,/A when the
Born-Thomas-Fermi approximation for the scat-
tering amplitudes [Eq. (4)] is adopted (AXF/A).
When an effective-mass correction is applied®!
(parenthetical numbers in Table IV), the values
predicted by this approximation are surprisingly
accurate, being a factor of ~2 too small. This
accuracy is due in part to a cancellation of errors
since the Born approximation will overestimate
the scattering amplitude for a given effective
interaction? while the Thomas-Fermi approxima-
tion underestimates the effective interaction,?
Nevertheless, this accuracy does lend some
credence to the claim that A, being the ratio of
two different integrals in which the transition
probability plays the role of a weighting factor,
can be estimated using the Born-Thomas-Fermi
approximation.

To date, experimental work on the low-temper-

TABLE IV, Electron-electron scattering resistivity calculated including only the Coulomb
interaction. A,,/A was calculated using the accurate Fermi-liquid theory of Ref. 14 for the
scattering amplitude. For comparison we have also listed the value obtained for this quantity
when the Thomas-Fermi approximation is used for the scattering amplitude AT /A, The
theoretical value listed for A,, is (4,,/A)A, The values in parentheses under ALf /A include
an effective-mass correction as discussed in the text.

A, /A ATF/A A A(101" QmK-?)
Metal 1015 omK-2 101% QmK= % Theory Expt.
Ii 15 3(8) 0.37 6 ~20002
Na 19 9(11) 0.05 1 180-195°
K 59 31(38) 0.07 4 55—290 °
Rb 79 39(46) 0.20 16
Cs 150 56(85) 0.85 130

2Reference 9.
bReference 11.
¢References 10 and 11,
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ature resistivity of the alkali metals has been
undertaken for Li (Ref. 9), K (Refs. 10 and 11),
and Na (Ref. 11). For K the interpretation of the
results is confused by the apparent sample de-
pendence of A,,. The earlier work on Li is prob-
ably less reliable than the very accurate recent
work on Na and K. We do not discuss the results
at this point beyond noting that for both Na and K
the experimental values of A4,, are 1 to 2 orders
of magnitude larger than those which we have ob-
tained theoretically. We believe that, as dis-
cussed in the next section, this discrepancy is
principally due to the failure to include the phonon-
exchange contribution to the scattering amplitude.
However, we should first mention two additional
sources of uncertainty in the above theoretical
predictions.

As noted in Eq. (12) the values of A listed in
Table III reflect primarily the fraction of the
weight of states {k) on the Fermi surface asso-
ciated with plane waves exp[i(k+ G )+ ] for G, #0.
We have implicitly assumed that these h1gher
plane~-wave coefficients are not strongly influenced
by the core-orthogonalization component of the
wave function, which is absent in the pseudowave
function. The importance of the core-orthogo-
nalization components should be larger in the
larger core systems. MacDonald* has compared
the coefficient of the exp[i(k - G) +T] plane wave
obtained by expanding. the true solid-state wave
function with the corresponding coefficient of the
pseudowave function for a point on the Fermi sur-
face near the k - é:GZ/Z Bragg plane for several
alkali metals. The ratio of these coefficients was
found to be 1.3, 1.6, and 1.7 for Li, Rb, and Cs
indicating that our estimates of A could be in-
creased by at most a factor of ~3 as a result of
including core-orthogonalization components of
the wave function. This would not be sufficient

to resolve the discrepancy indicated in Table IV.

A second deficiency of the calculation leading to
the values of A listed in Table III is that we have
used an effective electron-electron interaction
which depends only on the distance between elec-
trons. In a real solid the scattering function will
not be fully translationally invariant so that, even
in a 1-plane-wave approximation for the pseudo-
wave function there will be nonzero contribution
to A. The potential size of this contribution to A
for Na can be estimated from the examination of
Hedin et al.® of the off-diagonal terms in a repre-
sentation for the dielectric function similar to
that used for the Green’s function in Sec. III (see
the discussion in Ref. 26). For Na this contribu-
tion to A will be at most ~0.1%. It is clear that
this contribution to A will be, at most, about the
same order as the contribution which we have
calculated.

V. ELECTRON-ELECTRON SCATTERING
RESISTIVITY INCLUDING PHONON-EXCHANGE
SCATTERING

In metals, electrons interact both via Coulomb
repulsion and via the attraction caused by the
virtual exchange of phonons. We have thus far
ignored the latter interaction. In superconducting
simple metals the phonon-mediated interaction is
expected to be stronger, but for the alkali metals
the importance of this interaction is less obvious.
In Table V we have listed values of A4,,/A for the
alkali metals obtained using the approximations
of Ref. 14 with Coulomb interactions only, phonon-
exchange interactions only, and both interactions.?’
As noted in Ref. 27 the strength of the attractive
phonon-exchange interaction relative to that of the
replusive Coulomb interaction may be crudely
characterized by a parameter, C,, (see Ref. 27).
The values of this parameter for the alkali metals

TABLE V. 4, /A from Coulomb interactions only (A /A) from phonon-exchange interac-
tions only (AF? /A) and including both interactions (ASZPX/A) A, /A is a measure of the rate
at which quasxpartmles are scattered by normal electron—electron events. All quantities are
given in units of 1015 omK-2, All these quantities were calculated using the approximations
of Ref. 14. C,, is a measure of the ratio of the strengths of the two interactions as discussed
in the text. Also listed is the value of AYX/A obtained in an “exact” calculation as discussed
in the text and the parameter X which characterizes the ASFX/A obtained when the Thomas-
Fermi approximation to the Coulomb interaction is combined with the exact expression for

the phonon-exchange interaction (see text).

ATX/A APX/A X
Metal AS, /A (exact) Cep (Ref. 14) [see Eq. (28)] ASFX/A
Li 15 8 0.59 8 -0.01 5
Na 19 10 0.70 7 0.14 5
K 59 12 0.48 8 -0.05 30
Rb 79 15 0.42 10 0.05 43
Cs 150 23 0.34 14 0.08 96
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are listed in Table V. It is immediately apparent
from these values that, at least for the lighter
elements in the alkali series, the phonon-exchange
process cannot be ignored. When both interactions
are included using the methods of Ref. 14, there
is a cancellation between repulsive and attractive
interactions and the scattering rate is reduced
below that obtained in the Coulomb-only case.

(It should be emphasized that 4,,/Ax 7;' measures
the total scattering rate which is dominated by
normal scattering events.) We have discussed in
Secs. II and III the considerations determining

the Coulomb-only umklapp scattering rate. In
order to discuss the umklapp scattering rate in

the presence of both interactions we follow Rice?
in observing that in the zero-energy-transfer limit
only the diagrams of Fig. 4 contribute to the
phonon-exchange scattering function. Thus for

the phonon-exchange-only case it follows that

. I 2‘"’ - - -, - - -
w, c(kb kz; kllkzl) ﬁ-h— lgx(k{’ kl)gx(kzl’ kZ):DA(kll - kl)
=a(ks, El)gx(kll; E2):{)>~(E21 - Ei) |2 ’

(23)
where summation over the repeated phonon po-
larization index is implied:
gx(ﬁ', i;)

= (Qy/2MZ Q)1

| -
< - X IR, RE - AL
(24)
ﬂa’ » and &z, are the phonon frequencies and polar-
izations, Z is the valence, £, is the unit-cell
volume, and in the zero-transfer limit the renor-

malized phonon propagator

D& D~ . (25)
q, 2
The effective-mass correction factor m*~!in Eq.
(24) is discussed below. In these equations § is
understood to represent k’”~K reduced to the first
J

>/ > >/
‘Tl ko Kk, k,
re +
>/ >
>/ > k2 k2

FIG. 4. The phonon-exchange contribution to the four-
point scattering function in the zero-energy-transfer
(@/w —=) limit. The dots represent electron-phonon
interaction vertices and the wavy line a renormalized
phonon propagator.

Brillouin zone. The effective electron-ion inter-
action appearing in Eq. (23) should include quasi-
particle renormalization and screening correc-
tions to the bare interaction.?®? [The opposite-
spin scattering probability would be like Eq. (23)

except that the exchange term would not appear. ]
We have calculated the electron-electron scat-

tering rate obtained when Eq. (23) is used for the
transition probability and these exact results are
compared with the Ref. 14 approximation results
in Table V. The phonons were calculated using
the model potential method of Dagens, Rasolt, and
Taylor.?3! The electron-ion interaction vertex
was approximated by using a single-plane-wave
approximation for the pseudowave function in Eq.
(24). The accuracy of this approximation in the
alkali metals has been established in calculating
the phonon-limited electrical resistivity.**-** We
note that the Ref. 14 approximation results agree
quite well with the “exact” results. This gives us
added confidence in the analysis presented else-
where for Al.YY The situation becomes less satis-
factory, however, when the Coulomb and phonon-
exchange scattering mechanisms are included to-
gether. The difficulty is that no simple accurate
expression analogous to Eq. (23) exists in the
general case. Nevertheless, from the many-body -
theory expressions for the full scattering func-
tion®»?7 it is clear that we may regard the effec-
tive interaction crudely as the sum of Coulomb
and phonon-exchange interactions. Thus we
choose to approximate

. > -, e, 21/ > k! &)oL & . -
s T ' ) =57 [ (e R Rl 1 By Ry XL R KD g, )
: m

- . .. \A2
- (7—:; TR Al WARY A LA k1)>] , (26)
m
f
with the exchange term being absent for the oppo- m* =m,(1+2) (27)

site-spin scattering case. The m* factors in Eq.
(26) approximately account for the influence of
the Fermi-level density of states on the screening
functions.'*?" Ignoring electron-electron inter-
action mass renormalizations, we took

with m, and ) chosen as in Ref. 14 and all masses
in free-electron mass units. The factor « in Eq.
(26) is to be chosen so as to compensate for our

ignorance of the Coulomb contribution to the scat-
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TABLE VI. Contributions to the electron-electron scattering resistivity from scattering
events associated with the first four shells of reciprocal-lattice vectors. The results report-
ed here are for a=a* (see text). The values of A are in %.

Aee /A Aee

Metal (105 @mK?) Ay ' A, Ay A (1017 @mK-?)
Li 40 0.7 311 057 152 538 210
Na 40 0.00 348 002  0.00  3.50 140
K 80 0.00 205 001 000 2,07 170
Rb 130 013 224 023 017 277 350
Cs 240 073 125 023  0.62 282 670

tering function. The scattering rate obtained with
Eq. (26) is expressed in Table V in terms of the
quantity X which is related to the electron-electron
scattering rate by

PX N PX 2
‘U“(a) = Vge +2Xam* Ve vEeF + a2m* vzaF ’

(28)
where
A,/ A= (m*r3/34.1)(v,,/T?1072! (29)

in units of 2ms. Crudely speaking, X=1 would
correspond to the two interactions adding together
in a coherent fashion while X=-1 would corre-
spond to the interactions canceling against each
other to the greatest possible degree. It is clear
that the approximations of Ref. 14 predict a much
greater degree of cancellation than does Eq. (26).
The reason is that in the Thomas-Fermi approxi-
mation the parallel-spin scattering amplitude is

very small since direct and exchange terms nearly
cancel.®® The phonon-exchange direct and ex-
change terms cancel to a much lesser degree so
that amplitudes for parallel-spin scattering in-
crease. On the other hand, amplitudes for oppo-
site-spin scattering decrease in the expected
manner leading to the near zero values of X.

Since the many-body-theory approach of Ref. 14
properly includes the rather subtle way in which
phonon-exchange and Coulomb interactions com-
bine to form a net interaction, we tend to favor
the scattering rates predicted by that approach.
However, this approach cannot predict the scatter-
ing amplitudes for umklapp events, so we must
use Eq. (26) in order to calculate A,,. Fortunately
almost all the amplitude for umklapp scattering
events comes from the phonon-exchange process
so that the predicted values of A,, will be insensi-
tive to @. The values obtained for A,, are listed
in Table VI and are increased over those obtained
with Coulomb scattering only by factors varying

TABLE VII. Values of 4,, obtained for the alkali metals including both Coulomb and pho-
non-exchange scattering mechanisms, The dependence of 4,, on the scaling correction to the
Thomas-Fermi Coloumb interaction is indicated. For comparison we have listed the value of
A,, obtained when phonon-exchange scattering is neglected, ASO. The coefficient of 7° in the
low-temperature phonon-limited resistivity 4., and the temperature at which Am,l6
=A,(a*)T%(T,) are also listed. A,, is in units of 10%" QmK= and 4,, in units of 10" QmK=2,

Li Na K Rb Cs
AP 6 1 4 16 130
o* 1.39 1.31 1.25 1.31 1.33
Ay (@=0) 200 130 170 330 500
A, (@=1) 210 130 170 340 570
A, (@=a™) 210 140 170 350 670
A, (expt) ~2000 * 180-195" 55290 ©

Agp 0.02¢ 59 25° 270" 14001
T, (K) 22 3 19 1.1 0.8

dReference 32.
¢Reference 33.
f Reference 34.

3Reference 9.
P Reference 11,
®References 10 and 11.
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from ~5 in Cs to ~150 in Na. The calculations
were performed with ¢ = a* where a* is the value
of @ which brings ALY /A and ALY/A (FL for Fermi
liquid) into agreement witkhout the phonon-exchange
scattering being present. In Table VII the weak
dependence of A,, on « is explicitly exhibited and
the magnitude of A,, is compared with the coeffi-
cient of 7 in the low-temperature phonon-limited
resistivity to predict the temperature, T,, at
which the two contributions to p should be equal
Presumably convincing identifications of T? com-
ponents in the resistivity would require the ideal
resistivity to be accurately measured at least
down to temperatures ~7T,/2.

The interpretation of existing experiments on
the low-temperature p of K is somewhat confused
and so the comparison with experiment in Table
VII deserves a few words of elaboration. The ex-
perimental value of A,, obtained by fitting p(7') to
an assumed T? dependence has been observed to
be sample dependent. This sample dependence
has been interpreted by Kaveh and Wiser®®!! as
being due to interference between electron-elec-
tron and anisotropic electron-defect scattering.

If their interpretation is correct, the ideal T?
coefficient should correspond to the lowest values
of A,, obtained experimentally. However, Row-
lands ef gl. have found that the p(T') for T in the
range ~0.5 to 1.5 K, used in the analysis of Kaveh
and Wiser, varies more nearly like 7?!-° rather
than like T2. Recently Schroeder ef a. have found
that below T =0.5 Ka T? fitis againbetter and they
find A,,~ 230x10"Qm K2, Itisnotyetknown if the
coefficient of T2 in this extreme low-temperature
region is sample dependent. The experimental
value obtained for Li (Ref. 9) does not seem to be
consistent with the more recent work on Na and
K. The case of Li ought to be re-examined. It
is possible, but we believe unlikely, that band-
structure effects need to be explicitly accounted
for in Li.

1_37

VI. CONCLUDING REMARKS

We have calculated the electron-electron scat-
tering coefficient in the low-temperature electri-
cal resistivity for the alkali metals, including
both Coulomb and phonon-exchange scattering
processes. It has been demonstrated that the
value for A,, obtained including only the Coulomb
scattering process has been seriously overesti-
mated in an earlier calculation and that, in fact,
the value of A,, is dominated by the phonon-ex-

MAX

2r 2r 2r ®q "
F)=0, G>4k =J' d f d d f
(F)=0, r=) ¢10 ¢2_](; <153_1 _/_1

where

MAX
2

change scattering process. The values obtained
for A,, are consistent with existing experiments
on the low-temperature p(7) of Na and K. How-
ever, apparent sample dependence of the experi-
mental results and apparent slower-than-7? in-
creases in p(7) for T~0.5 to 1.5 in K, have con-
fused the interpretation of these experiments.
Size effects'®*® and electron-phason scattering
associated with a possible charge-density-wave
ground state*” have been suggested as other possi-
ble explanations of the observed behavior. Fur-
ther experimental and theoretical effort should
allow a clear conclusion to emerge. It is our ex-
pectation that the results obtained here, which we
believe to be quantitatively accurate for the ideal
system with a normal ground state, will play a
useful role in this process.

APPENDIX

It is sufficient to consider integrals of the form
2\ (YY oo an2
(Fp=(3- fn[dkiﬁ(ki-kF)]
kF i=1

x 6 (K +ky—ky~k, +G,)wF ,
(A1)

where the arguments of w and F have been
dropped. The integral over one wave vector and
the radial portion of the remaining wave-vector
integrals may be performed trivally to yield

(F,):fdél jdéz fdéga(%—ﬁ-ég) wF , (A2)

where El:-kFéi! E4=E1+E2+ai-ﬁ3, and I-{

=(k; +k;, + G)/kp. In performing the integral over
&, we let K be the polar axis. (Denote the polar
coordinates by cosf;=u; and ¢3.) Note that the
argument of the 6 function can be zero only if

K <2. This condition restricts the available phase
space for the &, and &, integrals. It is essential
for this restriction of the range of integration to
be accounted for explicitly if F; is to be accu-
rately evaluated. To do this conveniently it is
necessary to let k; + G, be the polar axis in per-
forming the integral over &, and to let G, be the
polar axis for.integrating over e, the polar coor-
dinates being denoted by (cosf,= Uy, ¢5) and
(cosf; = uy, ¢,), respectively. When this is done

we obtain
|

wF
5 C<tks, (A3a)
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1, G<2kg
lﬁ“x— (/ )2
8- (G/kr
__2(G/kF) , G=2kp
and
(WU
Jpax _ [ (kF> ke ke) "\

1 otherwise .

The coordinates of El, Ez, E3, and E4 in the crystal
coordinate system can be obtained from the five
polar coordinates in Eq. (A3a) by using rotation
matrices. For the G=0 case the polar axis for
the &; integral may be chosen arbitrarily.

The five-dimensional integral in Eq. (A3a) can
be evaluated numerically using product Gauss
quadrature. Special care should, however, be
taken whenever

K=1{2+(G/kp)?+2(G/ks) iy

+2[1H(G/kp) + 2(G/R) 1] Pl P (A4)
becomes zero inside the range of integration. For
the case of interest here, monovalent bcc metals,
this can only happen for G=0. In that case, an
integration formula of the Gaussian type in which
the (1 + uy)"'/? factor is explicitly accounted for
can be used for the du, integration. It should be
noted that for all cases of interest here, F; has
the same value for all reciprocal-lattice vectors
in a given shell.

Equations (A3) may be used to compare the
phase space available for normal scattering events
to that available for umklapp scattering events.
For a given reciprocal-lattice vector of magnitude
G the ratio of the phase space available for the
associated umklapp events to the phase space
available for normal events is

Pczﬁ , 25(%)s4
G
o (i)

The phase space available for normal and umklapp

(4kr—G)*

8Gkp (A5)
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(A3b)

(A3c)

-

scattering events is compared for bcc, fce, and
(ideal) hcp crystal structures in Table VIII. Note
that the totaLumklapp phase space is not sensitive
to crystal structure.

TABLE VIII. Phase space available for normal and
umklapp scattering events in bee, fce, _gnd (ideal) hep
metals. The reciprocal-lattice vector G associated with
an event is indicated by (#*) where G=@n/a)(h,k,1) for
bee and fec and G= (21/a)(k,k/V3, (a/c)l) for hep, N is
the number of members of a shell and Z is the valence,

. PgNg
Structure G Ng Z=1 Z=2 Z=3 Z=4

bee ©00) 1 1.000 1.000 1.000 1.000
bee (110) 12 1.947 3.858 4.887 5.537
bee (2000 6 0.140 0.609 1.045 1.432
bee @11) 24 0.002 0.718 1746 2,759
bee (2200 12 0.000 0.040 0.225 0.443
bee (810) 24 0.00 0.000 0.184 0.581
bee 222) 8 0.00 0.000 0.004 0.066
bee (821) 48 0.000 0.000 0.000 0,064

Y PeNg 3.089 6.225 9.091 11.882
fec ©00) 1 1,00 1.000 1.000 1.000
fec (111) 8 1.436 2.723 3.390 3.812
fee (2000 6 0.609 1.432 2,008 2,373
fee (220) 12 0.040 0.443 1.329  1.947
fec (311) 24 0.000 0.356 1.141 1976
fec 222) 8 0.000 0.066 0.280 0.523
fee (400) 6 0.000 0.000 0.043 0,140
fee (331) 24 0.00 0,000 0.014 0.202
fec 420) 24 0.00 0.000 0.001 0.130
fee (422) 24 0.000 0,000 0.000 0.002

2PgNg 3.085 6.020 9.206 12,105
hep ©00) 1 1.000 1.000
hep ©01) 2 0953 1.169
hep (1100 6 0.533 1.310
hep 002) 2 0.131 0.359
hep (111) 12 0524 1.695
hep (112) 12 0.010 0.448
hep ©03) 2 0.00 0.034
hep (130) 6 0.00 0,030
hep (131) 12 0,000 0.018
hep (113) 12 0.000 0.002

2 PgNg 3.151 6.065
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